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A dyna mi ca l mod el for de ns it y flu c tu ations in a one·component. fluid near the criti ca l. point. i p ro
posed and compared with ex is ting measure me nts in carbon dIox Ide. The model Is d escn bed by a set 
o f linearized hyd rod yna mic equations modi fi ed to in clude a nonloca l press ure dens It y re latIonshIp a nd 
to include re laxation in the volume viscos.it y. Paramete rs for the model are fou nd whI ch are consIste nt 
with bulk measure me nts. Wit.h these para mete rs the model rep rodu ces, with in ex perime nta l un 
certainty, th e obse rve d Brillouin spec trulll of c riti ca l opalescence in CO 2 • The low frequency volume 
viscos ity is found to dive rge as t.h e -l/3 power ofT - Te. An additiona l modification of the hydrodynamIc 
e quation s, a freque nc y depende nt. thermal condu c tivity, is cons ide red , but no defilllt. e conclUSIOns can 

be reached as the Brillouin line-width data lack suffi c ient precis ion. 

Key words: Brillo uin scatte ring; c riti cal opalescence ; c riti cal phenomena; density fluc tuations 

in fluid s; light scatte ring; vo lume viscos it y. 

1. Introduction 

The d ynami cal s tru cture of density fluc tuations in a 
fluid is directl y related to the spectral struc ture of 
light scatte re d by the de nsity flu ctuations. Thi s s truc
ture has been the subjec t of a large number of theo

retical [1]1 and-experimental [2-4] papers. It has bee n 
established that the linearized hydrodynamic equations, 
suitably modifie d to include internal degrees of 
freedom, represent a sati sfactory model for the 
dynamics of the long wave le ngth de nsity fluctuations 
in many simple fluid s. 

In this paper we propose to compare a model for the 
dynamics of density fluc tuations in a one-compon ent 
fluid near the critical point with recent experime ntal 
observations of the spectral structure of criti cal 
opalescence. The intent is to determine the main 
features of a model for critical fluctuations. Weare 
not so much concerned with the precise values of 
parameters occuring in the model a s we are that these 
parameters be in agreement with the known properties 
of the fluid system. The measurements are for carbon 
dioxide at the critical density for temperatures greater 
than the critical temperature. Three modifications of 
the linearized hydrodynamic equations will be ex
amined. The first modification is the introduction of 
a nonlocal relation ship between density and pressure 
fluctuations [5]. The second is the introduction of a 
frequen cy de pe nde nt volume viscosity and the third 

*This wor k wa s support ed by the Advan ced Resea rch Projec ts Agency uf the De partme nt 
of Defen se. 

I Figures in bracke ts indic ate the lite ra ture refe re nces at the end of thi s pape r. 

modifica tion is the introduction of a freque ncy de pe nd· 
ent th ermal conductivity [6, 7]. For convenie nce we 
assume the single relaxation time form for the fre
quency de pendence of the volume vi scos ity and the 
thermal condu ctivity. Given th e mode l a nd th e experi

me ntal res ults c urre ntl y avail a bl e we co nclude that 
the first and seco nd modifications in the hydrodyna mi c 
equations are required. It is not possible to decide 
whether or not the therma l condu ctivity is frequ e ncy 
depe ndent. 

2. Dynamical Model 

Before we introduce the model for the de nsity 
fluctuations in terms of a set of linearized hydro

dynamic equations let us briefly state wha t is found 
experime ntally. The spec trum consis ts of a n inte nse 
central compone nt and two relatively wcak Brillouin 
components. The width of the central co mponent may 

be expressed (in units of rad/sec) as 

(1 ) 

where x= A/PoCp is the thermal diffusivity at constant 
pressure. Here A is the thermal conductivity, Cp is the 
specific heat at constant pressure and po is the number 
density. The wave vector of the fluctuation is k. For the 
experiments to be considered k = 2.18 X 101 m - I. 

The temperature dependence of X is found to be, for 
CO2 above the critical point, proportional to 
I T- Tc I - O.73 ± O.02 where Tc is th e criti cal temperature 

(Tc = 303.2 K for CO2 ). Swinney and C ummin s found 
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~= (2.4 ±0.5l) x 10-9 /1 T- Tc 12{3 m for CO2 at the 

critical density [4]. 
The Brillouin components exhibit a large dispersion 

in the frequency shift WB = vBk; that is, VB> CO the 
adiabatic sound speed. At the same time the width 
of the Brillouin components is appreciably greater 
than the width predicted by the unmodified hydro

dynamic equations [2, 3]. 
Finally , the ratio of the intensity of the central com

ponent to the intensity of the Brillouin components is 
found to be proportional to I T- Tc 1- 1.02 ± O,03 [2, 3]. 

The dynamical model for density fluctuations of 

wave vector k is 

ap;;t) + Poth (t) = 0 (2) 

ath(t) = Clik2 (1 +P/K2) Pk(t) + Cij{3r PTk(t) 
at po'Y 'Y 

- bok2!Jik(t) - k2 Jot b (t' ) !Jik (t - t')dt' , (3) 

Cv(y - I f apdt) + C aTk(t) =- A k2T ( ) 
(3r at po v at 00 k t 

-k2 t A(t')Tk(t-t')dt'. (4) 

Here Pk(t) is the kth spatial Fourier component of 
the density given that at t = 0 that component had the 
value Pk. Tdt) and !Jidt)=ik'Vk(t) are the cor
responding Fourier components of the temperature 
and velocity field. In eq (4) the entropy has been re
placed by the temperature and the density using local 
thermodynamic equilibrium arguments. The pressure 
term in eq (3) has been also replaced by the tempera
ture and density using a nonlocal relationship between 
the pressure and the density. The Fixman modifica

tion [5] was used so that 

Here K - 1 is the two particle correlation length, po is 
the equilibrium number density and m is the mass of 
a molecule. Other quantities are Co, the low frequency, 
adiabatic sound speed, y = Cp/C v is the ratio of the 
specific heat at constant pressure Cp to the specific 
heat at constant volume Cv and {3r is the isobaric 
thermal expansion coefficient. The nonrelaxing longi
tudinal kinematic viscosity is bv= (4/3'Y/s+'Y/v)/mpo 
where 'Y/s is the shear viscosity and 'Y/v is the frequency 
independent volume viscosity. The relaxing part of 
the volume viscosity is contained in the convolution. 

We assume 

bet) = (C ~ -Cij)exp(-t/T) . (5) 

The time dependence of b is arbitrarily chosen to be 

an exponential decay. While there is no reason to 
expect this simple form, we shall see that the data 
are , at present , adequately represented using this 
form. The "high frequency" speed of sound is C". 
Equation (5) is a frequently used form for relaxing 
viscosities. 

In eq (4) "0 is the static thermal conductivity and 
the relaxing part is A(t). Again we c hoose an expo
nential decay: 

"TA(t) = (A oo -Ao) exp(-t/T). (6) 

The high frequency thermal conductivity Aoo is prob
ably equal to the thermal conductivi ty when T - Tc 
> 20 K. Except near the critical point the thermal 
conductivity is insensitive to small changes in the 
temperature[8]. The form for eq (6) was chosen on the 
supposition that only the critical anomaly in the ther
mal conductivity can exhibit relaxation. Again the 
factor exp [- tIT] was chosen for simplicity. 

The spectrum of light scattered by density fluctua
tions is specified by the correlation function 
(Pk(W)P-k) where Pk(W) is the Fourier transform 

of Pk (t). We shall determine (Pk (w) P -k) for the 
model by solving eqs (2)-(6) as an initial value problem 
for Pk(t) given that Pk(O) = Pk. Put another way, we 
use the equations of motion (2)-(6) in lie u of the 
conditional probability which relates Pk(t) to Pk. If 
desired, the ensemble average indicated by the angular 
brackets < . . . ) may be computed using an equi
librium ensemble. The initial value (PkP - k) is not of 
special interest here as the Fourier components are 
independent in this model. [If there were coupling 
between Pk and Pk+Q the initial values would be im
portant.] The reader is referred to reference [1] for 
more detailed discussion of these calculations. 

Solution of the model is straightforward when the 
Laplace transform is employed. The transform of 
Pk(t) is 

(7) 

with similar expressions for Tk(z) and t/Jk(z) . With 

the assumption that ( p--;;L k > = ( Pk!Ji- k > = 0 it 
follows that 

(8) 

with 

+ z[ boP + aok2 + (C ~ l-+C;; k2
T (9) 

+ (a oo -ao~k2f (boP + (C~_Cij)k 2T )] 
l+zT l+zT 
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+ qk2 (l + k2/.~2y) 

+ qk2 (1+k 2 /K2 ) (a x -ao)k2r] 
'Y 1 + ZT 

I 

r 
+ aok 2 qk2(l + F/KZ). (10) 

We have i:trocfuced the quantities ao= Ao/poC" and 
a oo = Aoo/ PoC v. 

An exact expression for (P".{W)P- k) may be ob
tained from eq (8) by replacing Z by iw and taking 

> 1/7T times the real part of the resulting expression. 

When this is done we find 

7T 

< P..{W)P - k > 

< Ip,,12 > 

F(iw) 
Re G(iw) . 

F,G, + FtGz 

(G,)2+(Gz)2 

where F(iw) =F, + i F2 and G{iw) = G, + i Cz. 
The expli cit forms for F, etc. are 

(C~ - C;5) PT z 

1 + W 2T2 

(11) 

(12) 

(14) 

_ (C~ - Q)k 2T Z 

1 + W 27 2 

3. Comparison With Experiment 

(15) 

The frequency spectrum of density fluctuations 

for the model may be computed by evaluating eq (12) 
for various values of w. To do this requires specified 
values for the parameters ao, a oo , bo, Co, Coo , y, K, 7, 

T, and k. The wave vector k is determined by the 
experimental configuration. In what follows we shall 
use k = 2.18 X 1Q7m- ' , the value appropriate to the 
measurements of Ford, Langley, and Puglielli [3]. 
It is possible to make reasonable estimates for a ce , 
bo, Co, and Coo using various experimental results. 
We can also specify ao/y reliably. The remai ning 
parameters K, T, f and yare to be determined by 
requiring (Pk (w) P-k) to correspond to the spectrum 
observed for CO2• 

First let us specify a~ and boo The critical anamoly 
in the thermal conductivity may be detected 40 K 
above the critical point in COz. However, most of the 
increase occurs for IT- Tel < 20 K so a oo was chosen 
to be 1 X 1O-7mz/s which is comparable to ao at T- Tc 
= 20 K [8]. The shear viscosity and the nonrelaxing 
part of the volume viscosity are contained in boo 
A value 1.5 X 1O-7mz/s was chosen by assuming 
1)" = 1)8 and using measured values for 1)s [9] . 

The low frequency sound speed values Co were taken 
from figure 2 of reference [2]. These values correspond 
to the thermodynamic sound speed corrected for the 
vibrational degrees of freedom which are "frozen out" 
at the Brillouin frequency. This is the only place where 
the vibrational degrees of freedom are expected to be 
significant. Near the critical point the configurational 
contribution to the specific heat is large compared to 
the vibrational contribution so y, the ratio of the 
specific heats, is not expected to depend significantly 
on the vibrational specific heat. The high frequency 
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sound speed values Cx were assumed to be slightly 
larger than the speeds obtained from figure 3 of refer
ence [3]. For T- Tc < 1 K, Cx = 194 m/s was found to 
yield good agreement with experime nt. Values of Cx 

for T- Tc > 1 K are shown in table 1. 

TABLE 1 

T-Tc , K Co, mls Cx , mls 

0.05 138 194 
.1 140 194 

1.0 160 194 
2.0 177 196 
5.0 198 208 

10.0 225 225 

The low frequency sound speeds, Co, were taken from figure 2 
of reference [2J. The high frequency sound speeds, Cx , were taken 
from figure 3 of reference [3]. 

The other quantity which may be speci fi ed is 
ao/y = Aol PoCp the thermal diffusivity at constant 
pressure. The width of the central componen t is, to 
lowest order in k 2 , given by Aok2lpoCp (see eq (1)). The 
k4 terms of this model may be found by seeking small 
solutions to the dispersion equation 

G(z)=O; (17) 

G (z) is given in eq (10). The small z solution to eq (17) is 

(18) 

Terms which are of order l/Y compared to the retained 
terms have been dropped. Comparison with eq (1) 
indicates that 

(19) 

Swinney and Cummins have determined ao/y by 
measuring the width of the central component in 
CO2 and extracting the k2 coefficient from those 
measurements [4]. 

The remaining parameters were evaluated as follows. 
An initial value was assumed for y. [Once y is speci
fied, ao is obtained from the data of ref. 4]. The vis
cosity relaxation time T was adjusted so that the 
Brillouin line width r ll , as determined from the spec
trum obtained by evaluating eq (12), was in agreement 
with experiment. The sound speed v(k) is not very 
sensitive to the value of T as WIIT=v(k)kT> 3. Next 
the values of K and T were adjusted so that the central 
component line width is reasonable. In practice 
"reasonable" means e nonnegative. The intensity 

ratio was then checked for overall consis te ncy. Then 
a new value of y was chosen and the process was 

re peated until satisfactory agreement with experiment 
was achieved. No attempt to specify uncertainties 
in the parameters was u..ndertaken. The final choice 
of values for T , y, K , and T is li sted in table 2. 

TABLE 2 

T - T,. K , m - 1 T , s y 

0.05 2.4 x 10' 1.8 X 10- 9 3500 
0.1 3.71 x 10' 1.5 X 10- 9 1630 
1 1.6 x 108 8 X 10- 10 129 
2 2.48 x 10 8 6xlO- 1O 72 
5 4.43 x 108 4 X 10- 10 32 

10 ...... ..... .. . ..... ... .. . .. 12 

The values of the inverse correlation length K, the volume vis· 
cosity relaxation time 7 and the ratio of the specific heats y as deter· 
mined by fitting eq (12) to the spectrum of critical opalescence. 

In determining y and K we are guided by the expecta
tion that these quantities would be proportional to 
some power of T - Tc; namely [10], 

and 
K=A(T-Tc)" 

y= B(T- Tc)-Y+o. 

(20) 

(21) 

The use of y in eq (21) follows standard notation 
for exponents. Although this double meaning for 
y is potentially confusing it should be clear from 
the context whether the exponent y or y= ,Cp/Cv is 
intended . The exponents v, y and a specify the tem
perature depe nde nce of the correlation length K - t , 

the specific heat at constant pressure Cp and the 
specific heat at constant volume Cv respectively. 
In the interval 0.05 K ~ T- Tc ~ 5 K we obtain agree
ment with the experimental data using v = 0.64, 
A=1.6X108m - t , y-a=l.l andB=129. 

The correlation le ngth exponent v = 0.64 is con
sistent with other estimates [11]. There have been 
no direct determination s of K for CO2 so it is not 
known whether 01" not A = 1.6 X 108m - t is a reasonable 
choice. An indepe ndent determination of K by measur
ing the inte nsity of the scattered light as a function 
of wave vector (scattering angle) is needed. 

The specific heat ratio exponent y- a = 1.1 is 
just barely in agreement with the exponents y and a ' 

determined from equation of state data [12]. The 
coeffi cie nt B = 129 is to be compared with an "ex
perimental" value of y = 120 for T- Tc = 1 K. This 
number was obtained by subtracting out the vibra
tional contribution to the specific heat ratio obtained 
from equation of s tate data. 

Although the Brillouin line-width data may be 
fit using a freque ncy dependent thermal conductivity, 
the data may also be fit using T, the thermal co n
ductivity relaxation time , s~t equal to zero. For 
example a set of values for T were obtained which 
may be represented as 

(22) 

596 



l 

I. 
l 
[ 

I 

in the interval 0.05 K "s; T-Tc "s; 2 K. Thi s for m 
has no s ignificance as for T- Tc = 0.05 K, T= 5 X lO- los 
and T = 0 yie ld Brillouin line widths lyin g within th e 
un ce rt a inty of the measured value. Until more prec i e 
Brillouin lin e ·width data become available it will 
not be poss ible to decide wh ether or not a fr equ e ncy 
de pe nde nt thermal conductivity is an appropri a te 
feature of a dynamical model of critical point de nsity 
fluc tuations. 

The values for the relaxation time T may be approxi
mately re presented as 

(23) 

The value, - 1/3, of the exponent in eq (23) is an un
expected result in that a -1/3 power diverge nce of 
the volume viscosity has not been suggested by theo
retical attempts to determine transport coe ffi cie nts in 
the criti ca l region [6 , 7]. 

Two othe r se ts of parame ters were co nsidered. Th e 
first of these had the s pec ific heat ra tio exponent 
'Y - a = 1. While an acceptable fit to the ex perime ntal 
data was obtained, thi s se t of param ete rs was rejected 
because y - a = 1 is not consiste nt with 'Y and a deter
mined from equation of s tate da ta. The seco nd set of 
parame ters had 'Y - a = 1.2. It was not poss ible to 
fit the intensity ratio data with the second set. 
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FIG URE 1. Comparison oj experimental and computed Brillouin 
line widths. 

The ci lTles a re the co mpute d li ne widths. The solid lines indicate the u ll certai nt y in 
the experimen tal resul t s. This includes both the quot ed uncertai nl y and the s pread of the 

data in figure 3 of refe r ence f31. 

The type of fit obtained for the Brillouin line width 
is shown in fi gure 1 and for the intensity ratio as show n 
in figure 2. The error band in fi gure 1 is ta ke n from 
reference [3] and re presents experim ental un certainty 
and spread in the data. No uncertaint y for the intensi ty 
ratio is quoted in refere nce [3] , but the scatter in the 
data is suc h that our co mputed values are compatable 
with the experim ental values_ The central component 
line widths are not indi cated as the computed values 
were required to agree with the experimental widths. 

4. Discussion 

It is not r easonable to expect the single relaxation 
time mode l for the volume vi scosity to provide an 

o 

~ 
<r 
>
>
iii 
z 
w 
>
z 
;-

T- Te . K 

FI GURE 2. Comparison oj experimental anT! computed intensity 
ratios. 

The solid c ircles are compu ted values : the e rror bars indicate the spread of the expe ri 
menta l points in figure 3 of re ference [31. The solid line , 180 IT-Tcl-1.u4, was drawn through 
t he. cOT.nputed po int s Hb y e ye" . It is , on this plot, indis ti nguishable from 185JT- Tcl- 1. 0'! 

wllT c h IS the leas t squares fit to the experimental points. 

adequate description of density fluctuations in the 
criti cal r~gion. More probably a model with a "distri
bution of relaxation times" will be found when im
proved data become available, to yield a better 
description [13]. This would require a modification of 
eq (5) with corresponding changes in eqs (9) , (10), 
(13), (14), (15), and (16). 

A fa irly good test of the single relaxation time model 
can be made by measuring the Brillouin sound speed 
as a function of wave vector. With a sin gle relaxation 
time the dispersion in VB, the Brillouin speed, occurs 
over a fairly narrow range in k. With a dist.ribution of 
times the range in k over which dispersion in VB is 
exhibited increases and the increase in VB with in
creasing k is less abrupt. We have determined VB as 
a function of k using the parameters in tables 1 and 
2. These speeds are plotted in figure 3 as functions of 
T- Te for four different values of the wave vector k. 
The limiting curves for Cox> and Co are also shown. 
The minimum in VB is due to the decrease in Co as 
T~ Te. The wave vector dependence is shown in 
figure 4. There (VB / C 0)2 for different T - T e is plotted 
as a function of k_ If a "distribution of relaxation t.imes" 
model were used , the slope of the curves in figure 4 
would be less steep_ 

A dynami cal model for long wavelength density 
fluctuations in a fluid near the criti cal point has been 
described by the linearized hydrodynamic equations 
which were modified to allow for nonlocal pressure
density relationship a nd to allow for frequency depend
ence in the volume vi scosi ty. The parameters of this 
model may be chosen so that the calculated spectrum 
is in agreeme nt with the observed spectrum. The 
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FIGURE 3. The Brillouin speed VB versus T - Tc for several values 
of wave vector. 

Curve 1. ex: curve 2, k= 2.18 X 10 7 III - I (8 = 166°) curve 3. k= l.54 X 101 m- I (0 = 90°): 

curve 4. k= 1 X 101111 - 1 (0 = 54°): curve 5. k = 5 X lO; Ill- I (0 = 26°): curve 6,Co. 
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~ 1.5 

:::' 

2 

FIGURE 4. The dispersion in the Brillouin speed as a function of 
wavevector is indicated as (VB/CO)" versus k for severed values of 

T-Tc. 
Curve 1. T-t("= O.05 K: curve 2, T-T(,= O.1 K: curve 3. T-Tc=l K: curve 4. T-Tr 

= 2 K; curve 5. T-T('= 5 K. The limiting values (C .. /CO)2 are shown as il1lrizonla l lines 

for {"urves 3, 4. and 5. 

parameters are consistent with other measurements 
although this could change as more precise measure

ments are made. 
Two comme nts are in order. The first is that near 

the critical point, the intensity ratio is not a measure 
of the ratio of the specific heats. As shown in figure 2, 
calculated values of the intensity ratio are described by 

~= 1801T- Tc l - 1.04. 

21 Ii 

To obtain this set of values we used 

y= 1291T- Te l-I.I. 

Obviously 1 (,/21 Ii "" y - 1. The intensity ratio measures 
not only y but also ~VBkTV Unfortunately neither of 

these quantltles e nters in a very simple way. Never
theless the intensity provides an important overall 
consistency c heck on the parame ters of the mod·el. 

The second comment is that the k4 term in the 
central component line width is not simply a measure 
of the two particle correlation length. This is seen 
clearly in eq (19). 

A more careful evaluation of the model could be 
made if two sets of measurements were to be per
formed . The correlation length, K - 1 , has bee n used as 
an adjustable parameter. It should be de termined from 
other light scattering measure ments [14]. 

The values of K used in this paper imply a consider
able angular dissymmetry in the intensity of the scat
te red light for T - Tc < 0.1 K. This is just the region 
where multiple scattering beco mes important so it is 
not possible to say if our values of K are consistent with 
the measurements discussed in reference [14]. The 
un certainty in the Brillouin lin e width meas urements 
is too large to permit any meaningful evaluation of the 
frequency dependence of the thermal conductivity. 
The line width measurements should be made with 
greater precision. 

I thank Norman Ford , Harry Swinney, and Herman 
Cummins for their comments on an early version of 
thi s work. 
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