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Abstract—This paper presents an advanced method for modeling and parameter identification of the lithium-ion (Li-

ion) battery using an experimental characterization. A comparison study between two Li-ion models and a proposed one 

are performed where each model parameters are identified using three different algorithms. The obtained models are 

then tested and validated using experimental data obtained from a real test bench. 

The identification methods are implemented using a precise nonlinear model based on electric equivalent circuit of Li-

ion battery and the parameter identification process formulated as a nonlinear optimization problem. In order to 

compare the capability of each model to represent effectively the Li-ion battery regardless of the optimization method, 

three optimization algorithms are involved:  Squirrel Search Algorithm (SS), Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA). Numerical simulations along with experimental validation are performed on 20 Ah Li-ion 

battery. The models are compared according to the lowest fitness function levels of each algorithm and their limitation 

were also discussed in this paper. The obtained results show that the proposed models are able to simulate the dynamic 

behavior of Li-ion battery with good performances. 

 

keywords— Equivalent circuit model, Electric vehicle, Li-ion battery, Squirrel Search algorithm, State of charge SOC. 

I. INTRODUCTION 

In 2030, almost a quarter of the sold cars will be either hybrid or fully electric, this will require a huge 

number of batteries. Lithium-ion (li-ion) batteries are widely used by global carmakers to power electric 

vehicles. The battery is a complex electrochemical system that is both nonlinear and the non-stationary 

[1][2]. The battery non-linearity is caused by the nonlinear relationship between the voltage recovered at 

 
 



 

the output and the current applied at the input of the battery [3][4]. The non-stationarity of the battery is 

due to the fact that the battery internal parameters are variable during the life cycle of the battery and also 

during the charge/discharge cycle [5]. For these reasons, there are many methods of modeling battery 

operation and each model has its own benefits and drawbacks [6][7][8][9]. 

In this context, several types of models can be distinguished which can be classified according to their 

modeling approach. The first method of modeling consists in using the laws of electrochemistry 

(electrochemical models) which allow, after characterization of the species, to obtain a good precision 

[10][11][12][13]. The second method is based on the use of physical properties associated with 

experimental tests (empirical models) allowing to use measurements then interpolated and possibly 

extrapolated [14][15][16]. A mathematical method of modeling is also used for the development of battery 

models. These models use numerical resolution and are based on a phenomenological approach, instead of 

equations or curves of physicochemical parameters [17][18][19].  

In data-driven approaches, no deep physical understanding of the model is required. A “black box” model 

is established instead of a fully representative model for simulations. Rules are built from data: this kind of 

approach requires to have historical data on the system in order to predict the energetic and electrical 

behavior of battery cells [20][21][22][23]. The most used method in the field of engineering is based on 

circuit modeling (equivalent electrical circuit models) with localized constants, which allows to assign to 

each chemical reaction an impedance [24][25][26][27]. It is based on the analogy between the 

electrochemical and electrical fields. Thus, the electrical elements of the equivalent circuit allow to 

describe the phenomena which intervene within the system [28]. In the main, it is the requirement of the 

targeted application that determines the degree of complexity of the model and the modeling method. This 

one can favor simplicity by taking into account several simplifying assumptions, or require more 

performance by integrating almost all the physical and chemical properties of the battery cells.  

In this study, the primary criterion for the choice of the model is the error of the fitting with the 

experimental provided data. This is also balanced with a pragmatic trade-off to achieve this accuracy while 

able to run efficiently enough to achieve complete profile predictions in a reasonable time. The role of the 

identification algorithm is very crucial to get very close mathematical model to the real one. Three different 

algorithms are involved in this study to make sure that the identified model is not affected by the type of 

identification method.  

Genetic algorithms and particle swarm optimization techniques are often used for Li-ion parameters 

identification, Squirrel Search Algorithm (SS) is a new optimization technique invented in 2018 known by 

its capability to solve very complexes problem, it is claimed to be better than many classical metaheuristic 

techniques in many cases. In this context, we made a comparison study between two Li-ion models and a 



 

third proposed model, the parameters of each model are identified based on experimental data.    

The rest of the manuscript is organized as follows. Section II presents the Lithium-ion battery model 

followed by optimization algorithms description in section III. In section IV, experimental setup is 

explained, then, the results and the discussion are given in section V. The paper ends with a conclusion in 

section VI. 

II. LITHIUM-ION BATTERY MODELING 

In the literature, among the different approaches of Li-ion battery modeling, there are basically three 

types: experimental, electrochemical and electric circuit-based. However, the electric circuit-based models 

are the most suitable to represent electrical characteristics. Figure 1 shows a simple electric model based on 

a voltage source in series with an internal resistance and a branch of a resistance and a capacity in parallel 

[29]. The voltage source 𝑉𝑜𝑐 is the open circuit voltage that mainly depends on the State of charge of the Li-

ion battery 𝑆𝑜𝑐. This later is estimated using the history of battery current, that may include also the self-

discharging and current inefficiency on charge. However, in this paper, only the battery current 𝐼𝑏 is 

considered. Then, the 𝑆𝑜𝑐 is expressed as follows: 

 

{𝑆𝑜𝑐 = 𝑆𝑜𝑐0 − 1𝑄𝑛∫𝐼𝑏 𝑉𝑜𝑐 = 𝑏0 + 𝑏1𝑆𝑜𝑐  (1) 

 𝑆𝑜𝑐0 is the initial value of the 𝑆𝑜𝑐, 𝑏0 and 𝑏1 are real positive constants. 

A. Model 1 

The battery terminal voltage 𝑉𝑡 is described in equation 2, 

 

{𝑉𝑡 = 𝑉𝑟 + 𝑉𝑜𝑐 + 𝑉𝑟𝑐𝑉𝑟 = 𝑅0𝐼𝑏𝑉𝑟𝑐 = 𝑅11 + 𝑆𝑅1𝐶1 𝐼𝑏  (2) 

 𝑉𝑟 represents the series resistance 𝑅0 voltage and 𝑉𝑟𝑐 measures the 𝐶1𝑅1voltage  

 



 

 

Fig. 1.  Battery equivalent electric model 1. 

B. Model 2 

Figure 2 shows the cell equivalent model with two 𝑅𝐶 branch in order to describe both fast and slow 

transient response of the Li-ion battery. 𝑉𝑑𝑑𝑙 measures the double-layer voltage (𝐶1𝑅1) which describes the 

fast dynamics in the battery and 𝑉𝑑𝑖𝑓 measures the diffusion voltage (𝐶2𝑅2) which describes the slower 

dynamics in the battery. It is given by equation (3) [29]    

 

{  
  𝑉𝑡 = 𝑉𝑟 + 𝑉𝑜𝑐 + 𝑉𝑑𝑑𝑙 + 𝑉𝑑𝑖𝑓𝑉𝑑𝑑𝑙 = 𝑅11+𝑆𝑅1𝐶1 𝐼𝑏𝑉𝑑𝑖𝑓 = 𝑅21+𝑆𝑅2𝐶2 𝐼𝑏   (3) 

 

Fig. 2.  Battery equivalent electric model 2. 

C. Model 3 

The open-circuit voltage 𝑉𝑂𝐶 is generally approximated by a linear equation of battery SOC [29]. In this 

paper, in order to have a better precision of the 𝑉𝑜𝑐 value, we propose that this later is approximated by 

equation 4: 𝑉𝑜𝑐 = 𝑏0 + 𝑏1𝑒𝑥0𝑆𝑜𝑐  (4) 𝑥0 is a positive real number between 0 and 1.  



 

III. THE OPTIMIZATION ALGORITHMS 

A. Optimization principal 

In order to identify the Li-ion battery model parameters described in the previous section, three 

optimization algorithms are employed. First, we define the identification error 𝑓𝜀, this later measures the 

difference between the real and the estimated battery terminal voltage as described in figure 3. 𝑓𝜀  is the cost 

function that should be minimized so that the estimated voltage reached the real one. The process of 

optimization updates in each step the battery parameters in order to minimize the cost function. 

 

Fig. 3.  Parameters identification principal 

B. PSO Algorithm 

This particle swarm optimization algorithm is inspired by the behavior of animal swarm, the aim of this 

later is to reached an optimal position, each particle (𝑖) of the (𝑁𝑝) particles of this swarm update its 

position at each step to reach the optimal position. The new position of each particle is a combination of its 

actual position vector (𝒛𝑖), movement velocity vector (𝒗𝑖), and best position (𝒑𝑏𝑒𝑠𝑡,𝑖), and the global best 

position (𝒈𝑏𝑒𝑠𝑡). 
 The 𝑖𝑡ℎ particle update its position according to equation (5) [30]: 𝒛𝑖𝑘+1 = 𝒛𝑖𝑘 + 𝒗𝑖𝑘+1     for   𝑖 = 1,2,⋯ , 𝑁𝑝 (5) 

and the update iteration velocity at this iteration is [30]: 

 

 

The parameter 𝜔 represents the inertia weight that fixes the propagation movement, the parameters 𝑐1 

and 𝑐2 are respectively the cognitive coefficient and the social coefficient of all the particles, while 𝑟1 and 𝑟2 are random variables between 0 and 1. 

𝒗𝑖𝑘+1 = 𝜔𝒗𝑖𝑘 + 𝑐1𝑟1(𝒑𝑏𝑒𝑠𝑡,𝑖 − 𝒛𝒊𝑘)+ 𝑐2𝑟2(𝒈𝑏𝑒𝑠𝑡 − 𝒛𝒊𝑘)       for   𝑖 = 1,2,⋯ ,𝑁𝑝 

(6) 



 

The cost function is then selected as the Integral Absolute-value of the Error (IAE) as follows: 

𝐼𝐴𝐸 = 1𝑁∑(𝑉𝑏𝑎𝑡(𝑡) − 𝑉𝑐(𝑡))2(𝑚𝑎𝑥(𝑉𝑐))2𝑁
1  (7) 

where  𝑁 is the total number of samples. 

The different steps used in GA, PSO and SS-based tuning of the proposed approach are illustrated in 

Figure 4. 

 

  

 

 

(a) (b) 

 

(c) 

 

Fig. 4.  Block diagram of: (a) PSO, (b) GA and (c) SS algorithms. 

C. Genetic algorithm  

The main idea of the Genetic algorithm (GA) is that a population of individuals, where each one is a set 

of parameters, the best individual is the ones that minimize the cost function, the other are eliminated in the 

next step of the algorithm. The remaining particles became the new population after the operation of 

crossover and mutation, the process continue until a stop criterion is reached [31]. Figure 4-b shows the 

steps of the algorithm.  

D. Squirrel search algorithm 

Squirrel search algorithm (SSA) is inspired from the behavior of southern flying squirrels [32] when they 

are looking for food, the movement of such squirrels is called gliding, this mechanism is also known for 

small mammals especially when the distances are long. The SSA mathematically models this behavior to 



 

realize the process of optimization. SSA starts with random initial location of 𝑁 flying squirrels. The 

location of 𝑖𝑡ℎ  flying squirrel 𝐹𝑆 can be specified by a vector in 𝑑 dimensional search space 𝐹𝑆𝑖 =[𝐹𝑆𝑖,1 𝐹𝑆𝑖,2…  𝐹𝑆𝑖,𝑑]. The 𝐹𝑆 vectors are initialized using equation (8).  𝐹𝑆𝑖  =  𝐹𝑆𝐿  +  𝑈(0, 1) × (𝐹𝑆𝑈  −  𝐹𝑆𝐿)  (8) 

where 𝐹𝑆𝐿 and 𝐹𝑆𝑈 are lower and upper bounds respectively and 𝑈(0, 1) is a uniformly distributed 

random number in the range [0, 1]. 

After that, the fitness values of each flying squirrel are calculated and the one with minimal fitness value 

is declared on the “hickory nut tree (ht)”. The next best flying squirrels (three for this paper) are considered 

to be on “the acorn nuts trees (at)” and they are assumed to move towards hickory nut tree. The remaining 

flying squirrels are supposed to be on “normal trees (nt)”.  

In each step of the algorithm, the squirrels will proceed to acorn nut trees but they are affected by the 

presence of predators. This behavior is modelled by employing the location updating mechanism with 

predator presence probability (𝑃𝑑𝑝). Then, the dynamic foraging behavior is modelled as follows: 

Case 1: Flying squirrels which are on acorn nut trees (𝐹𝑆𝑎𝑡) move towards hickory nut tree. In this case, 

the new location is obtained as follows: 

 𝐹𝑆𝑎𝑡𝑡+1= {𝐹𝑆𝑎𝑡𝑡 + 𝑑𝑔 𝐶𝑔 (𝐹𝑆ℎ𝑡𝑡 − 𝐹𝑆𝑎𝑡𝑡 )𝑅𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅1  ≥  𝑃𝑑𝑝𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(9) 

 

Case 2: Flying squirrels on normal trees (FSnt) may move towards acorn nut trees to fulfill their daily 

energy needs. In this case, new location of squirrels can be obtained as follows: 

 𝐹𝑆𝑛𝑡𝑡+1= {𝐹𝑆𝑛𝑡𝑡 + 𝑑𝑔 𝐶𝑔 (𝐹𝑆𝑎𝑡𝑡 − 𝐹𝑆𝑛𝑡𝑡 )𝑅𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅2  ≥  𝑃𝑑𝑝𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(10) 

 

Case 3: when the squirrels on normal trees consume the totality of acorn nuts, they may change their 

location towards hickory nut to store hickory nuts, the goal is to use these hickory nuts later. The new 

location of squirrels is then expressed as follows  

 𝐹𝑆𝑛𝑡𝑡+1= {𝐹𝑆𝑛𝑡𝑡 + 𝑑𝑔 𝐶𝑔 (𝐹𝑆ℎ𝑡𝑡 − 𝐹𝑆𝑛𝑡𝑡 )𝑅𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅3  ≥  𝑃𝑑𝑝𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(11) 



 

 

where 𝑑𝑔 is a random distance, where 𝑅1, 𝑅2 and 𝑅3 are random numbers in the range of [0, 1], 𝐹𝑆ℎ𝑡 is 

the location of flying squirrel that reached hickory nut tree and 𝑡 denotes the current iteration. The balance 

between exploration and exploitation is achieved with the help of gliding constant 𝐺𝑐. In this work, the 

value of 𝐺𝑐 is considered as 1.9. 

Seasonal monitoring condition  

Seasonal changes disturb the searching activity of flying squirrels because of weather changes [32]. 

Hence, this change may be explored to prevents the algorithm from being trapped in local optimal 

solutions.  

a. First calculate the seasonal constant (Sc) using Eq. (12) 

 𝑆𝑐𝑡 = √∑ (𝐹𝑆𝑎𝑡,𝑘𝑡 − 𝐹𝑆𝑘𝑡,𝑘)2𝑑𝑘=1   (12) 

where t = 1, 2, 3. 

b. Check the seasonal monitoring condition i.e., 𝑆𝑐𝑡  <  𝑆𝑚𝑖𝑛 where 𝑆𝑚𝑖𝑛 is the minimum value of seasonal 

constant computed as: 𝑆𝑐𝑡 = √∑ (𝐹𝑆𝑎𝑡,𝑘𝑡 − 𝐹𝑆𝑘𝑡,𝑘)2𝑑𝑘=1   (13) 

 

where t and tm are respectively the current and maximum iteration values. The 𝑆𝑚𝑖𝑛 fixes the exploration 

and exploitation of the algorithm. The exploration increases proportionally with the value of 𝑆𝑚𝑖𝑛 , whereas, the exploitation is the opposite. 

c. Check the seasonal monitoring condition i.e., 𝑆𝑐𝑡  <  𝑆𝑚𝑖𝑛 where 𝑆𝑚𝑖𝑛 is the minimum value of seasonal 

constant computed as: 𝑆𝑚𝑖𝑛 = 10𝐸−6365𝑡/(𝑡𝑚/2.5)  (14) 

 

The relocation of such flying squirrels is modelled through the following equation: {𝐹𝑆𝑛𝑡𝑛𝑒𝑤 = 𝐹𝑆𝐿 + 𝐿é𝑣𝑦(𝑛)× (𝐹𝑆𝑈 − 𝐹𝑆𝐿)  (15) 

IV. EXPERIMENTAL SETUP 

The battery used in this study is a nanophosphate technology cylinder cell. This battery is 

commercialized by A123 manufacture under the references A123AHR32113M1 Ultra-B. The nominal, 



 

maximum, and cutoff voltages of the battery under study are 3.3, 3.6, and 2.0 V, respectively. The 

maximum continuous discharge current is 200 A while recommended fast charge is 65 A to 3.6V. It can 

support a pulse discharge of 350 A at 25 °C during less than 10 s. The operation temperature range is 

comprised between [-30–65] C and absolute maximum cell temperature is 85 °C.  

A test bench is used to carry out accelerated cycling aging tests while trying to be as close as possible to 

the electric vehicle applications. The aim of this bench is to characterize the energetic and electrical 

behavior of battery cells for high current applications (500 A). It allows to characterize up to four series of 

samples of batteries in cycling according to the number of charge and discharge cycles carried out. The 

particularity of this bench is to be modular, that is to say to be able to adapt to a great number of storage 

systems by carrying out the minimum of software or hardware modifications. The bench is composed of 

four channels of cycling and measurement with a capacity in voltage and current of 30V and 500A (up to 

600A under some conditions). The channels work in pairs and in opposition of cycle, the objective being to 

limit the power peaks to be brought when a great number of channels is used. The average power absorbed 

by the bench is 3,5KW with peaks up to ±16kW. This power can be further increased by the principle of 

power opposition when two channels are used. The laboratory test bench is shown in Figure 5. 

 

 

Fig. 5.  Laboratory test bench. 

V. RESULTS AND DISCUSSION 

In this section, the parameters of the Li-ion battery are identified using the three algorithms, the search 

range are listed in Table I and the algorithms parameters are listed in table II, III and IV respectively.   

  

 

 

 



 

TABLE I 

SEARCH RANGE OF THE LI-ION BATTERY PARAMETERS 

Battery 

parameters  

Search range 

Min Max 𝒃𝟎 2 4 𝒃𝟏 0 0.8 𝑹𝟎 0 0.01 𝑹𝟏 10−4 10−2 𝑪𝟏 10+2 10+6 𝑹𝟐 10−4 10−2 𝑪𝟐 10+2 10+6 𝒙𝟎 −5 5 

 

TABLE II 

GENETIC ALGORITHMS PARAMETERS 

Parameter Value 

Population size 200 
Number of 

iterations  
200 

Selection 
Uniform 

stochastic 
Crossover Random 
Mutation Gaussian 

 

TABLE III 

PSO ALGORITHM PARAMETERS 

Parameter 
Valu

e 

Population size 200 
Number of iterations  200 
social parameter C1 1 
cognitive parameter 

C2 
3 

Speed factor w 0.8 

 

TABLE IV 

SS ALGORITHM PARAMETERS 

Parameter Value 

Population size 200 
Number of iterations  200 
Pdp 0.5 



 

dg 0.8 
Gc 1.9 

 

The optimal parameters obtained by SS algorithm are summarized in table V. 

TABLE V 

THE OPTIMAL PARAMETERS 𝒃𝟎 𝒃𝟏 𝑹𝟎 𝑹𝟏 𝑪𝟏 𝑹𝟐 𝑪𝟐 𝒙𝟎 

3.138 0.04705 0.001328 0.0001271 932570.8 0.0006368 8513.54 1.34 

 

The simulation results obtained by using model 1 compared with those recorded in the experimental data 

are illustrated in figure 6. The results for Model 2 and 3 are shown in figure 7 and 8 respectively.   

 

  

 

 

Fig. 6.  Simulation results for model 1 

 



 

  

Fig. 7.  Simulation results for model 2 

  

Fig. 8.  Simulation results for model 3 

The relative error is calculated as follows 𝐸𝑟𝑟𝑉𝑏𝑎𝑡(%) = |𝑉𝑏𝑎𝑡−𝑉𝑒𝑥𝑉𝑒𝑥𝑚𝑎𝑥 | × 100  (16) 

The cost function is given by 𝐸𝑟𝑟𝑜𝑟 = √1𝑁∑(𝑉𝑏𝑎𝑡−𝑉𝑒𝑥𝑉𝑒𝑥𝑚𝑎𝑥 )2  (17) 

The cost functions of the three model are listed in table VI 

 

TABLE VI 

COST FUNCTION  

Cost function SS PSO GA 

Model 1 0.00238 0.00187 0.00514 

Model 2 0.00179 0.00180 0.00226 

Model 3 0.00178 0.00178 0.00179 

 



 

According to the obtained results, Model 3 gave the better results regardless to the algorithm used for 

identification. On the other hand, SSA and PSO algorithms show a good better capability to identify the 

battery parameters.       

 

  

Fig. 9.  Simulation results for validation Test 1 

 

  

 

Fig. 10.  Simulation results for validation Test 2 

 

To validate the obtained results, we performed two other experimental testes in deferent environmental 

conditions such as temperature. The results are shows in in figure 9 and 10 respectively. The model 3 used 

for the simulation is not extremely affected. The battery current obtained by simulation is closed to the 

current issued from the experimental data. 

VI. CONCLUSION 

This work has considered the important problem of the batteries modeling and parameters identification. A 

complete representative model has been first developed for Li-ion battery as well as two other classical 



 

models. These models are basically composed of an open circuit voltage, a serial resistance and a RC 

impedance. The third model has been improved by taking into account the nonlinear relationship between 

the 𝑉𝑜𝑐 and the battery SOC. 

Though, because of the complexity and nonlinearity of the battery model, meta-heuristic optimization 

algorithms have been used in order to obtain the optimal parameters of battery models. The aim of such 

approach is to find the optimal parameters regardless of the nature of the identification algorithm. 

The developed model presents an improvement compared to the other two conventional ones; this result 

has been validated using experimental data through dynamic charge/discharge cycle. future work will focus 

on improving the battery model by introducing other physical phenomena, especially the temperature and 

aging. 
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