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Abstract

Structure and function of a small but effective neural network con-
trolling the behavior of an autonomous miniatur robot is analyzed.
The controller was developed with the help of an evolutionary algo-
rithm, and it uses recurrent connectivity structure allowing non-trivial
dynamical effects. The interplay of three different hysteresis elements
leading to a skilled behavior of the robot in challenging environments
is explicitly discussed.
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1 Introduction

A modular neuro-dynamics approach to behavior control of autonomous sys-
tems starts with the basic assumption that the particular abilities of these
systems are based on non-trivial internal dynamical features which are pro-
vided by neural systems with recurrent connectivity structure. As has been
argued elsewhere [2], there are of course many difficult problems with such
an approach. These are, for instance, related to questions like what type of
dynamics and what type of recurrent structure to use for the generation of
a successful behavior.

To tackle these difficulties we use an evolutionary algorithm, called ENS3

(evolution of neural systems by stochastic synthesis), for the structural de-
velopment of neural networks, which optimizes parameters with respect to a
given fitness function at the same time. This evolutionary algorithm was suc-
cessfully applied to benchmark control tasks [7] and to robot control tasks
[8]. After having generated several examples of effective neuro-controllers,
we analyze the dynamics of the resulting neural networks, the relation to the
underlying connectivity structure, the relevance of specific dynamical prop-
erties for the resulting behavior or control strategy and look for differences
in their performance, like differences in robustness, for example. In addition,
kind of lesion techniques are used and parameters values can be varied by
hand to study details of a structure-function relationship.

In this paper we want to report a simple mechanism, called a dynamical
neural Schmitt Trigger. The context in which this mechanism became active
is the following: We evolved neuro-controllers for Khepera robots [3] which
should be able to move continuously (exploration behavior) in a given en-
vironment cluttered with obstacles (obstacle avoidance) [9], [4]. The robot
could use eight proximity (infrared) sensors, 6 in front and 2 in the rear, and
they where driven by two motors. There were many evolved networks solving
the task, larger ones using 3 or more internal neurons, but also a few with
no internal neurons at all. Noteworthy is the fact that most of the effective
controllers used recurrent connections for their two output neurons (compare
[8]). There are some situations in this setting, which usual robot controllers
have difficulties to handle. These are situations where the robot drives into
sharp corners or runs into dead ends. Then the robots usually just come to a
rest (Braitenberg-like controllers [1]) or they start to oscillate left-right-left.
We observed some robots which in these situations quickly turned around at
large angles and then moved out of such an “unpleasant situation”.

When analyzing the corresponding networks, we realized that their output
units were connected and that one or both output neurons had positive self-
connections. To be sure that the underlying dynamical feature is exactly
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that of a hysteresis phenomenon, observed for instance for single neurons
with super-critical positive self-connection [5], we reduced the number of
controller inputs to only two, and used the ENS3 algorithm to generate
appropriate networks for this more demanding setup.

2 Evolving a Neuro-controller

In the following experiment the mean value of the three left proximity sensors,
respectively, the three right proximity sensors was calculated and used as
inputs Inp1 and Inp2 for the neuro-controller. The two proximity sensors
at the rear were not used. The initial neural structure for this experiment
has only two input and two output neurons. The input neurons are simply
buffers and the output neurons 3 and 4 are of additive type with sigmoidal
transfer function tanh, so that the motors can turn forward and backward.
Bias terms are set to zero. The fitness function used for the evaluation of
the controllers says: For a given time T go straight ahead as long and as fast
as possible. This is coded in terms of the two network output signals Out3,
Out4 as follows:

F :=
T

∑

t=1

(M0(t) + M1(t))(2 − |Out4(t)− Out3(t)|), (1)

with 0 < M0, M1 < 1 defined by M0 := max{0, Out3}, M1 := max{0, Out4}.
There is also a stopping condition: If the robot collides before T time steps
the evaluation of the network stops and the value of the current performance
is taken as the maximum performance of the individual.

(a) (b)

Figure 1: (a) A small evolved neurocontroller with only two input neurons.
(b) Typical paths of a simulated robot controlled by this network.

Figure 1(a) shows one of the resulting networks which generates a very
successful robot behavior. Both output neurons of this controller have posi-
tive self-connections, w33 = 3.19 and w44 = 1.46, respectively. Furthermore,
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one can find inhibitory connections w34 = −7.42 and w43 = −2.94 between
the two output neurons establishing a feedback loop. In figure 1(b) a typical
path of the simulated robot is plotted. It shows both, obstacle avoidance and
exploration behavior. The behavior of the physical robot controlled by this
network is comparable to that of the simulated one. Especially it is observed
that the robots leave sharp corners as well as dead ends as it is indicated, for
instance, in the upper right corner of the environment in figure 1(b).

For the considered small network with only two inputs it is easy to relate
explicite input configurations with typical situations during the interaction
of the robot with its environment. Furthermore, it is possible to simulate and
visualize the whole dynamics of this network and to relate special dynamics
to the observable behavior of the robot. Thus, we will be able to precisely
explain how the recurrent network structure creates this well skilled robot
behavior. With this aim in view, we summarize what will be called

3 A Dynamical Neural Schmitt Trigger Mod-

ule

The dynamical neural Schmitt Trigger module consist of a single additive
neuron with sigmoidal transfer function tanh and excitatory self-connection
ws, as shown in figure 2. Let θ denote a fixed internal bias or a stationary
input to this neuron. For given parameter values of θ and ws the fixed point
equation for its discrete-time dynamics reads

x∗ = θ + ws tanh(x∗) , x∗ ∈ R. (2)

The stability condition for a fixed point x∗ is given by ws tanh′(x) < 1; i.e.,

Figure 2: Basic setup for a dynamical Schmitt trigger module with a buffered
input I, weigth wd, excitatory self-connection ws, and a modulating input B.

we are looking for bifurcation points in (θ, ws)-parameter space, for which
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the condition
ws tanh′(x) = 1 (3)

is satisfied; i.e., parameter values for which a fixed point gets unstable. For
this equation to hold, the self-connection must be strong enough, i.e. ws > 1,
since 0 < tanh′(x) < 1. Furthermore tanh′ is symmetric, i.e. there will exist
two fixed points x∗

1,2, with x∗

1 = −x∗

2 satisfying condition (3). Thus, there
will be two critical θ-values

θ∗1,2 = ±x∗ ∓ ws tanh(x∗) ,

and for the corresponding hysteresis interval ∆∗ with center at ∆∗

c = 0, we
get ∆∗ = | θ∗1 − θ∗2 | = 2 | θ∗1 |.

Using the identities tanh′(x) = (1 − tanh2(x)) and tanh−1 = 1

2
ln 1+y

1−y
for

fixed self-connections ws the critical θ-values θ∗1,2 are calculated by solving
equation (3) for x. For ∆∗ we obtain

∆∗ =
∣

∣

∣

∣

ln
[

1 + α

1 − α

]

− 2 · ws · α
∣

∣

∣

∣

, α :=

√

1 −
1

ws

, ws > 1 . (4)

If we now feed this neuron by an external input I with weighted connec-
tion wd then in this input space we will observe the characteristic jumps at
values I1,2 = θ1,2

wd
. That is in input space the hysteresis interval with center

at zero has length ∆ = ∆∗

wd
. If, in addition, we have a “slowly” varying input

B modulating the neuron, then the center ∆c of the hysteresis interval ∆ for
the “fast” input signal I is shifted dynamically by B, i.e. ∆c = − B

wd
, and

jumps will occur at

I1,2 =
θ1,2 − B

wd

, wd 6= 0 , B ∈ R . (5)

4 Network Dynamics and Robot Behavior

Both output neurons of the considered network (figure 1(a)) have “super-
critical” self-connections. Therefore two hysteresis effects should cooperate
during the control actions. But, in addition, there is a third hysteresis phe-
nomenon involved which is associated to the 2-loop (w34, w43) between the
output neurons. Such purely inhibitory 2-loops are known to have parame-
ter domains where two stable fixed points co-exist with a period-2 attractor
[6]. A complete overview about the dynamical properties of the output con-
figuration is given in figure 3 where one can find four different domains in
the (Inp1, Inp2)-space. For input values in domain 1 (white) there exists
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Figure 3: Dynamical properties of the controller output configuration (com-
pare text).

only one fixed point attractor, in domain 2 (light grey) there are two fixed
point attractors, in domain 3 (dark grey) there are three of them, and in the
eye shaped domain 4 we have two fixed point attractors co-existing with a
period-2 orbit.

(a) (b) (c)

Figure 4: Hysteresis domain of Inp1 for output neuron Out3 of the network
(fig. 1(a)) with Inp2 fixed.

To relate this picture to the behavior of the controlled robot one may have
a look at the corresponding hysteresis diagrams plotted in figure 4. These
diagrams for the output Out3 of neuron 3 are related to typical situations of
an obstacle avoidance task. For instance figure 4(a) represents a turn to the
right if there is an obstacle on the left (right input Inp2 is low: no obstacle).

The hysteresis interval of figure 4(c) represents a situation for which both
input values reach their maximum. This will only rarely occur in experi-
ments, because for this input configuration (narrow impasses or sharp cor-
ners) the robot will always turn away. In contrast to the “a” and “c” pictures
the hysteresis interval of figure 4(b) is much larger. As can be seen from figure
3 this interval −0.6 < Inp1 < 0.6 exists for input values −0.6 < Inp2 < 0.6.
These input constellations are related to deadlock situations, because sharp
corners or impasses usually leads to sensor values in this domain. The oscil-
latory mode, also existing for (Inp1, Inp2)-values around the origin, will be
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never observed because inputs usually will sweep over this domain staying in
the fixed point mode.

That the well skilled behavior of the robot is really the result of the inter-
play between all three hysteresis effects can be seen in various experiments.
The behavior of the robot looses much of its performance if any of the un-
derlying structures is destroyed. For instance, if the self-connection w44 of
neuron 4 is deleted the robot leaves dead ends always by a turn to the right.
For w33 = 0 it always leaves it by turning to the left. If both self-connections
are deleted it can not leave deadlock situations. If self-connections are fixed
but the 2-loop (w34, w43) is deleted then the robot gets stuck in critical sit-
uations.

5 Conclusion

Evolution and analysis of a minimal recurrent neuro-controller, enabeling a
Khepera robot to avoid obstacles and to leave deadlock situations, led us to
derive a generic function-structure relationship. The basis for the observed
well skilled robot behavior was found to be the hysteresis effects associated
to specific recurrences of the controller. Although the discussed task is a
simple one, it was used here to demonstrate the behavioral relevance of non-
trivial dynamical phenomena provided by recurrent neural networks. The
theoretical results, summarized by the term dynamical neural Schmitt trigger,
provide a guideline for the implementation of efficient control modules also
for other robot platforms. This is of relevance because obstacle avoidance is
one of the most basic behaviors mobile robots should acquire.
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