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Abstract. Dense matter is usually described using some kind of mean
field theory (MFT) model based on Boltzmann–Gibbs (BG) extensive
statistics. However, in many cases the conditions justifying the use
of BG statistics are not fulfilled because the systems considered are
explicitly nonextensive. In such cases one either enriches the original
MFT by adding some dynamical elements violating extensivity (like,
for example, long range correlations or intrinsic fluctuations), or one
replaces the BG statistics by its nonextensive counterpart characterized
by some nonextensivity parameter q (q 6= 1 and for q → 1 one returns
to the extensive situation). In this work, using a simple quasi-particle
description of dense matter (with interaction modelled by effective
fugacities, z) we discuss the mutual interplay of non-extensiveness and
dynamics (i.e., q and z) and estimate the level of nonextensivity of the
quark-gluon system described by lattice QCD.

1 Introduction

Dense matter is customarily described using some variation of the mean field theory
approach (MFT) based on the extensive Boltzmann–Gibbs statistics (BS) (cf., for
example, [1–5], for a recent review and references see [6]). However, in most cases the
systems considered are not extensive because there are phenomena like, for example,
long-range correlations or intrinsic fluctuations, not accounted for by the MFT used;
in such cases the conditions justifying the use of BG statistics are not fulfilled. The
usual remedy in such cases is to enrich the original dynamics by adding to the initial
MFT some new elements accounting for these factors. The other possibility is to keep
the original MFT intact, but to replace the BG statistics by its nonextensive coun-
terpart which, by definition has these factors built in; usually by the Tsallis statistics
(TS) [7,8]. It is characterized by a nonextensivity parameter q 6= 1 such that, for
q → 1 one returns to the extensive situation of BG statistics. In such an approach
modifications caused by introduction of nonextensive statistics are supposed to sum
up the actions of all factors violating extensivity, both dynamical and caused by the
environment. It is therefore expected that when these factors are gradually identified
and their impact is accounted for by a suitable modification of the dynamics of the
original model, the q needed to fit data gradually tends to unity and one recovers the
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usual extensive situation of the BS, albeit now used with a modified MFT [9]. Note
that this means that there is no such thing as a non-extensive free particle, and this is
an inherent dynamical feature of nonextensivity [10–12]. To some extent the nonex-
tensive statistics replaces the nonextensive dynamics (and vice versa), therefore in
many cases we can talk interchangeably about dynamical nonextensivity or nonexten-
sive dynamics. The nonextensive versions of the MFT models have been presented in
a number od works [6,13–20]. In this paper we shall take a closer look at this feature.
To facilitate this task we limit ourselves to the simplest possible implementation of
the dynamics in the form of some specific quasi-particle model of interactions pro-
posed in [21,22] in which interactions are modelled by only one (albeit temperature
dependent) parameter for each type of particle (here quarks, q, and gluons, g), and
the effective fugacities, zi=q,g, cf. [6] for more references. In such an approach a single
nonextensivity parameter, q, can be confronted with a set of individual dynamical
parameters, zi=q,g.

The outline of this work is as follows. In Section 2 we provide a short reminder
of the original formulation of the extensive quasiparticle model, z-QPM and its
nonextensive generalization. Our main result, the estimation of the amount of nonex-
tensivity endowed with the quark-gluon system described by the lattice QCD, is
presented in Section 3. Section 4 is devoted to discussion of the interplay between
dynamics (represented by fugacity z) and nonextensivity represented by parameter q.
Section 5 summarizes our presentation.

2 The quasi-particle model in extensive and nonextensive

environments

For completeness of presentation we start with a short reminder of the essentials of the
quasi-particle model in extensive, z-QPM, and non-extensive, qz-QPM, environments
(cf. [6] for details and further references).

In the case of an extensive environment the z-QPM [21] is based on the effective
equilibrium distribution function for quasi-partons (i = q, s, g for, respectively, u
and d massless quarks, strange quarks of mass m and gluons; e(x) = exp(x), ξ = +1
for bosons and −1 for fermions and β = 1/T ):

n
[

x(i)
]

=
1

1
z(i) e

[

x(i)
]

− ξ
=

1

e
[

x̃(i)
]

− ξ
, (1)

x(i) =

{

β
[

Ei − µ(i)
]

if i = q, s,
βEi if i = g.

and x̃(i) = x(i) − ln z(i)(τ), (2)

Ei=q,g = p and Es =
√

m2 + p2. Note that e(x) · e(−x) = 1, a consequence of which is

that n(x)+n(−x) = ξ. The z(i) ≤ 1 denote the effective fugacities which describe the
interactions and, by assumption, depend only on the scaled temperature, τ = T/Tc

(Tc is the temperature of transition to the deconfined phase of QCD)1. They were
obtained from the results of lattice QCD simulations (which in this case served as a
kind of experimental, or input, data) by comparing the pressures of the gluons and
quarks (expressed as functions of the fugacities) with the corresponding pressures
obtained from the lattice calculations [21]. As a result the effective fugacities were
received as functions of scaled temperature, τ = T/Tcr, with Tcr being the critical
temperature. To describe the lattice QCD data over the whole range of τ considered
(i.e., for τ < 4), the τ range had to be divided in two sectors, each of which was

1Note that for z(i) = 1 one has free particles.
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parameterized by a different functional form with the cross-over point at τg = 1.68
for gluons and τq = 1.7 for quarks:

z(q,g)(τ) = a(q,g) exp

[

−
b(q,g)

τ5

]

Θ
(

τ(q,g) − τ
)

+ a′(q,g) exp

[

−
b′(q,g)

τ2

]

Θ
(

τ − τ(q,g)
)

.

(3)
The fit parameters are: a(q,g) = (0.810, 0.803), a′(q,g) = (0.960, 0.978), b(q,g) =

(1.721, 1.837), b′(q,g) = (0.846, 0.942). The resulting z(q,g)(τ) are shown in Figure 1

(black curve) where we have also shown the positions of the points obtained from lat-
tice QCD (by arrows) [21]. Note that z(q,g)(τ → ∞) = a′(q,g) < 1. This result indicates

that with increasing temperature τ the system of quarks and gluons considered in the
QCD lattice simulations never becomes a gas of free streaming non-interacting parti-
cles. From the nonextensive point of view this would mean that lattice QCD keeps a
memory of the interaction and describes a quark-gluon system which is intrinsically
nonextensive, with q < 1, as will be shown below in Section 32.

In the case of qz-QPM one takes the above extensive system of quasi-particles
and immerses it in a nonextensive environment characterised by a nonextensivity
parameter q 6= 1. Note that, as mentioned before, this means that we are dealing now
with particles which are not really free, even when the dynamics is switched off. As
a result one gets a nonextensive system of interacting quasi-particles and, assuming
that the external dynamical information encoded in the results of the lattice QCD

simulations remains intact, one has to find a new set of fugacities, z
(i)
q , which, together

with modifications in the distribution caused by the fact that now q 6= 1, will repro-
duce this information. Technically speaking, one simply replaces in equation (1) the
exponential function e(x) by its nonextensive equivalent, the nonextensive exponent
eq(x), and its dual, e2−q(−x), defined as:

eq(x) = [1 + (q − 1)x]
1

q−1 , e2−q(−x) = [1 + (1− q)(−x)]
1

1−q , (4)

eq(x) → e(x) and e2−q(−x) → e(−x) for q → 1, the corresponding q and (2 − q)-
logarithm functions are:

lnq X =
Xq−1 − 1

q − 1

q→1
=⇒ lnX and ln2−q X =

X1−q − 1

1− q

q→1
=⇒ lnX. (5)

Finally,
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1− ξe2−q

[
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(i)
q

] , (6)

x̃(i)
q = x(i) − ln z(i)q , (7)

where x(i) is given by equation (2) (with energy, Ei, and chemical potential, µ, remain-
ing unchanged; note that now eq(x) · e2−q = 1 and, respectively, nq(x) + n2−q(−x) =
ξ). However, to preserve thermodynamic consistency in the nonextensive environ-
ment, one has to use effective occupation numbers in the form of [nq(x)]

q
[6]. In

2Note that in its original version z-QPM is formulated for zero chemical potential µ(i) [21]
(reflecting difficulties with accounting for it in lattice QCD calculations; nonzero µ, not connected
with z, was introduced recently in [22] anticipating expected future developments in lattice QCD
calculations).
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all calculations one has always to ensure that the corresponding q-exponents are
nonnegative and real valued, cf. [6,18] for details.

In [6,20] we have discussed in detail how the already known dynamics, repre-
sented by effective fugacities zi=q,g introduced in [21], is modified by immersing the
system under consideration in some nonextensive environment characterized by the
parameter q 6= 1. The same pressures of the gluons and quarks obtained from the lat-
tice QCD results must now be reproduced in the nonextensive circumstances defined
by the nonextensivity parameter q, i.e., by using nonextensive particle occupation
numbers nq

[

x̃(i)
]

given by equation (6) with nonextensive effective fugacities zq 6=1.
As in [6], we used for this purpose the same parameterization of zq(τ) as was used
for z(τ) in equation (3), but with the q-dependent values of parameters (a, b) and
(a′, b′) obtained from the same lattice QCD results. The results turned out to be
very sensitive to the amount of nonextensivity imposed, limiting our considerations
to |q − 1| ≪ 1. Because the corresponding changes in fugacities, δzq = zq 6=1 − zq=1,
for these values of q were also small, δzq < 1, the exact formulas for zq practically
coincided with a linear in (q − 1) approximation [6] (for clarity of presentation we
suppress indices i = q, g):

zq ≃ zq=1 + δzq = zq=1 [1 + (1− q) · F (q = 1, zq=1)] , (8)

F =

∫∞

0
dpp2

{

ln2[1− ξe (−x; zq=1)] + n (x; zq=1)x
2
}

2
∫∞

0
dpp2n (x; zq=1)

, (9)

where zq=1 is given by equation (3). As F > 0, this means that we always have
z(q>1) < z(q=1) < z(q<1).

3 Estimation of nonextensivity of the quarks and gluons described

by the lattice QCD

The results presented above can be further investigated in more detail from the
point of view of the estimation of the possible intrinsic nonextensivity present in a
dynamical model under consideration. Because in our case the dynamical input to
the z-QPM were data from the lattice QCD [21], we will now attempt to estimate the
degree of nonextensiveness of the quarks and gluons described by the lattice QCD.
Such a question is justified because, as shown in [10–12], the nonextensive particles
cannot be considered free, what means that the interacting (i.e. non-free) particles
can exhibit some amount of nonextensiveness.

We shall concentrate on the q < 1 case, the example of which is displayed in
Figure 1. The black lines with arrows present extensive fugacities introduced in z-
QPM as functions of the relative temperature, z = z(τ), and were obtained using
equation (3). Note that the range of τ considered in the lattice QCD simulations was
limited, with the last point located at τ = 3.7 [21]. As already mentioned before, it
looks like that for q = 1 (the extensive case) the fugacity never reaches the value
z = 1 corresponding to a noninteracting gas of quarks and gluons, at least not in the
considered range of τ < 4 (which is otherwise quite big), one always has an interacting
(confined?) system of quasiparticles.

A closer look reveals that this is because for z = 1 the pressure in such a gas would
exceed the pressure obtained from the lattice calculations. From our experience with
a nonextensive version of the Nambu– Jona-Lasinio model of QCD matter [20] we
know that this pressure is reduced when the system is immersed in nonextensive
environment with q < 1. In our case, in the same situation, using equations (8)
and (9), one indeed observes that the respective z(q<1) exceeds z(q=1) for the same
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Fig. 1. Comparison of extensive and nonextensive fugacities as functions of relative
temperature. For details see the text.

values of τ in such a way as to keep up with the original lattice QCD pressure,
and very soon they reach, for a given τ , the value z(q<1) = 1, and it will exceed
it for larger values of τ . This means that our system becomes a system of non-
interacting nonextensive quasiparticles (noninteracting in the sense that the only
interaction is that provided not by the dynamics but only by the nonextensivity q
[10–12]). Decreasing q further for this τ (or increasing τ while keeping the same q < 1)
would result in z(q<1) exceeding unity, which we consider unrealistic (because it would
correspond to interactions not present in QCD). Therefore, once the z(q<1)(τ) reaches
unity we assume, in what follows, that it remains unity for larger values of τ (and
for the same q, as in Fig. 1).

Because, as mentioned above, the range of τ considered in the lattice QCD simu-
lations was limited, this means that extrapolation of z(τ) obtained from fits to lattice
QCD results, cf. equation (3), to τ ≫ 3.7, is highly uncertain. We assume therefore
that at some τ the fugacity stops increasing and remains constant thereafter. As an
example, we choose for further considerations two such values: τ = 4 and τ = 5. In
other words, we tacitly assume that, starting from these values of τ , the QCD inter-
actions remain essentially constant (or decrease very slowly) and the corresponding
fugacities remain virtually the same: z = z(τ = 4) or z = z(τ = 5), respectively. In
Figure 1 we have that for τ = 4 we have zq = 0.911 for quarks and zg = 0.922 for
gluons whereas for τ = 5 we have zq = 0.928 for quarks and zg = 0.942 for gluons.
For each of these two values of τ the respective nonextensivities q were then found
(separately for quarks and gluons) such that the values of the corresponding zq(τ)
reach unity (corresponding to “free, nonextensive gas”). As a result, the nonexten-
sive fugacities z(τ) remain unity for τ > 4 (or τ > 5) for nonextensivities q equal to,
respectively: q = 0.981 (for τ = 4) and q = 0.985 (for τ = 5) for quarks, and q = 0.985
(for τ = 4) and (q = 0.989 for τ = 5) for gluons (note that the respective values of
q are almost the same for quarks and gluons), see Figure 1. We therefore argue that
the nonextensivity of quarks and gluons as described by the lattice QCD is in the
range 0.98 < q < 0.99.

We close this section by noting that in the case of q > 1, not shown in Figure 1,
the corresponding nonextensive fugacities zq(τ) are always smaller than the exten-
sive fugacity, zq=1(τ): zq(τ) < zq=1(τ). This is because in this case the pressure is
increased, therefore the strength of the dynamical interactions (given by zq) has to
be reduced. This is a reflection of the fact that in both cases considered the non-
extensiveness comes from different sources which work towards confinement for q < 1
but work against it for q > 1 (for example, by introducing some extra intrinsic fluctu-
ations). In other words: because in lattice QCD one always has z < 1 (which reflects
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the fact that it describes, in fact, more or less confined systems), in a possible equiv-
alent nonextensive approach this would correspond to a nonextensivity parameter
smaller than unity, q < 1 (which in the colloquial understanding of non-extensiveness
corresponds to broadly understood correlations). The q > 1 type of nonextensivity
corresponding (again, broadly speaking) to some kind of effective, intrinsic, fluctua-
tions manifesting themselves as fluctuations of the temperature T (cf., for example,
[23–26]), if taken seriously, could probably come not so much from the QCD dynam-
ics, but rather from the environment (and would, figuratively speaking, come from
the heterogeneity of the heat bath and from possible energy transfers to and from it
[27,28]).

4 The interplay between the fugacity z and the nonextensivity

q - dynamics vs. nonextensivity

In the version of the QPM used here the investigation of the interplay between the
dynamics and nonextensivity comes to the study of the interplay between the fugac-
ities zi=q,g, representing the dynamics, and the nonextensivity q, representing the
action of the environment (always keeping in mind that q 6= 1 combines the action of
all factors causing nonextensivity, even in the absence of any interaction, i.e., when
zi=q,g = 1, and that the nonextensive particles cannot be considered as being com-
pletely free [10–12]). Note first that both z and q deform the original Fermi-Dirac
or Bose-Einstein distributions of noninteracting particles, but they do it in two dif-
ferent, incompatible ways. The z-deformation is local, it is supposed to depend only
on the scaled temperature τ = T/Tcrit. As can be seen in equation (1) the action
of z = z (τ = T/Tcrit) is, technically, the same as action of some kind of “artificial
chemical potential”, µz = T ln z(τ) (which adds to the usual chemical potential). This
means that the form of the distribution remains intact, only its argument changes
(therefore adding some true chemical potential µ to the original z-QPM can be com-
bined with fugacity z and results in some new “effective” z̃). In contrast to this the
q-deformation is global and, in principle, the parameter q is assumed to be indepen-
dent of temperature3. This means that one cannot fully replace z by q (and vice
versa).

To demonstrate more clearly this feature let us look at the most simple example
of this kind, namely, let us identify the effective extensive (i.e., calculated for q = 1)
occupation number considered as a function of some constant fugacity z, with its
nonextensive counterpart defined only by a nonextensivity parameter q (with no other
dynamical effects, i.e., with z = 1, note that the nonextensive occupation number is
given not by nq, but by nq

q):

n(x; z, q = 1) =
1

1
z
e(x)− ξ

= [nq(x; zq, q)]
q
=

[

1

eq(x)− ξ

]q

. (10)

The immediate result is the relation between z and q which is rather simple for
zq = 1):

z = z(q) =
e(x)

[eq(x)− ξ]
q
+ ξ

q→1
=⇒ 1, (11)

3At least as long as there is no energy exchange between the heat bath and the environment, this
would result in the replacement T → T = Teffective = T (q) (so far this has been shown only for the
Boltzmann statistics [27,28]).
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but rather involved for q(z), in this case it is given by transcedental function (not
accessible analytically) when looking for a = q(z). Note that relation equation (11)
implies that the resulting fugacity must depend not only on the nonextensivity q but
also on x, it is on the energy, chemical potential and temperature, z = z(q;E, µ, T ).
This is unacceptable because fugacity was introduced to model the dynamics which
cannot depend on x. Similarly, the resulting nonextensivity would have to depend
not only on fugacity z but on all the above quantities as well, and could not be global
quantity anymore. In the normal case, where fugacity depends on temperature T ,
both z(q) and q(z) would be to complicated to be useful.

The same argument also precludes the seemingly more general formulation of the
qz-QPM discussed in [20]. One could, for example, start with a system of particles the
interactions of which are described by some chemical potentials µ(i) (not connected
with any fugacities, z = 1) and which are immersed in some nonextensive environment
characterized by a nonextensive parameter q 6= 1. Adding now to such a system some

additional interaction by means of fugacities z
(i)
q , results in

nq

[

x(i)
]

=
1

1

z
(i)
q

eq
[

x(i)
]

− ξ
=

1

eq

[

x
(i)
q

]

− ξ
, (12)

x(i)
q = β

[

E(i)
q − ξ̃µ(i)

q

]

−ζ(i)q = x(i)
[

z(i)q

]1−q

−ζ(i)q = lnq

[

eq(x)

zq

]

, (13)

where E
(i)
q = Ei ·

[

z
(i)
q

]1−q

, µ
(i)
q = µ(i) ·

[

z
(i)
q

]1−q

and ζ
(i)
q = ln2−q

[

z
(i)
q

]

, i.e., the

energy and chemical potentials become q-dependent quantities. However, such
induced q-dependence of the initial energy and chemical potential is rather unphysical
and precludes further applications of this approach.

5 Summary

Generally speaking, systems for which the fugacities z = 1 in the limit of large T are
extensive systems where a single-particle description works without an additional field
persisting for high temperatures (without long range interactions). If, for T → ∞, the
fugacity z < 1 our system is nonextensive with reduced pressure, whereas for z > 1
in this limit it is nonextensive with increased pressure (always in comparison with
the situation for the z = 1 case). This means that we can adjust the system pressure
in models with fugacity to determine its model non-extensivity.

Because, as already mentioned, the action of nonextensivity q has a global
character whereas that of the fugacity z is local, therefore, in principle they are
complementary and are not substitutable for each other. To put it differently, usu-
ally fugacity z models phenomenologically dynamics of the mean field theory type
(MFT) in which there are no correlations and intrinsic fluctuations, whereas these two
features are exactly those described by the nonextensivity q. Therefore, the results
obtained here should be considered as some illustration of how to introduce effects of
correlation or fluctuations into MFT models, or, vice versa, how to add to the system
with correlations and/or fluctuations a certain smoothing factor for these effects.

Our main result is estimation of the intrinsic nonextensivity of the lattice QCD
system of quarks and gluons which is in the range of 0.98 < q < 0.99. It is worth
noting here that our results are similar to those obtained in recent work [29] in which
the authors use numerical field theoretical simulations to calculate particle yields. It
turned out that in the model of local particle creation one observes rather natural
deviations from the pure exponential distributions towards Tsallis like q-exponents.
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Interestingly, for a quantum SU(3) Yang-Mills gauge theory applied to gluons (which
could perhaps be a good replacement for our QCD) they obtained similar values of
q < 1 and similar dependence on the temperature as we observe in our case. The
q > 1 was obtained for a toy model of classical Φ4 theory. From our point of view
the natural explanation would be the presence of some kind of confinement in the
first case (which would correspond to our lattice QCD situation) and its lack in the
second case (in our case it would correspond to immersing our system in a heat bath
which is so nonuniform that it overcomes the confinement forces).
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reading the manuscript.

Open Access This is an open access article distributed under the terms of the Creative Com-

mons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. J.D. Walecka, Ann. Phys. 83, 491 (1974)
2. S.A. Chin, J.D. Walecka, Phys. Lett. B 52, 24 (1974)
3. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)
4. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)
5. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961)
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