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Abstract

Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the
movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and
through simplified approximations. By leveraging on the network science approach, here we are able for the first time to
fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among
farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for
the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of
statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting
nodes’ centrality and farms’ spreading potential, thus limiting the efficiency of interventions based on partial longitudinal
information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that
is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its
displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.
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Introduction

Animal movements represent a crucial aspect for the trading

and marketing of livestock, though they may offer an easy mean

for rapid dissemination of zoonotic infectious diseases among

animal holdings, with a spatial extent covering large geographical

distances, as shown for example by the 2001 Foot-and-Mouth

disease epidemic in the UK [1]. Animal diseases may compromise

livestock welfare and reduce productivity, and may in addition

represent a threat to human health, since the emergence of human

diseases is dominated by zoonotic pathogens [2]. Disease

management and control is thus very important in order to

reduce such risks and prevent large economical losses [3]. This can

be achieved for example through controlling animal movements

and mixing, controlling entry to farm lots, quarantining animals,

or imposing standstill periods that prevent further movements of

animals off premises. To correctly evaluate such preventive and

control measures, a detailed knowledge and regulation of animal

movements is needed. A crucial step into addressing this issue has

been taken in Europe by establishing the implementation of a

digital framework for the identification and registration of bovine

animals [4], and similar cattle identification and tracing systems

have also been implemented in other countries [5]. Detailed data

on the movement of individual cattle at the national level have

thus become available that trace each bovine along its movements

among premises on a daily basis.

Such monitoring efforts have led to a unique opportunity of

studying animal movements in a detailed way, characterizing their

behavior in time and space, and identifying patterns that may

become relevant for the spread of a potential disease in the cattle

population. A natural description of these systems is offered by the

network representation in terms of nodes (the elements of the

system, i.e., the premises in the cattle flow case) and links (the

interactions among its elements, i.e., the cattle movements among

premises) [6–11]. Much research has been done in the analysis of

networked systems available from similar empirical datasets. The

study of biological networks and transportation infrastructures,

technological networks, human communication and mobility

patterns [12–24] has unveiled the presence of unexpectedly

similar properties, shared by these systems independently of their

function, origin and scope. Besides the small world property,

which consists in the co-existence of high local interconnectedness

and small distances across any two nodes in the network compared

to the system size [25], the components of such systems are found

to be wired in a non-homogeneous way, with the number of

connections per node showing very large fluctuations in contrast

with the random Poissonian hypothesis [6]. The ubiquitous nature

of this so-called scale-free property – found across natural, societal,

and artificial systems – has spurred more than a decade of research

aimed at characterizing and understanding complex systems

drawn from different disciplines through the common paradigm

of networks science [26].
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The application of network approaches to veterinary medicine

is however rather new. As reviewed recently by Dubé et al. [27]

and by Martinez-López et al. [28], few papers have been

published that analyze livestock movements by constructing the

network of displacements and studying the relations between

nodes with a systemic approach, thus going beyond the simple

characterization of single-node properties (as e.g. the amount or

frequency of displacements on and off single farms). The

availability of datasets of cattle flows in several countries has

opened the possibility to explore systematically and in great detail

these contact structures that represent the key driver of disease

spread through infected animals moving from farm to farm or

through other livestock operations such as markets and dealers.

Research in this context can be divided into descriptive analysis of

the datasets in order to assess the implications for disease control

[29–36], and epidemiological studies aimed at reproducing

historical epidemics through models, estimating epidemiologically

relevant parameters from the contact structures, and realistically

modeling disease spreading based on the movements data [34,37–

42]. However, while zoonotic disease modeling counts today a

variety of different approaches (see e.g. the review of Ref. [42]),

analogous developments are not observed in the characterization

of cattle movements, with research efforts so far limited to a very

basic understanding of the system [29–35,37,40,41,43].

Most of the veterinary studies are indeed based on static

representations of cattle flows – where the temporal information

of the displacements is collapsed into few successive snapshots of

the datasets [30–35,40,41,43], or explored through the time

series analysis of simple global quantities [29,31,32,35,40] – or

focus on the results of spreading simulations based on the

dynamical network and on its static counterparts [37]. In the

analyses performed so far, results have shown a large

heterogeneity in the connectivity patterns among premises, with

probability distributions for the number of incoming and

outgoing connections (in-degree and out-degree, respectively)

characterized by broad tails [30–32,34,35]. While the majority of

premises have a small number of connections through animal

movements to other premises, this feature indicates the presence

of a small but non-negligible fraction of premises that instead are

recipients or senders of animal movements from/to a large

number of holdings [6]. Such results are typically obtained from

the investigation of a static network obtained by aggregating data

on the full available time window [30,31,34], and few examples

of structures extracted from shorter aggregation times (such as

e.g. monthly and weekly networks) have been investigated

[32,35], without, however, exploring in a systematic way the

stability of this feature across time. Fits to the power-law

behavior of the degree distributions yield values around 2.1 for

both in- and out-degree for the 2002 UK cattle movement data

obtained for a specific 4-weeks time window [35]. However these

results cannot be easily compared to the values of 2.5–2.6

obtained for the total degree distribution of monthly and weekly

snapshots of 2005 French data [32], and 2.1–2.2 obtained for the

annual network of the 2005 French data [32] and 2007 Italian

data [30], given that in-degree and out-degree are not

considered separately. Broad distributions have also been found

in the annual number of movement events to/from single

premises, and in the annual number of animals displaced

[30,34,35], along with asymmetries showing larger fluctuations

in the quantities describing the annual incoming fluxes with

respect to those measuring annual outgoing fluxes [34]. However

the robustness of these properties at shorter timescales,

comparable to the typical timescales of some zoonotic diseases,

has not been assessed.

From the point of view of single animals, several studies have

shown that the number of movements per bovine is typically very

low, reaching at most 7–10 displacements [31,44], with the

majority of them occurring on short distances, though a non-

negligible fraction cover very long distances [31,35], thus

highlighting the possibility for rapid dissemination across the

country. Investigations into the dynamics of individual bovines

displacements has however not been analyzed with the aim of

uncovering the presence of specific paths, motifs or cycles that may

be relevant in spreading a disease or in creating recurrent patterns

favoring the virus propagation from one farm to another.

Overall, the dynamical information has only been partially

considered, through time series analysis of global quantities, such

as the number of premises involved in the flows or the total mass of

movements [29,31,32,35,40], whereas much attention has focused

on the role of different premises in the structure and flows

management on the annual scale [30,31,45]. With the aim of

assessing the spreading potential induced by the complex

structures hidden in the data, much work has been dedicated to

the analysis of the components of the network (giant component,

weakly and strongly connected components, etc.) in order to

estimate the upper bounds of the epidemic size [29,30,32,

34,35,45], and to the ranking of nodes in terms of various

measures of centrality defined a priori, such as degree, betweenness,

and others [30,33,45], that in other systems were found to impact

the behavior of dynamical processes taking place on top of them

[11,46–58]. The aim is to compare the efficacy of prevention and

control measures based on this information [30,32], though no

assessment of the stability of these features in time is provided, thus

affecting the applicability of the same measures in different points

in time, due to the time evolution of the network. A recent

example to overcome this limitation is provided by Ref. [36] that

integrates flows dynamics and centrality measures to assess farms’

vulnerabilities.

While network analysis has become increasingly important in

the study of data describing livestock movements, a time lag is

clearly observed between the developments of network analysis

tools and the knowledge reached so far in the context of veterinary

epidemiology. As described above, only basic network analysis has

been considered, often disregarding the longitudinal dimension

and focusing on single node properties of the cattle flow networks.

Network science, on the other hand, offers nowadays a body of

sophisticate and very advanced techniques and methodologies that

are able to uncover higher order topological correlations, non-

trivial correlations between topology and flows, backbone

structures carrying the most relevant information contained in

the system, motifs, recurrent patterns and communities, and other

features [6–11]. Moreover, the recent availability of large-scale

longitudinal datasets [19,20,22,24,59–64] has opened a new set of

issues and challenges to deal with intrinsically dynamical systems

(see e.g. [65–68]), and spurred an intense research activity aimed

at the inclusion of dynamical aspects through a newly defined set

of analysis tools and frameworks.

Similarly to cell-phone data [20,22], cattle flow data represents

a rare example of high resolution dataset where fully identified

displacements are described at the agent level with a daily

resolution spanning one or several years, and are associated to

multiple possible definitions of weight for the connections and to

additional metadata describing e.g. the type and location of

premises. By leveraging on the network approach, we are able for

the first time to fully characterize the dynamical patterns of cattle

trade flows, by investigating snapshots properties and assessing

their stability across time and the role of the chosen aggregating

time window, characterizing the rules describing the evolution
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dynamics of the individual agents movements and of the activity of

the system on a larger scale, exploring stationary properties and

identifying recurrent patterns where causality relations between

displacements emerge. Going beyond the analyses performed so

far on livestock movement datasets, we aim at unraveling the

hidden complexity of these systems at the topological, functional

and dynamical levels, in order to identify patterns and properties

relevant for the identification of vulnerabilities of the system to an

epidemic and thus build upon this information to develop

preventive and control measures. In addition, our analysis

uncovers important limitations of the approximations generally

used in modeling approaches for zoonotic disease spreading.

While the present work focuses on the dataset of the Italian cattle

trade movements, the general approach formulated here can be

directly applicable to the study of other livestock movements

datasets to uncover differences and similarities across countries,

and the impact of diverse preventive measures or tracing systems

adopted at the national level.

The paper is organized as follows. After the description of the

dataset under study, we characterize the system in terms of

successive snapshots obtained from aggregating the data on

different time windows. This allows us to study the emergence

and robustness of network properties across time and the role of

the timescale of aggregation, in view of its interplay with typical

disease timescales. We then analyze the dynamical evolution of the

network, both at the agent level and at the system level, and

explore its impact on the structural backbone of the system and the

efficacy of control measures against the spread of a disease. Finally,

we introduce a novel definition of dynamical motifs for a time

dependent evolving network, able to uncover causal recurrent

paths in the bovine movements.

Methods

Data
Data on cattle trade movements were obtained from the Italian

National Bovine database, which is administered by the Italian

National Animal Identification and Registration Database [68].

The database details the movement of the entire Italian population

of bovines among animal holdings, providing a comprehensive

picture of where cattle have been kept and moved within the

country. Each movement record reports the unique identifier of

the animal, the codes of the holdings of origin and destination, and

the date of the movement. Such tracking system allows us to easily

reconstruct the path of each bovine and to build the corresponding

overall network, minimizing the problems related to data accuracy

that are found in other tracking systems that do not provide both

origin and destination of the displacements [34,35]. Additional

information was provided for the animal holdings, including the

type of premises (i.e. fattening farm, dairy farm, pasture,

slaughterhouse, assembly center, market, genetic material center,

and other), and their georeferenced metadata in terms of the

geographic coordinates of the centroids of the municipality where

the premises were located.

Here we examine the records for the year 2007 [30]. A total of

4,946,201 bovines were tracked, counting for 7,177,825 recorded

displacements of individual animals and 1,592,332 distinct batches

movements. There were 173,139 active premises during the year

(i.e. they either received a batch or moved it), of which 49.9% were

fattening farms, 26.1% were dairy farms, 1.7% were pasture, 1.1%

were slaughterhouses, 0.4% were assembly centers, 0.06% were

markets, 0.04% were genetic material centers, and the remaining

20.7% were labeled as other premises. Active premises are located

on almost the entire territory of the country, covering 96% of the

Italian municipalities, though their distribution is not uniform – a

single municipality can indeed contain a number of holdings

varying from few units to hundreds. A total of 365 days of activity

was recorded, from January 1st to December 31st of 2007, signaling

that at least one displacement per day took place in the year under

study. The dataset also contains information on the importation and

exportation of cattle; these movements, representing less than 1% of

the total number of movements in the database, were however

excluded from the analysis as the focus of our study is on the full set

of displacements within national boundaries. Table 1 summarizes

some basic properties of the dataset.

Construction of daily and aggregated networks
The system of cattle trade movements can be represented in

terms of a network, similarly to other mobility datasets and

transportation systems [13–15,18,19,21,22,69–72]. The simplest

representation is obtained when nodes correspond to premises,

and a directed edge is drawn between two nodes whenever a

displacement of bovines occurs between the corresponding

premises. Since data on cattle movements is provided on a daily

basis by the original dataset, it is thus possible to construct 365

daily networks, each containing the activity of nodes and links for

one day. It is also useful to construct static snapshots of the system

by aggregating the observed activity over various time windows

Dt. This static view partially looses the intrinsic dynamical nature

of the system within the given time window, however it allows to

study the static snapshots with the usual techniques of network

theory [7–11,30–35,40,41,43]. Given a specific choice of Dt, we

can construct 365=Dt such consecutive snapshots, corresponding

to the time windows nDt,(nz1)Dt½ �, with n going from 0 to

365=Dt{1. In addition to the intrinsic time resolution of the

system, Dt~1 day, we also consider time windows of Dt~7 days,

Dt~28 days (we avoid aggregating over calendar months to avoid

fluctuations due to the different duration of the months during one

year), and Dt~365 days. These choices give rise to 365 daily

networks, 52 weekly networks, 13 monthly networks, and one

annual network, respectively, the latter aggregating the whole

activity reported in the dataset. While in the literature annual and

monthly networks have been typically analyzed (with the exception

of Ref. [32] that studied the weekly networks of French data), here

we consider different values of Dt in order to systematically explore

the dynamical features of the networks on a variety of timescales,

comparable to the timescales of different diseases of interest. Given

that the aggregation on a time windowDt is a commonly used

Table 1. Cattle trade movements: Data from the Italian
National Bovine database for the year 2007.

Property Value

Number of bovines 4,946,201

Number of animal movements 7,177,825

Number of batch movements 1,592,332

Average batch size 4.5

Days of activity 365 [Jan 1 – Dec 31]

Number of active farms 173,139

Average number of days of activity per farm 10.3

Number of municipalities with active farms 7780 (96% of the Italian
municipalities)

Average number of active farms per municipality 22

doi:10.1371/journal.pone.0019869.t001
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approximation to describe an epidemic process occurring at

timescales much slower than Dt, this study allows us to assess the

role of the aggregation under changes of Dt, and verify whether

similar conditions and properties are observed by changing that

value.

As the networks are directed, each node i is characterized by

both its out-degree ki,out (i.e., the number of premises to which a

movement is registered within the given time window) and in-

degree ki,in (i.e., the number of premises from which the node

receives an incoming flux of animals within Dt). For each

snapshot, we consider only nodes with ki,inzki,outw0, defining

them as active nodes since they correspond to premises that have

registered at least one incoming or outgoing displacement during

the aggregation time window. Moreover, the links of these

networks can be weighted according to two distinct definitions,

measuring either the number of cattle batches moved or the total

number of animals moved [34]. More specifically, we denote by

wB
ij the amount of cattle batches movements recorded within the

given time window Dt from the holding i to the holding j. The

weight wA
ij instead indicates the total number of bovines moved

from i to j during Dt. The first quantity provides a binary

information on a daily basis, and counts the number of movements

occurring in the time window Dt under consideration; the second

measures the magnitude of the movements. The introduction of

two different definitions of the weight is useful in order to explore

whether there are any trivial correlations among the two

quantities, and to assess the limits of the approximation that uses

less detailed data such as the number of movement batches, which

are usually more readily available than the detailed movements of

animals at the individual level [37]. This would be very important

in the framework of modeling approaches based on real data. By

following the usual definition of strength of a node in a weighted

network [14], we denote by s
B(A)
i,in ~

P

j w
B(A)
ji and s

B(A)
i,out~

P

j w
B(A)
ij

the in-strength and out-strength of node i, respectively, quantifying

the total numbers of incoming and outgoing batch (B) and animal

(A) movements of the corresponding premises during Dt.

Dynamical properties
The dynamical nature of the dataset we consider allows us to go

beyond the analysis of successive static snapshots. The dynamical

aspects concern both the bovines that are moved along the

displacement network, and the network’s structure. In the next

sections, we will start by using standard measures such as the study

of the evolution of sizes of the snapshots, or the statistical analysis

of the properties of the bovines displacements. We will also study

how the properties of the network’s elements fluctuate over time.

Table 2. Summary of the main features of the mobility networks obtained by aggregating the data over a time window Dt.

Aggregating time window Variable Average Variances [min,max]

Dt~1 day
(365 networks)

# of nodes 4.96103 36103 [85, 1.16104]

# of links 4.26103 2.86103 [49, 104]

kin 0.9 6.2 [0, 683]

kout 0.9 0.8 [0, 178]

wB
ij

1 0 [1,1]

wA
ij

3.6 10.4 [1, 2039]

Dt~7 days
(52 networks)

# of nodes 2.66104 2.86103 [1.56104, 2.96104]

# of links 2.86104 3.46103 [1.56103, 3.26103]

kin 1.1 11.9 [0, 1595]

kout 1.1 1.1 [0, 178]

wB
ij

1.05 0.3 [1, 2039]

wA
ij

3.8 11.9 [1,7]

Dt~28 days
(13 networks)

# of nodes 6.46104 3.86103 [5.66104, 6.96104]

# of links 96104 6.56103 [7.86104, 9.96104]

kin 1.4 22.9 [0, 4154]

kout 1.4 1.9 [0, 219]

wB
ij

1.3 0.8 [1,25]

wA
ij

4.8 18.1 [1, 2039]

Dt~365 days
(1 network)

# of nodes 1.76105 - -

# of links 5.776105 - -

kin 3.3 59.5 [0, 13186]

kout 3.3 7.0 [0, 649]

wB
ij

2.7 5 [1, 250]

wA
ij

9.8 65 [1, 10845]

doi:10.1371/journal.pone.0019869.t002
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Moreover, we will introduce specific new tools and methods

specifically tailored towards highlighting the consequences of

dynamical aspects of the displacement networks.

Results and Discussion

Daily and aggregated networks
We first focus on the analysis of the networks aggregated at

different scales, as described in the previous section. The analysis

of these various static snapshots gives access to a first character-

ization of the system under consideration, investigating both its

structural and dynamical properties. This allows for the first time

the comparison of the features obtained at different timescales,

and, for each timescale, the possible emergence of properties that

remain stable or change across time, as the activity captured in

each snapshot may indeed vary from one snapshot to another.

Even the very basic features of the network, such as e.g. the

number of nodes (noted N) and of edges, depend both on the time

of the year at which we observe the system and on the duration of

the aggregation Dt [32]. Table 2 summarizes the basic properties

of the aggregated networks for the various Dt values considered.

At the smallest possible aggregation scale, Dt~1 day, the

networks are small and very sparse, including an average number

of nodes of the order of few thousands (to be compared to the total

of about 105 nodes active across the whole year), and they are

typically composed of small disconnected components, similarly to

what was observed in the UK cattle data [44]. For larger values of

Dt, i.e. longer aggregation times, an increasing number of nodes

and links are present in the networks, since more and more distinct

displacement events are registered during the time window. The

average number of nodes of the weekly and monthly networks

increases of one order of magnitude with respect to the daily case,

as observed in the weekly and monthly snapshots of the French

cattle data [32]. This number does not show great variations in

time for a given Dt, however it remains very small if compared to

the full network, thus indicating the presence of strong changes in

the activation of nodes from one month to the other. When

aggregating over time windows of increasing duration, the

networks not only increase in size but also become denser, with

the number of active connections growing faster than the number

of active nodes. The small disconnected components observed in

the daily networks coalesce, leading to an increasingly larger giant

component (i.e. the largest connected component of the network).

Though snapshots up to monthly networks are small in size

compared to the total number of active nodes observed during the

year, their structure and interconnectivity allows for the creation of

giant components spanning a large fraction of the aggregated

networks (e.g. more than 70% for Dt~7 days, see Figure S1),

similarly to what was observed in the analysis of cattle movement

data in other countries [32]. Starting from daily networks that may

offer only limited propagation at the daily scale, a giant

component emerges if aggregating on timescales Dt§7 that

indicates the existence of paths of propagation from one node to

another at the system level.

Figures 1, 2, and 3 report a set of statistical properties of the

networks generated by aggregating the data on time windows of

lengths Dt~1, 7, 28, 365 days. Given that eachDt value corresponds

to a set of snapshots (except in the case of Dt~365 days), for the sake

of visualization we show in each plot the distribution of the quantity

under study for one particular snapshot chosen as an example (red

circles), overlaid to gray lines that indicate the behavior displayed by

the other snapshots corresponding to the same Dt(in the weekly and

daily cases, given the large number of snapshots, we show a random

subset). This allows us to monitor the variations over time signaling

changes of the system’s statistical properties, as a function of changes

inDt and the time of observation. Interestingly, these distributions are

superimposed for successive time snapshots at a fixed value ofDt,

denoting a statistical stationarity of global distributions, describing the

activity taking place at the microscopic level. This behavior, which is

observed here for the first time for cattle movement data, is

consistently present for all Dt under study, and is similar to what was

observed in other systems for which longitudinal data is available,

such as e.g. the airline transportation system analyzed in Ref. [24].

Figure 1 displays the distributions of in- and out-degrees. The

in-degree distributions are broad, with a behavior close to a

power-law and a slope approximately equal to 22. This is in

agreement with the results found for a specific month of the 2005

UK cattle data [35], and shows that this behavior is a common

feature of the system in various countries and, moreover, is

independent of Dt. The range of values of kin clearly increases with

increasing values of Dt. Large fluctuations are observed also in the

out-degree distributions, however the range of possible values of

kout is systematically one order of magnitude smaller than the

corresponding range observed for kin, not only for the annual

network [34] but for every timescale investigated. Results show a

clear asymmetry in the receiving and sending activities of the

animal holdings, which can be explained by the typical activity of

specific premises types, such as slaughterhouses, assembly centers

and also markets. Such premises are indeed responsible for

assembling cattle trade fluxes for commercial purposes, thus

receiving batches from a large number of premises, assembling

them and moving larger fluxes to fewer premises.

Similar probability distributions can be computed for the

weights as well, taking into account the two possible definitions.

Figure S2 shows how the weights wB have by definition a sharp

cutoff at their maximum value Dt, therefore limiting the range of

possible values they can assume in the case of small Dt. On the

other hand, the number wA
ij of animals displaced between farms i

and j is characterized by a broad distribution even for the shortest

time window Dt~1 day [31]. This shows how cattle displacements

are most often characterized by a small number of animals, but

that movements of very large numbers are also observed with a

non-negligible probability. Interestingly, the shapes of the

distributions are almost not affected by changes in Dt, denoting

underlying non-trivial mechanisms that make these statistical

properties stable across integrations on diverse timescales.

Figure 2 shows the in- and out-strength distributions, according

to the two definitions for the weights. A pattern very similar to the

degree distributions is observed: the in-strength distributions are

broad even at small Dt, while the out-strength distributions

broaden significantly only as Dt increases, especially for sBout, which

indicates the total outflow of batches. The asymmetry discussed

above is thus retained if we consider the total number of animals

displaced in and out of premises. Besides looking at the overall

behaviors of these quantities in terms of probability distributions, it

is interesting to explore whether non-trivial correlations arise that

relate the topology with the flows at the premises level, by

considering the correlations between the strengths and degrees of

nodes. Figure 3 shows the results obtained when the strengths are

defined in terms of the weights wB and wA, considering both the

inflow and outflow dynamics. The behavior is linear for the in-

strength, signaling an absence of correlation between the number

of premises from which a specific holding receives batches and the

number of batches or bovines received on each connection [14]. In

the case of the out-strength we observe instead a slightly

superlinear trend when sAout is expressed as a function of the out-

degree, showing that more active farms in terms of number of

connections also tend to send more animals on each connection

Dynamical Patterns of Cattle Trade Movements
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[14], explaining the asymmetry observed before in the variations

of sout and kout with respect to sin and kin.

For increasing time window lengths, the aggregated networks

take into account more displacement events. Concerning the links

and nodes present in a network at a given timescale Dt, this means

that their weights, degrees and strengths are expected to increase

when longer time windows are considered. Notably however, we

do not observe a simple shift of the whole distributions towards

larger values with a corresponding absence of small values: the

distributions continue to be broad, spanning several orders of

magnitude, but the most probable values remain very small. In the

case of the degree distributions, this can be due to nodes that have

very few connections for any time window, or to nodes that are

active only very rarely. For the weights distributions, it shows that

on any timescale there exists many links that are active only during

few days, already indicating the presence of a non-trivial

underlying dynamics that cannot be uncovered through the

analysis of static snapshots only.

System dynamics
The results of the previous subsection show how the microscopic

dynamics of cattle movements is described by statistical properties

Figure 1. Degree distributions for networks aggregated on different timescales Dt. Since a single value of Dt (for Dtv365 days) yields
multiple snapshots, each panel shows one distribution obtained for a given snapshot (circles) superimposed to a subset of the distributions obtained
for the other snapshots at the same value of Dt (grey lines). Panels A to D report the distributions of the in-degree kin , that show very large
fluctuations and a power-law like behavior with exponent close to {2 in all cases. Panels E to H present the distributions of the out-degree kout,
characterized by a cut-off that strongly depends on the length of the aggregating time window.
doi:10.1371/journal.pone.0019869.g001

Dynamical Patterns of Cattle Trade Movements

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19869



that are found to be stationary, with a behavior that is qualitatively

invariant with respect to changes in the timescale (whereas size and

magnitude of fluctuations clearly depend on the time window Dt).

Here and in the following subsections we aim at characterizing the

underlying dynamics to uncover higher order correlations and

relevant temporal aspects leading to the observed behavior.

The simplest dynamical information is given by the evolution of

the sizes of the aggregated networks. The numbers of nodes and

links follow consistent patterns (as shown in Figure S3) with both

weekly cycles and clear seasonal properties that distinguish the

livestock activity across the different seasons [29,31,32,35,40]. On

a monthly time scale, it emerges that the summer activity is

substantially lower than the activity registered during the rest of

the year. The evolution of the daily snapshots sizes shows

moreover how the overall movements decrease strongly during

the weekends, leading to increasingly smaller and more fragment-

ed networks that put obstacles to the propagation of a disease

across the system.

Figure 2. Strength distributions for networks aggregated on different timescales Dt. Panels A to D report the distributions of the in-
strength sin. Interestingly, the definition used to weight the links does not affect the distribution of the incoming traffic: the distributions P(sAin) and
P(sBin) are very close. Panels E to H present the distributions of the out-strength sout , whose behavior instead depends strongly on the type of weight
considered. Broader tails are observed when considering the total number of animals displaced out of a given holding. The same representation of
Figure 1 is adopted, with symbols representing the result of a particular snapshot, and grey lines the results obtained for a subset of the other
snapshots.
doi:10.1371/journal.pone.0019869.g002
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Differently from human mobility data where the information is

usually not provided at the individual level and is aggregated into

flows that cannot be traced back to the individual’s behavior

[14,69], the cattle movement dataset provides detailed information

at the individual level through tracking each single animal during

its displacements. This allows two different levels of description of

the dynamics: (i) the agent-centered point of view that considers

the features of the animals’ movements (similarly to what can be

done for individuals based on anonymized phone cell data

[22,23]); (ii) the network point of view that focuses instead on

the system’s behavior and is given by the evolution of the topology,

and of the links’ and nodes’ properties from one time window to

the next. These views provide complementary information for the

characterization and understanding of the dataset.

Agent-centered dynamics
Gaining insight from this point of view aims at characterizing

the trajectories of each bovine, uncovering the possible presence of

predictable patterns, similarities or large heterogeneities, in the

perspective of understanding the potential for disease propagation

across the system, through its agents.

As bovine displacements are subject to livestock commercial

constraints, we expect that the resulting bovine mobility patterns

will be different from human mobility patterns [19,22,23,69].

Figure 3. Relation between the number of bovine traffic movements of a holding and its number of connections for different
values of Dt. Panels A to D report the average in-strength of nodes with a given value of in-degree, whereas panels E to H present the average out-
strength of nodes with given out-degree. The same representation of Figure 1 is adopted, with symbols representing the result of a particular
snapshot, and grey lines the results obtained for a subset of the other snapshots.
doi:10.1371/journal.pone.0019869.g003
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Indeed, the number of displacements of any single animal over one

year is quite restricted [31,44], as shown in Figure S4, in particular

if compared with human behavior. On average bovines experience

1.45 displacements during a year. Interestingly however, some

animals perform more than 10 moves, which may potentially

result in superspreader behaviors. Figure S4 also reports the

distributions of geographical distances covered either in a single

displacement (i.e., the geographical distance between the origin

and destination farms), or following the trajectory of a single

animal in one year. Despite a well-defined maximum at short

distances, these distributions display rather broad tails correspond-

ing to very long routes [31,35]. In addition, the distributions are

robust against filtering on the weight wA, indicating that very long

routes are performed by both small and long batches. The

possibility of such long displacements should be taken carefully

into account when dealing with spreading of diseases, as they

could result in epidemics rapidly reaching geographically very

distant parts of the network.

Another interesting issue concerns the time interval between

two consecutive displacements of an agent, corresponding to the

period that a given bovine spends in the same holding [31]. This

time interval may represent the time of exposure of the animal to a

potential outbreak taking place in the holding, or the time during

which it could spread the disease to other animals if infected. Since

the different types of farms have different roles in the bovines

trade, the global distribution shown in Figure 4A is a convolution

of several different behaviors. In particular, the two peaks at 3 and

6 months correspond to pasture and fattening farms, respectively,

as shown by the other panels of the Figure that disaggregate the

results by premises type. Except for the markets, in which bovines

spend only few days, the distributions of these time intervals are

broad for each farm type, with different slopes. This points out the

large variety of possible timescales characterizing the time during

which an animal stays in a given premises, indicating that

homogeneous assumptions on the length of stay of an animal at a

given holding do not provide an accurate description of reality.

The broadness of these distributions should therefore be taken

cautiously into account in the modeling approaches.

Network microscopic dynamics
By comparing the results obtained for the weekly and monthly

networks with those corresponding to the whole dataset, it is clear

that a strong dynamical activity shapes the evolution of the system

on both global and local scales. As an example, we show in

Figure 5 a visualization of a subgraph for three consecutive

monthly networks. The subgraph is constructed by selecting a

particular seed node (the same for all three networks) and by

considering all nodes at distance ƒ3 from the seed (where the

distance is defined by the number of links traversed on the shortest

path connecting the two nodes). Nodes keep their position in the

visualization if they are active over multiple snapshots. The figure

highlights how the structure of the neighborhood of a given node

obtained at consecutive time snapshots can widely differ: even

highly connected nodes in one snapshot can disappear from the

neighborhood of the given node in the next snapshot, and hubs

suddenly appear that were absent from the previous snapshot.

Activity timescales. Similarly to the dynamics of single

animals, the network dynamics can be first characterized by the

distributions of the activity and inactivity periods of nodes and

links [24]. These periods are defined, for a given timescale Dt, as

the number of consecutive time steps in which a node, or a link, is

active (or not active, respectively). In the case of time windows of

Dt~1 day, we remove the weekends from the dataset as they are

characterized by a much smaller activity, and consider a node or a

link to be continuously active if it is present in the snapshots of a

given Friday and of the Monday of the following week. The

corresponding distributions are shown in Figure 6 for Dt~1 and 7

days. As seen also in the dynamics of the air transportation

network [24], most nodes and links turn out to be continuously

active or inactive for only very short periods. The distributions of

activity periods t are rather narrow in the case of daily networks,

and can be fitted by power-laws with exponent smaller than 24:

most nodes and links are active only for one day at a time, and

only very few are continuously active for more than a few days.

The distributions become significantly broader when considering

weekly networks, where power-laws with exponents close to 23

emerge. The difference observed by comparing Dt~1 and 7 days

can be easily explained by the integration over multiple days in the

case of Dt~7: being active in two consecutive such networks is a

less stringent condition than being active each day of two

successive weeks. The inactivity periods Dt are characterized by

much broader distributions extending on all possible timescales,

signaling that a node (or a link) may become active at a given point

in time without then participating to the dynamics for a long time

interval. From the point of view of control policies, such long

inactivity periods would help in limiting the spread through self-

isolation of premises.

Given that the activities of nodes and links of the displacement

network occur at both short and long timescales, here we aim at

characterizing the mechanisms behind the appearance and

disappearance of links in the system, and we focus on the weights

wA that measure the number of animals displaced along each link.

As proposed in [24] we evaluate in particular the fraction of

appearing f a and disappearing f d links, as a function of their

weight, in order to uncover a possible correlation between a link’s

stability and the number of displaced animals along that link.

More precisely, if E(wjt) is the number of links with weight w~wA

at time t and Ea(wjt) is the number of such links that were not

active at the previous time (and thus appeared at time t), the

fraction of appearing links is f a(w)~Ea(wjt)=E(wjt). An analo-

gous procedure leads to the definition of f d by considering the

links of weights w active at time t{1 but no longer active at time t.

The quantities f a(w) and f d (w) are shown in Figure 7 for daily,

weekly and monthly networks. We observe that f a(w) and f d (w)

have an almost identical behavior, though dependent on the

timescale Dt. In Figure S5 the results are disaggregated by

premises type for the origin (or for the destination) of each

considered link, showing that the behavior observed in Figure 7

results from a convolution of trends that are quantitatively

different but qualitatively similar for all farm types. In all cases,

links with small or large displacements of animals are both very

unstable, whereas the most stable links are those with an

intermediate weight. While till now the system of bovine

movements showed properties that are very similar to those found

in the analysis of human mobility by air travel, this result instead

strongly differs from the positive correlations of links’ stability and

weight found in the airline transportation network [24]. In the

airline system this is due to the fact that links with large weights

correspond to busy routes that are economically convenient

carrying a large fraction of the traffic and thus well established.

Different commercial driving forces characterize the cattle trade

flows and, in addition, premises have limited receiving capacities,

constrained by the limited size of the space hosting the cattle for a

widely varying number of days (see the results in Figure 4). Since a

large weight corresponds to a transport of a large number of

animals, it is rather unlikely that two (or more) very large such

events occur on the same connection in rapid succession, as this

may correspond to a large increase in the population at the
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premises, if no animals are moved away. Differently from this

process in which bovines stay at the arrival node after

displacement, airline passengers either connect through an airport

or leave the airport to reach their final destination, without thus

increasing the population at the mobility node itself. The result is

that large displacements are very stable in the airline case, whereas

heavily fluctuate in the bovine case. The lack of possible

identification of stable connections over time carrying large

weights (and thus having a large spreading potential) seems to

indicate the absence of a robust pattern of movements in the

system that could be easily targeted by intervention measures

aimed at controlling and containing the spread of a disease. This

aspect will be explored in further detail in the next subsection

when evaluating the evolution dynamics of the network backbone.

As expected, the minimum values of f a(w) and f d (w) are very

close to 1 when considering the daily networks, meaning that more

than 80% of the links present at a given day will disappear the day

after (and similarly for the appearance of links). At such timescale

the full dynamical nature of the network emerges. More stable

structures are instead detected at larger aggregation times, when

weekly and monthly networks are considered.

Fluctuations of nodes and links properties. In addition to

characterizing the dynamics with which nodes and links can switch

on and off their activity, here we study the evolution of nodes’ and

links’ properties once they are active. In particular, the evolution

in time of a link’s weight wij(t) is characterized by its growth rate

rij(t)~ log
wij(tz1)

wij(t)
whose distribution is shown (for the weights

wA) in Figure 8 for the various time windows under study. The

distributions are stationary, with exponentially decaying tails, as

found for the airports network [24] and in studies of firm growth

[72]. This corresponds to a weights’ evolution from one month to

the next of the form wij(tz1)~wij(t)(1zgij) where the multi-

plicative noise g~er{1 is a random variable whose distribution is

Figure 4. Probability distributions of the time interval t between two consecutive displacements of a bovine. t corresponds to the
time during which the bovine stays at given premises. The seasonality behavior of breeding is clearly shown by the peaks at 3 and 6 months, while at
shorter times the distribution behaves as t{1 . The global distribution is a convolution of the time distributions obtained for different farm types,
shown in panels B to H.
doi:10.1371/journal.pone.0019869.g004
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broad and does not depend on time, indicating that most of the

weights increments are small but that sudden and large variations

of the weights can be observed with a small but non negligible

probability. The highly dynamical nature of the network,

characterized by large instabilities and timescales describing the

appearance and disappearance of nodes and links, is expected to

have a strong impact on the nodes’ properties as well. For instance,

a node with many connections on a certain day may be much less

connected the next day [73]. The stationarity of the distributions

obtained from the analysis of static aggregated networks does not

imply the stationarity of the properties of each given node; the set

of nodes in the tail of the distribution may for instance differ from

one snapshot to another. If we focus on properties of centrality of

the nodes, which are often used to identify and target the elements

of the system for isolation and quarantine aiming at prevention

and control of an epidemic spreading on the network, large

fluctuations in these values point to the strong limitations of such

measures. In order to investigate this, we show the variations of a

node’s property for all snapshots considered, depending on the

timescale Dt under study. Figure 9 shows the median and the 95%

confidence interval of all values of the out-strength sAout that each

node assumes when active, for different time window lengths. Very

large fluctuations are observed, with most nodes showing

variations over more than 2 decades, signaling that this property

lacks stationarity at the node level. Some nodes with very high

strength seem to have no fluctuations, but they appear in fact only

once in the dataset. Similar results are obtained when considering

other possible measures of node centrality, such as the in-strength

or the in- and out-degree (not shown). Given that these quantities

are proxy measures for the centrality of nodes, such findings

strongly undermine the efficacy of traditional measures for

epidemic control that do not take into account the large

variations in time of the role of the premises with respect to the

flows of the system.

Evolution of network backbone
The results of the previous section show how the system is

characterized by large fluctuations and strong topology and traffic

variations on all spatial and temporal scales. The overall picture is

thus one of a network whose structure changes very strongly from

one snapshot to the next, not only at the global level, but also at

the node neighborhood and node levels, inducing very strong

centrality fluctuations. Notably, these centrality fluctuations are

observed for all premises and geographical positions. A natural

question therefore arises concerning the possible existence of a

backbone of nodes and connections, carrying the relevant

topological and dynamical information of the system, and of its

temporal stability. The observed strong fluctuations may indeed be

related to less meaningful connections of the network, and may

thus be compatible with a stationary backbone.

A first attempt at defining a global backbone over time consists in

considering the intersection of successive aggregated networks. If a

considerable fraction of the system is stable across time, the

intersection will be quite large and will identify the subset of premises

and flows that have a predominant role in the dynamics. At the

monthly scale, less than 4% of the links are common to the 13

corresponding networks. Moreover, the corresponding weights are

not particularly stable and show a growth rate distribution

comparable to the one obtained for the original networks. More

advanced filtering techniques can be used to extract a statistically

significant subgraph that carries a significant part of the traffic. In

particular, it is possible to retain only the links with weights larger

than a certain threshold, i.e., the ones with most traffic. However,

when the system is characterized by large fluctuations of weights, and

more in detail by a large heterogeneity of weights around a given

node (as is the case here, not shown), global thresholding can lead to

misleading dismissal of locally very important links [74]. For this

reason, in addition to the thresholding method, we consider the

disparity filter method that was introduced in Ref. [74]. For each

node, it consists in identifying the links that should be preserved in the

network. To this aim, one considers the null hypothesis of a random

assignment of the normalized weights poutij ~wij

�

si,out and

pinij~wij

�

sj,in (as links are directed, we consider two normalized

weights definitions), and computes for each link the probability a
in(out)
ij

that its normalized weights are compatible with this hypothesis. These

probabilities are given by a
in
ij ~(1{pinij )

kj,in{1 and

a
out
ij ~(1{poutij )ki,out{1 [66], and the backbone is given by the links

which satisfy at least one of the conditions ainijva or aoutij va, where a

is a parameter that can be tuned in order to change the significance

level of the filtering. For networks with uncorrelated weights, the

disparity filtering procedure is equivalent to the global thresholding

procedure, pruning the links with a weight smaller than

Figure 5. Neighborhoods of a selected node in three consecutive monthly networks. The subgraphs are obtained by showing all nodes
within distance 3 from a selected node (in red in the figure), for consecutive monthly snapshots. The visualization highlights how the neighborhood
of a given node may strongly change its structure in time. It is important to note that nodes that disappear from the plots may still be present in the
network, but are not shown as they may be at distance larger than 3 from the seed, thus not belonging to its neighborhood.
doi:10.1371/journal.pone.0019869.g005
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SwT: ln (1=a), where SwT is the average weight in the network. We

have considered both filtering procedures for the aggregated networks

with Dt~28 days, and constructed for each network the correspond-

ing backbones for various significance levels. In order to assess how

the network backbone change in time, we have then computed the

overlap between the 13|12=2 pairs of backbones, at a given

significance level, where the overlap of two networks with respective

sets of edges E1 and E2 is defined by jE1\E2j=jE1|E2j. Figure 10
displays the distributions of the growth rates of the links’ weights wA

in the various backbones, compared with the corresponding

distribution in the whole network, together with the overlaps of the

monthly backbones in color-coded matrices. The overlap between

backbones of successive monthly networks is substantial but not large,

approximately ranging from 25 to 30%. If we assume that the two

Figure 6. Probability distributions of the duration t of activity and of the duration Dt of inactivity of nodes and links. Results are
reported for daily (panels A to D) and weekly (panels E to H) networks. In the daily case, weekend breaks are neglected as they are characterized by a
much lower activity and clear weekly patterns (see Figure S3). The observed peaks in P(Dt) of the daily networks correspond to inactivity periods of
multiples of a week.
doi:10.1371/journal.pone.0019869.g006
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successive backbones have the same size, an overlap of 25–30%

would correspond approximately to an intersection of 40–50%

between the two systems. While about half of the system is retained

from one snapshot to the following, this value becomes rapidly

smaller when moving away from the diagonal, i.e., as the

corresponding networks are further apart in time. This shows that

the memory of the most significant links in a given month rapidly fades

away in the successive months, and that evaluating the importance of

a link based on previous evidence could thus be misleading.

Percolation
The very short memory of the backbone structure leads us to

the study of how the dynamical aspects impacts the percolation

properties of the network of displacements. Percolation has long

been used in the analysis of complex networks [75,76], and results

have shown that many real-world network structures typically

retain their integrity, in terms of global connectedness, when nodes

or links are removed in a random fashion, while they are very

fragile with respect to targeted attacks. In this respect, percolation

analysis has become a tool to investigate the structure of networks,

by studying how the size of the largest connected component

evolves when nodes are removed according to different procedures

[75–79]. The size of the giant component not only is a measure of

Figure 7. Fraction of appearing/disappearing links as a
function of the weight associated to the link. The weight
considered here counts the number of animals, wA. Results for daily,
weekly, and monthly networks are shown (panels A, B, C, respectively).
As a reference, the weight distribution is also shown with a grey
histogram.
doi:10.1371/journal.pone.0019869.g007

Figure 8. Distributions of the growth rates of the number of
bovines wA displaced along a connection. The solid line represents
the distribution of the growth rates considering all networks of a given
aggregating time window Dt. Symbols corresponds a selection of
snapshots.
doi:10.1371/journal.pone.0019869.g008
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the resilience of the structural properties of the network under

study, but it also quantifies the extent to which an epidemic could

possibly spread in the system. Identifying ways to reduce this size,

by removing particular nodes, is equivalent to finding efficient

intervention and control strategies in the framework of disease

spreading, aiming at breaking down the network in small pieces in

order to prevent the disease from invading the system.

Let us consider for instance that an outbreak starts at a certain

date. It is then possible to sort the nodes of the aggregated network of

the corresponding time window by their degree, strength, or other

centrality measures, and to try to contain the disease spread by

isolating the most central nodes, reducing drastically the size of the

largest connected component through the isolation of only a few

percents of the nodes [75,77,78]. A lot of work has been done in this

direction for the analysis of the fragmentation of the network of

livestock movements when nodes are chosen according to different

centrality measures [29,30,32–35,45], and no information on disease

spreading is considered, as instead was done in Ref. [36]. However,

these studies have neglected the dynamical nature of the system,

focusing on specific snapshots only, and assuming to be able to access

all the relevant information of the system at any given point in time,

e.g. during an epidemic emergency. Since we showed so far how the

underlying topology and flows strongly fluctuate at all levels, here we

want to study instead the situation in which we have limited

information on the system gathered from its activity on the last time

window under study, and we want to apply isolation and quarantine

measures to the following snapshot. The ranking of nodes according

to a given centrality measure (corresponding to their spreading

potential) computed on a certain time window may indeed loose its

relevance when applied at successive times. Given these intrinsic

dynamical features, we aim here at assessing the impact of a removal

strategy on consecutive snapshots (thus the snapshots characterized

by the highest values of the overlap), once the strategy is defined on

the basis of the available information on one snapshot only, and is not

updated according to the successive network evolution.

We investigate this aspect by measuring the effect of the

successive removal of nodes by decreasing degree in consecutive

snapshots of Dt~28 days. More in detail, by focusing on a given

snapshot for Dt~28 days (the third snapshot of the year, chosen as

an illustrative example), we fix the order of nodes to be removed in

a degree-decreasing fashion. Then, we assess the impact of the

removal of nodes ordered in such way on this snapshot and on the

following one. This means that for the successive snapshot we are

not re-evaluating the centrality of each node (as measured here by

the degree) but we use the information computed on the previous

time snapshot. This procedure is tested on the full network and on

the corresponding backbone, calculated at two different signifi-

cance levels. Figure 11 shows the results in terms of the relative

size of the giant component as a function of the fraction of nodes

removed. As expected, the removal of nodes is very efficient if the

order of nodes to be removed is calculated on that snapshot

[29,30,32–35,45], whereas such ordering is not able to destroy the

network at the successive time window, leading to a size of the

giant component that decreases very slowly, and maintains a

fraction of more than 20% of the system still intact and connected

after the list of nodes is exhausted. Even though a large number of

nodes is removed from the system, the effectiveness of such

isolation procedure is strongly limited by that fact that the

premises’ properties have dramatically changed. Many of the

active premises have appeared/disappeared from one snapshot to

the other, and the ones that remained have strongly changed their

interaction pattern. In such situations, intervention and control

strategies devised using the information from static aggregated

networks, or more generally from data from past mobility patterns,

can thus result to be very inefficient.

Dynamical motifs
After observing the large fluctuations and the fast dynamics

characterizing the system at all timescales, the last analysis we

Figure 9. Fluctuations of the total outgoing traffic of bovines
of a given holding for various aggregating time windows. The
plot shows, for each holding of the system, the fluctuations of the
values of sAout assumed by each node during all snapshots of the Dt
under study. The median (black dots) and the 95% confidence interval
(brown shaded area) of outgoing traffic are shown.
doi:10.1371/journal.pone.0019869.g009
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present in this subsection aims at going even further in the

understanding of the system flows by exploring the possible

signatures of a temporal ordering of the bovine displacements and

the presence of recurrent paths.

One of the main consequences of the temporal evolution of the

network resides in the causality constraints it induces. For instance,

a spreading phenomenon can propagate on a path ijk (i.e. from i to

j to k) only if the link ij is present before the link jk. The search in

networks of the abundance of particular paths or motifs [80]

should then be complemented by causality requirements and

approaches that are able to incorporate the longitudinal dimension

[64,65,81,82]. This becomes particularly relevant if the flows form

cycles or paths that allow the re-infection of some premises, given

an appropriate interplay of the disease and movement timescales.

From the point of view of quarantine and similar control strategies,

this would represent an important phenomenon to take into

account when establishing the identification of premises to isolate,

or the durations of disease surveillance at those locations.

Figure 12 presents an example of causal motifs: for instance, the

repetition of the sequence of a link ij followed in the next snapshot

by a link jk could imply a cause-effect relationship between these

two links. Here we introduce a new measure to define causal

motifs and restrict our analysis on the shortest possible timescale,

i.e. the intrinsic timescale of the system Dt~1 day. We collect, for

each path length l, the motifs given by a list of links

i0i1,i1i2,:::,il{1il such that i0i1 is present at a certain snapshot t0,

i1i2 at snapshot t0z1,:::, and finally il{1il at t0zl{1. The

duration of the path is therefore equal to its length, and each path

corresponds to a possible propagation that respects causal

constraints. Each motif can occur for several values of the starting

time t0, and motifs of a given length can be ranked according to

their number of occurrences. It is worth remarking that the above

Figure 10. Evolution of monthly network backbones. Top: Distributions of the growth rates of the weights wA of the backbone links, where
the network backbone is obtained under different filtering procedures. In each case, growth rates r are measured only for links that are present in two
successive backbones. Center and Bottom: Overlap between the backbones of monthly networks. The overlap measures the number of links
common to the pair of networks under consideration, normalized by their total number of links. Backbones are obtained either with a global
threshold filter (center row) or using a disparity filter (bottom row). Three values of the significance parameter a are considered.
doi:10.1371/journal.pone.0019869.g010
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definition does not focus on the shape of the motifs since only

temporally connected chain-like motifs are considered, and the

recurrence is sought at the microscopic level counting the number

of appearance of a certain link sequence. Figure 12 shows the

corresponding frequency-rank plots, as well as the fraction of

motifs that are repeated more than once for each length. Motifs

are found up to length l~8, and both the absolute number of

motifs and the fraction of recurring motifs strongly decrease for

increasing lengths. Since the number of times a link is present in

the daily networks is broadly distributed (this number is given by

the weight wB in the globally aggregated network over the whole

year), pure statistical effects could be responsible for the

abundance of specific patterns. For instance, if both links ij and

jk are present all the time, then the causal path ijk will be very

frequent. We therefore compare in Figure 12 the results obtained

in the real data with different null models. The first null model

(random ordered) is constructed by randomly shuffling the order of

the daily aggregated networks: in this way, the structure of each

daily network is kept, but the temporal correlations are lost. The

second null model (temporal mixed edges) shuffles randomly the days

in which each edge is active, independently from one edge to the

next. The resulting daily aggregated networks have therefore

randomized structures. Finally, we construct also a third null

model by reshuffling the edges in each daily network as described

in Ref. [83] (time ordered and reshuffled networks): we recall that this

procedure consists in taking at random pairs of links ij and lm

involving 4 distinct nodes, and rewiring them as e.g. im and jl. This

procedure preserves both the in- and out-degree for each node,

but destroys correlations. Figure 12 shows that the two first null

models lead to similar results: a much smaller number of motifs is

observed, and a smaller fraction of these motifs are found more

than once. At lengths smaller than 5 however, this fraction is non

negligible, showing that purely statistical effects due to the frequent

presence of some links account for a part of the motifs presence

and repetition. When both time ordering and network topology

are reshuffled, motifs essentially disappear.

Since the network under study is directed, it is interesting to

note that a causal sequence of links (ininz1 at a certain snapshot tn,

followed by inz1inz2 at snapshot tnz1) is not a valid causal path if

it happens in the reverse order (inz1inz2 followed by ininz1). We

therefore consider in Figure 12 also the sequence of 365 daily

aggregated networks, seen in the reverse temporal order.

Strikingly, the number of motifs is much smaller than for the

true temporal sequence, and the fraction of repeated motifs is close

to the case of a random temporal ordering. This indicates the

presence of an intrinsic time arrow in the dataset, and provides a

general method for investigating this aspect in dynamically

directed networks. To our knowledge, this is indeed the first time

that an intrinsic arrow of time has been explicitly detected in a

temporal network. In Figure 12 we also show the number of motifs

passing through a farm for different farm types. In order to take

into account the relative abundance of the different farm types, we

compare the results with a null model where the labels describing

the farm types are reshuffled. We notice that some premises types

(such as assembly centers or markets) are much more prone to be

part of causal motifs than what would be expected for a random

labeling of the premises. Our definition of causal motifs is

therefore able to characterize the behavior of premises by

identifying those types of premises that, as expected, show highly

recurrent flow-in/flow-out patterns at such short timescale. The

present analysis can also be extended by considering longer

latency times for the occurrence of specific causal paths in the

network, by considering sequences of links ij at time t and jl at time

tzt0, relaxing the previous condition on the separation of times

between the occurrences of successive links in the motifs. The

flexibility of this approach thus allows the tuning of the analysis to

the relevant timescales of the spreading process under study, with a

variable latency time t0 that corresponds to the time during which

a node can be considered as continuously infectious. On the other

hand, exploring different values of t0 allows us to explore possible

scenarios of interventions through quarantine measures and

isolation of premises of different duration, and assess their efficacy

when simulating an epidemic process in the system.

Conclusions
Empirical datasets characterizing cattle displacements are increas-

ingly becoming available thanks to monitoring and tracking systems

put in place in many countries, after recognizing the fundamental

importance that movements have in disseminating an epidemic from

one farm to another, with the potential of leading to national

emergencies. By leveraging on the approaches and techniques of

network science, in this paper we have presented a full analysis of the

dynamical system of cattle movements, going beyond static and

simple approximations and taking fully into account the temporal

Figure 11. Percolation analysis on consecutive monthly networks. Two consecutive monthly snapshots (n~3 and n~4) have been
considered. A list of nodes with decreasing degree is calculated on the snapshot n~3, and is applied as a removal strategy for both networks. The
same procedure has been performed on the corresponding network backbones obtained for two values of the significance parameter a.
doi:10.1371/journal.pone.0019869.g011
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dimension of the dataset, using the Italian data of 2007 as a

prototypical example. Starting from detailed data at the individual

level at a daily resolution and covering a whole year, we have

constructed aggregated networks on different timescales to charac-

terize the system’s behavior on a variety of timescales typical of

different diseases, exposing the coexistence of stationary statistical

distributions and strong microscopic dynamics at all time and spatial

scales. We have shown how this dynamics affects not only global

quantities (such as the number of connected nodes), but also the

nodes’ and links’ properties at a very local level, and in relation with

the rest of the system. In particular, the centrality of a node fluctuates

strongly in time, thus preventing a straightforward static assessment of

the spreading potential of premises that could be used for the

definition of prevention and control measures. Longer historical data

may be of help in assessing the role of specific premises at high risk of

flow-in/flow-out situations. The network’s dynamics also hinders the

definition of a stationary backbone for the system structure and

function, as a subset of the most important links (and weights) that are

stable over time. We found indeed that the nodes and links forming

the backbone strongly vary depending on the time window

considered, and that the memory of the backbone rapidly fades

away from one snapshot to the successive ones. This has important

implications for the dynamical phenomena occurring on the system.

Evaluating the information available at a given time step, to devise

containment strategies against an epidemic spreading on the system,

would indeed lead to inefficient measures if applied at other times.

Finally, we have put forward a definition of dynamical motifs, formed

by sequences of links that allow causal propagation, and illustrated

how this definition can unveil the existence of an intrinsic time arrow

in the dataset. The number of motifs of various lengths is indeed

strongly different in the real dataset and in a time-reversed version;

moreover such definition can be easily extended to focus on a variety

of timescales of interest for the study of the disease spreading.

This study opens the road to future work in several directions.

First of all, it would be interesting to explore such full

characterization of the bovine movements dynamics also in other

Figure 12. Motifs: schematic representation and their occurrence. A schematic example of the dynamics of a subset of the mobility networks
is shown in panel A through three successive snapshots. The connections are color-coded according to the time at which they are active. A temporal
motif is a temporal sequence of links such that the destination node of a link at time t0 is the origin of another link at time t0zDt. Two examples of
motifs, of respective lengths 2 and 3, are shown below. We restrict the present study to the case of Dt~1 day. Panel B shows the results on the
presence of motifs, analyzed by counting the number of occurrences during the timeframe under study. The longer the motifs, the smaller the
number of times they appear. By focusing only on the set of motifs that occur at least twice, panel C compares the size of this set (expressed as a
fraction of the total) obtained from the empirical dataset with the sizes obtained through various randomization procedures (see main text). The
results are shown as functions of the motifs length. In panel D the median and confidence intervals of the number of motifs passing through a farm
depending on the farms type are shown, together with the same computation for a null model in which the farm types are reshuffled at random.
doi:10.1371/journal.pone.0019869.g012
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datasets corresponding to other countries, with the aim of

uncovering similarities or differences, and assess how these may

depend on different livestock market strategies and dynamics, or to

the implementation of specific prevention measures. Also the effect

of the introduction of new measures and regulations for the bovine

movements and market could be possible with the analysis

introduced here. Finally, the main result of our work highlights

the non-trivial dynamical properties that prevent the study of the

system from a stationary or quasi-stationary point of view and that

have a strong impact on the dynamical processes that take place

on this network. This opens a new challenge in the study of

epidemic processes on dynamical substrates that continually evolve

in time, with problems arising from the lack of stationarity, the

interaction between multiple timescales, the strong dependence on

the initial conditions, the presence of a non-reversible time

direction, and others. Furthering our understanding of such

systems through sophisticate tools of analysis and exploration of

scenarios by modeling would be crucial to evaluate the behavior of

such real-world systems under a disease emergency and help

identify possible responses to minimize the epidemic impacts.

Supporting Information

Figure S1 Size of the giant component of the network

for increasing aggregation timescale Dt. Average number

of nodes (panel A) and relative fraction with respect to the system

size (panel B) of the giant component of networks aggregated on

time windows of length Dt. As Dt increases, the networks become

more globally connected. Sizes are averaged over all snapshots

obtained with a given value of Dt.

(TIFF)

Figure S2 Weight distributions for networks aggregated

on different timescales Dt. Red circles refer to the binned

distributions of the weight wA
ij , measuring the number of animals

moved along the link ij, whereas green squares refer to the binned

distributions of the weight wB
ij that counts the number of batches

displaced along the link. The same representation of Figure 1 of

the main text is adopted, with symbols representing the result of a

particular snapshot, and grey lines the results obtained for a subset

of the other snapshots. The cut-off of the wB
ij distributions is

naturally fixed by the choice of the aggregating period Dt. The

distribution of wB
ij for the daily networks has been omitted, since it

is equal to 1 for wB
ij~1 and 0 elsewhere.

(TIFF)

Figure S3 Time evolution of the global static features of

networks on different timescales. The timeline of the

number of nodes (top), the number of links (center), and the

fraction of nodes in the giant component (bottom) are shown for

daily, weekly, and monthly networks. Clear weekly and seasonal

patterns are detected.

(TIFF)

Figure S4 Bovine activity. Panel A shows the probability

distribution of the number of displacements that a bovine

experiences during one year. Panel B displays the probability

distributions of the distances covered during a single displacement.

Since many links correspond to the displacement of very few

animals, the same distribution is shown with different thresholds,

i.e. considering only links with at least 2 or 10 bovines displaced

during the year under study. This corresponds to keeping

respectively 42% and 13% of the original links. Panel C shows

the probability distribution of the distances covered by a single

animal during its trajectory in one year.

(TIFF)

Figure S5 Appearance of nodes by premises type. The

fraction of appearing links as a function of the weight wA

associated to the link. The black curve refers to the total fraction of

appearing links, the red curves are obtained considering only the

links pointing to a given premises type, the green curves are

obtained using only the links originating at a given premises type.

The links’ behavior depends on the nature of the displacement, i.e.

the premises type of origin/destination. Consistent results are

obtained for different timescales Dt. The fraction of disappearing

links (not shown) displays an almost identical behavior (similarly to

the results presented in Figure 7 of the main text).

(TIFF)
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(2007) Analysis of a large-scale weighted network of one-to-one human
communication. New J Phys 9: 179.
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