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ABSTRACT

While the steady-state behavior of stochastic gene expression with auto-regulation has been extensively studied, its time-dependent behavior
has received much less attention. Here, under the assumption of fast promoter switching, we derive and solve a reduced chemical master
equation for an auto-regulatory gene circuit with translational bursting and cooperative protein-gene interactions. The analytical expression
for the time-dependent probability distribution of protein numbers enables a fast exploration of large swaths of the parameter space. For
a unimodal initial distribution, we identify three distinct types of stochastic dynamics: (i) the protein distribution remains unimodal at all
times; (ii) the protein distribution becomes bimodal at intermediate times and then reverts back to being unimodal at long times (transient
bimodality); and (iii) the protein distribution switches to being bimodal at long times. For each of these, the deterministic model predicts
either monostable or bistable behavior, and hence, there exist six dynamical phases in total. We investigate the relationship of the six phases
to the transcription rates, the protein binding and unbinding rates, the mean protein burst size, the degree of cooperativity, the relaxation
time to the steady state, the protein mean, and the type of feedback loop (positive or negative). We show that transient bimodality is a noise-
induced phenomenon that occurs when the protein expression is sufficiently bursty, and we use a theory to estimate the observation time
window when it is manifested.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007221., s

I. INTRODUCTION

Auto-regulation, whereby the protein expressed from a gene
binds to its own promoter and activates or suppresses its own tran-
scription, is the most common form of feedback in gene regulatory
systems.1,2 Experimental studies have probed how feedback loops
modulate fluctuations in the concentrations of gene products.3–5 The
exact distribution of protein numbers in four different stochastic
models of auto-regulation6–9 has been obtained by the solution of
the chemical master equation (CME)10 in steady-state conditions.
These four models do not consider cooperativity of protein bind-
ing to the gene and are based on different implicit assumptions, as
follows: Hornos et al.6 and Kumar et al.7 do not take into account
binding fluctuations since they regard the protein product as a cat-
alyst, while Grima et al.8 and Jia et al.9 take into account binding
fluctuations since they regard the protein product as a transcription
factor. Here, by binding fluctuations, we mean a decrease (increase)
in protein number whenever a binding (unbinding) reaction occurs.

In addition, Hornos et al. and Grima et al. assumed non-bursty
protein expression, while Kumar et al. and Jia et al. took into account
bursty expression. Since protein expression is often bursty and since
most proteins act as transcription factors (rather than catalysts) in
auto-regulatory gene circuits,11 consequently, the model in Ref. 9 is
the most realistic among the four. In all cases, the steady-state pro-
tein distributions can be either unimodal or bimodal even though
the corresponding deterministic model is always monostable (since
there is no cooperativity). Slow switching between the ON and OFF
states of the gene can lead to bimodality if the transcription rates
in the two gene states are well separated, for both positive and
negative feedback. Fast switching often leads to unimodality, but
under certain conditions, a positive feedback loop can also pro-
duce bimodality with one of the modes approximately centered on
zero.9 For a recent review of these and other similar models, see
Ref. 12. For recently developed methods to approximately solve
for the steady-state distribution in models of auto-regulation, see
Refs. 13–15.
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The time-dependent solution for stochastically modeled chem-
ical reaction systems has received comparatively very little attention.
Under certain conditions, for an initial joint distribution given by
a product of Poissons, the transient joint distribution remains a
product of Poissons for all times.10,16 However, the conditions for
this result to hold are very restrictive and not applicable to most
systems of biological relevance. To our knowledge, the only exact
time-dependent solution for an auto-regulatory feedback loop is the
one derived by Ramos et al.,17 where the authors obtained a Heun
function for the generating function of a stochastic model neglect-
ing translational bursting, binding fluctuations, and cooperativity.
An approximate time-dependent solution for four different types
of auto-regulatory gene circuits was obtained by Cao and Grima
using the linear mapping approximation,14 all of which have gen-
erating functions in terms of hypergeometric functions. Approx-
imate time-dependent solutions have also been recently reported
for detailed models of eukaryotic gene expressions with or without
feedback and including binomial partitioning due to cell division.18

Another method by Veerman et al. derives the approximate time-
dependent solution of auto-regulatory feedback loops by means of a
perturbative approach.19 However, the difficulty in analyzing Heun
and hypergeometric functions means that little information can be
extracted about the time-dependent behavior and, hence, different
dynamical phases of auto-regulatory circuits still remain unknown.
Elucidating and understanding such behavior is important since liv-
ing cells are constantly exposed to an ever-changing environment
that requires dynamic fine tuning of gene expression to maintain
healthy cellular functions.

In this article, by means of careful approximations, we derive
an analytical time-dependent solution for the CME of an auto-
regulatory circuit in terms of a sum of simple functions and subse-
quently use it to study the phase diagram characterizing the dynam-
ics of the gene circuit. The paper is divided as follows: in Sec. II,
starting from the CME of an auto-regulatory circuit with bursty
protein expression in two gene states and cooperative protein-gene
interactions and taking into account binding fluctuations, we use the
method of multiscale averaging to obtain a reduced master equation
valid in the limit of fast promoter switching. In Sec. III, this reduced
master equation is solved in time, leading to a time-dependent pro-
tein distribution that has the form of a sum of exponential functions;
the analytical solution is found to be in excellent agreement with the
numerical solution obtained using the finite state projection algo-
rithm (FSP). In Sec. IV, we use the analytical solution to show that
there are six different ways in which the time-dependent dynamics
can unfold. The relationship of these dynamical phases to the val-
ues of model parameters and the relaxation time to the steady state
and the mean protein number is investigated. The most interesting
among these phases is transient bimodality, whereby the protein dis-
tribution is unimodal for short and long times but is bimodal for
intermediate times; the theory is used to estimate the time window
when such behavior can be observed. We conclude in Sec. V.

II. DERIVING A REDUCED MODEL OF
AUTO-REGULATED BURSTY GENE EXPRESSION

We start by considering a stochastic model of auto-regulation
that includes promoter switching, bursty protein expression,

protein decay, and feedback mediated by cooperative protein bind-
ing to the gene [see Fig. 1(a) for an illustration]. LetG andG∗ denote
the unbound and bound states of the gene, respectively, and let P
denote the corresponding protein. The effective reactions describing
the model are given by

G +mP
σb
Ð→ G

∗, G
∗ σu
Ð→ G +mP, P

d
Ð→ ∅,

G
ρup

kq
Ð→ G + kP, G

∗
ρbp

kq
Ð→ G

∗ + kP, k ≥ 1,

(1)

where σb is the binding rate of the protein to the promoter, σu is
the unbinding rate of the protein from the promoter, ρb and ρu are
the transcription rates when the protein is bound to or unbound
from the promoter, respectively, and d is the decay rate of the pro-
tein due to active protein degradation and dilution during cell divi-
sion.20 The ratio L = σb/σu of the protein binding and unbinding
rates characterizes the strength of auto-regulation. In agreement
with experiments,21,22 protein production is assumed to occur in
bursts of random size sampled from a geometric distribution with
parameter p. Each burst is due to rapid translation of protein from
a single, short-lived mRNA molecule; hence, the mRNA dynamics
is modeled implicitly. The effective translation rate in the unbound
or bound gene state is then the product of the corresponding tran-
scription rate, ρu or ρb, and the geometric distribution pkq, where
q = 1 − p. Since the protein burst size is geometrically distributed,
its expected value is given by B ≙ ∑∞k=1 kpkq ≙ p/q. The reaction
scheme describes a positive feedback loop if ρb > ρu and a negative
feedback loop if ρb < ρu. This model has been derived from a model
that explicitly takes into account mRNA dynamics in Ref. 9 by using
multiscale reduction techniques. A similar reduction has also been
performed in Refs. 23 and 24. Note that ourmodel takes into account
protein-gene binding fluctuations, and hence, as shown in Ref. 9, it
is generally more realistic than the classical model of Kumar et al.,7

resulting in more accurate protein distributions for the case of low
protein numbers.

The microstate of the gene of interest can be represented by an
ordered pair (i, n): the state i of the gene with i = 0, 1 corresponding
to the unbound and bound states, respectively, and the copy number
n of free protein that is not bound to the promoter. Then, the copy
number of total (free and bound) protein will be n + im. Let pi ,n
denote the probability of having n copies of free protein when the
gene is in state i. Then, the stochastic gene expression kinetics in a
single cell can be described by the Markov jump process illustrated
in Fig. 1(b). The evolution of the Markovian model is governed by
the CME,

ṗ0,n ≙
n−1

∑
k=0

ρup
n−k

qp0,k + (n + 1)dp0,n+1 + σup1,n−m

− (ρup + nd + Cn,mσb)p0,n,
ṗ1,n ≙

n−1

∑
k=0

ρbp
n−k

qp1,k + (n + 1)dp1,n+1
+ Cn+m,mσbp0,n+m − (ρbp + nd + σu)p1,n,

(2)

where Cn ,m = n!/m!(n − m)! is the number of ways of choosing an
unordered subset of m molecules from a set of n molecules. On the
right-hand side of the first equation of the CME, the sum in the first
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FIG. 1. Auto-regulated bursty gene expression with cooperative binding. (a) Schematic diagram of the stochastic model of auto-regulation. Here, we depict the case when
four protein molecules bind to the promoter cooperatively to regulate gene expression. (b) Markovian dynamics of the stochastic model of auto-regulation. When the gene
switches rapidly between the unbound and bound states, for each n ≥ m, the two microstates (0, n) and (1, n − m) can be combined into a group that is labeled by group n.
(c) Transition diagram of the reduced model in the limit of fast gene switching. When n ≥ m, group n is composed of two microstates with the same total (free and bound)
protein number, and thus, the group index n can be interpreted as the total protein number. Note that translational bursting can cause jumps from any group to another (this
is shown for group 0 in the figure but is also true for any other groups).

term is taken from 0 to n − 1 because the burst size is ≥1. Note also
that ρup ≙ ∑∞k=1 ρupkq in the last term is the sum of all transition
rates leaving the microstate (0, n) due to random bursts of size ≥1.
The corresponding terms in the second equation of the CME can be
understood in the same way.

We next focus on the regime of fast gene switching, i.e., σb,
σu ≫ ρb, ρu, d. While this is a common simplifying assumption in
many theoretical studies,25,26 it is also supported by recent single-
cell data in bacteria.27 In this case, the Markovian model illustrated
in Fig. 1(b) can be reduced to a simpler one by using a classical
simplification method of multiscale Markov jump processes called
averaging.28,29 Since σb and σu are large, for each n ≥ m, the two
microstates (0, n) and (1, n − m) are in rapid equilibrium and thus
can be aggregated into a group that is labeled by group n, as depicted
in Fig. 1(b). In addition, for each n < m, group n is composed of the
single microstate (0, n). In this way, the full Markovian model can be
simplified to the reduced one shown in Fig. 1(c), whose state space
is given by

{group 0, group 1, . . . , group n, . . .}.
Here, we emphasize that while the two microstates (0, n) and (1, n
− m) have different free protein numbers, they have the same total
protein number (free plus bound). Hence, in the following, when we

use n to represent the group index, it should be interpreted as the
total protein number rather than the free protein number.

The next step is to determine the transition diagram and cal-
culate the effective transition rates of the reduced model. In the fast
switching limit, the two microstates (0, n) and (1, n − m) will reach
a quasi-steady state with quasi-steady-state distribution,

p
qss

(0,n)
≙

σu

σu + Cn,mσb
, p

qss

(1,n−m)
≙

Cn,mσb
σu + Cn,mσb

.

Then, the effective transcription rate is given by

cn ≙ p
qss

(0,n)
ρu + p

qss

(1,n−m)
ρb ≙

σuρu + Cn,mσbρb
σu + Cn,mσb

,

and the effective protein decay rate is given by

dn ≙ p
qss

(0,n)
nd + p

qss

(1,n−m)
(n −m)d ≙ nd[1 − Cn−1,m−1σb

σu + Cn,mσb
].

It, hence, follows that the effective transition rate from group n to
group n + k due to a burst of size k is given by q̂n,n+k ≙ cnp

kq, and the
effective transition rate from group n to group n − 1 due to protein
decay is given by q̂n,n−1 ≙ dn. Since we have all effective transition
rates of the reduced model, we can now write down the effective
reducedmaster equation in the limit of fast gene switching. Let pgroupn
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denote the probability of being in group n. Then, the time-evolution
of the reduced model is governed by the reduced master equation,

ṗ
group
n ≙

n

∑
k=1

q̂n−k,np
group

n−k
+ q̂n+1,np

group
n+1

−

∞

∑
k=1

q̂n,n+kp
group
n − q̂n,n−1p

group
n

≙

n−1

∑
k=0

ckp
n−k

qp
group

k
+ dn+1p

group
n+1 − (cnp + dn)pgroupn . (3)

III. SOLVING THE REDUCED MASTER EQUATION IN
STEADY-STATE CONDITIONS

A. General solution

We next solve the reduced master equation exactly in steady-
state conditions and, thus, obtain the steady-state protein number
distribution. To solve Eq. (3), we note that it is recursive with respect
to the group index n. It involves two variables when n = 0, three vari-
ables when n = 1, and so on. Enforcing steady-state conditions by
setting the time derivative on the left-hand side to zero, it is straight-
forward to prove by induction that the steady-state solution of the
reduced model, i.e., the steady-state distribution of total protein
numbers, is given by

p
group
n ≙ Kp

n c0

d1
⋅
c1 + d1

d2
⋯
cn−1 + dn−1

dn
, n ≥ 1, (4)

where K ≙ p
group
0 is a normalization constant such that ∑∞n=0 pgroupn

≙ 1. In fact, the reduced model can be viewed as some kind of
bursty limit of the gene expression model proposed in Ref. 30,
whose steady-state solution has also been recently obtained. Since
Cn ,m = Cn−1,m + Cn−1,m−1, it is easy to check that

d1d2⋯dn ≙ n!d
n σu

σu + Cn,mσb
. (5)

Inserting Eq. (5) into Eq. (4) yields

p
group
n ≙ K

(p/d)n
n!

⋅
σu + Cn,mσb

σu
⋅ c0(c1 + d1)⋯(cn−1 + dn−1). (6)

Let pn = p0,n + p1,n denote the probability of having n copies of free
protein. Given that there are n free protein molecules in a single cell,
the gene can exist in either the microstate (0, n) or microstate (1, n).
Since (0, n) is contained in group n and (1, n) is contained in
group n + m, the probability distribution of free protein numbers is
given by

pn ≙ p
group
n p

qss

(0,n)
+ p

group
n+m p

qss

(1,n)
. (7)

Inserting Eq. (6) into Eq. (7) gives the steady-state distribution of
free protein numbers,

pn ≙ K
(p/d)n
n!

c0(c1 + d1)⋯(cn−1 + dn−1)
× [1 + σb

σu
⋅
(p/d)m
m!

(cn + dn)⋯(cn+m−1 + dn+m−1)].
(8)

As we have seen, working with the total protein number is ana-
lytically convenient because unlike the free protein number, it is
conserved under fast binding–unbinding reactions (see Ref. 31
for a related application). However, in single-cell experiments, we
typically obtain data for the statistics of free protein numbers. Due to
this reason, henceforth, when we say steady-state or time-dependent
protein distribution, we always mean the distribution of free protein
numbers.

B. Special cases

We next focus on two important special cases. In the case of
L = σb/σu≪ 1, protein binding is much slower than protein unbind-
ing, and thus, the gene is mostly in the unbound state. In this case,
the second term in the square bracket of Eq. (8) is negligible, and the
effective transcription rate and effective protein decay rate reduce to

cn ≙ ρu, dn ≙ nd. (9)

Therefore, the protein number has the negative binomial distribu-
tion

pn ≙
(r)n
n!

p
n
q
r ,

where r = ρu/d is the mean number of mRNA copies produced dur-
ing the protein’s lifetime when the gene is in the unbound state and
(x)n = x(x + 1)⋯(x + n − 1) is the Pochhammer symbol.

Similarly, in the case of L = σb/σu≫ 1, protein binding is much
faster than protein unbinding, and thus, the gene is mostly in the
bound state. In this case, the first term in the square bracket of Eq. (8)
is negligible, and the effective transcription rate and effective protein
decay rate reduce to

cn ≙ {ρu, n < m

ρb, n ≥ m,
dn ≙ {nd, n < m

(n −m)d, n ≥ m.
(10)

Therefore, the steady-state protein distribution reduces to the nega-
tive binomial distribution

pn ≙
(s)n
n!

p
n
q
s, (11)

where s = ρb/d is the mean number of mRNA copies produced
during the protein’s lifetime when the gene is in the bound state.

C. Testing the accuracy of the analytical solution

As a check of our reduction method and the steady-state ana-
lytical solution, we compare it with the numerical solution obtained
using FSP32 for the full master equation given in Eq. (2). The results
for positive and negative feedback loops are shown in Figs. 2(a) and
2(b), respectively. When using FSP, we truncate the state space at
a large integer N and solve the truncated master equation numer-
ically using the MATLAB function ODE45. The truncation size is
chosen as N = 5 max(sB, rB). Since sB and rB are the typical pro-
tein numbers in the bound and unbound gene states, respectively,
the probability that the protein number is outside this truncation
size is very small and practically can always be ignored (according
to our simulations, N = 3 max(sB, rB) is already accurate enough).
Note that we used FSP rather than the stochastic simulation algo-
rithm (SSA), since in the regime of fast gene switching, the former
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FIG. 2. Steady-state behavior of auto-regulated bursty gene expression with cooperative binding in fast switching conditions. (a) and (b) Comparison of the steady-state
analytical solution (red circles) with FSP (colored curves) for different gene switching rates. The model parameters are chosen such that (a) shows a positive feedback loop
(ρb = 30, ρu = 5) and (b) shows a negative feedback loop (ρb = 5, ρu = 30). The rest of the model parameters in (a) and (b) are chosen as m = 4, d = 1, L = 1.16 × 10−4,

p = 0.6. The protein unbinding rate is chosen as σu = 106 (blue), σu = 100 (solid gray), σu = 5 (green), and σu = 1 (yellow). The averaging method and the analytical
solution start to break down when σu < 100. (c) Regions in the parameter space where SB (stochastic bimodality) and DB (deterministic bistability) are exhibited for a positive
feedback loop: the green curve encloses the region for SB and the orange curve for DB. The region designated as SB is that satisfying the criterion κ > 0, and the region
designated as DB is determined by finding the number of positive real roots of the rate equation given by Eq. (14) in steady-state conditions, c(x)B = dx. If this equation has
exactly three positive real roots (two stable and one unstable), then the system will show DB. The strength of bimodality κ is also shown by the heat map, depicting it as a
function of the feedback strength L, cooperativity m, and the transcription rate ρu in the unbound gene state under fast gene switching. The model parameters are chosen as

ρb = 10, d = 1, σu = 106, p = 0.5. (d) Same as (c) but for a negative feedback loop with model parameters chosen as ρu = 10, d = 1, σu = 106, p = 0.5. The heat maps show
the strength of bimodality κ versus the feedback strength L and the transcription rate ρb in the bound gene state. In (c) and (d), the cooperativity is chosen as m = 1 (left),
m = 2 (middle), and m = 4 (right).

is computationally much more efficient than the SSA, because a
majority of the time in the SSA is spent simulating gene switching
events.

From Figs. 2(a) and 2(b), it is clear that the analytical solu-
tion is in excellent agreement with FSP in the regime of fast gene
switching, but as expected, significant deviations appear for moder-
ate or slow gene switching. In fact, the model reduction technique
used here is essentially the leading order singular perturbation the-
ory, which only provides an accurate approximation in the presence
of timescale separation, i.e., ϵ = max(ρb, ρu, d)/min(σb, σu)≪ 1, and
our theory starts to break down when ϵ is moderate or large [under
the parameters chosen in Figs. 2(a) and 2(b), the averaging method
and the associated analytical solution begin to fail when σu < 100,
i.e., when ϵ > 30/1.16 × 10−2 ≈ 2.59 × 103]. Under timescale separa-
tion, the error made by averaging to the leading order turns out to
be O(ϵ), according to the matched asymptotic expansion theory of
singularly perturbed Markov chains.33,34

Our model predicts both unimodal and bimodal steady-state
protein distributions. To gain a deeper insight into bimodal gene
expression, we define the strength of bimodality as

κ ≙
Hlow −Hvalley

Hhigh
, (12)

where Hlow is the height of the lower peak, Hhigh is the height
of the higher peak, and Hvalley is the height of the valley between

them. For unimodal distributions, κ is automatically set to be 0.
For bimodal distributions, κ is a quantity between 0 and 1 since
Hvalley < Hlow ≤ Hhigh. In general, to display strong bimodality, the
following two conditions are necessary: (i) the two peaks should
have similar heights and (ii) there should be a deep valley between
them. The former ensures that the time periods spent in the low
and high expression states are comparable, while the latter guar-
antees that the two expression levels are distinguishable. Clearly,
κ is large if both conditions are satisfied and is small if any one
of the two conditions is violated; hence, κ serves as an effective
indicator that characterizes the strength of bimodality.9 We shall
next refer to bimodality in steady-state conditions as stationary
bimodality (SB). In Figs. 2(c) and 2(d), we investigate the relation-
ship between SB (characterized by its strength κ) and the type of
feedback loop, the feedback strength L = σb/σu, the cooperativity
m, and the smaller one of ρb and ρu (which represents the tran-
scription rate in the repressed gene state). In the positive feedback
case, SB fails to be observed when ρu and ρb are comparable but
can be observed over a wide range of L when ρu ≪ ρb [Fig. 2(c)].
In particular, our stochastic model predicts that positive feedback
is capable of SB when gene switching is fast even in the absence
of cooperative binding (the case of m = 1). Increasing cooperativ-
ity enlarges the region where SB is observed. On the other hand, a
negative feedback loop does not exhibit SB under fast gene switch-
ing, independent of whether there is cooperative binding or not
[Fig. 2(d)].
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Bimodality in the stochastic model can be seen as arising due
to switching between two effective phenotypic states of the system.
A different definition of switching behavior, albeit the classical one,
stems from deterministic rate equations: if the steady-state solu-
tion of these equations has two stable fixed points, then the sys-
tem is bistable, and if it has only one stable fixed point, then it is

monostable. We shall refer to the former as deterministic bistabil-
ity (DB) to clearly distinguish it from SB. The deterministic rate
equations follow from a mean-field approximation of the full CME
of the auto-regulatory feedback loop and are given by the follow-
ing set of ordinary differential equations (see Appendix A for its
derivation):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ġ ≙

1

m!
σbx

m(1 − g) − σug,
ẋ ≙ −

1(m − 1)!σbxm(1 − g) +mσug + ρuB(1 − g) + ρbBg − dx,
(13)

where g is the mean number of genes in the bound state and x = ⟨n⟩
is the mean protein number. In the limit of fast gene switching, the
gene component is in fast equilibrium, and thus, we have

g ≙
σbx

m

m!σu + σbxm
.

Inserting this equation into the equation for mean protein number,
we obtain the following effective rate equation:

ẋ ≙ c(x)B − dx, (14)

where

c(x) ≙ ρum!σu + ρbσbx
m

m!σu + σbxm
≙
ρum! + ρbLx

m

m! + Lxm

is the effective transcription rate.
In Figs. 2(c) and 2(d), we also depict the regions of the parame-

ter space where DB is observed. For negative feedback loops, no DB
is exhibited, as was also the case for SB [Fig. 2(d)]. However, for posi-
tive feedback loops, the regions of SB andDB are different [Fig. 2(c)].
For no cooperativity (m = 1), SB is observed but not DB; for mod-
erate cooperativity (m = 2), the region of DB becomes significantly
enlarged though still much smaller than that of SB; for high cooper-
ativity (m = 4), the regions of SB and DB overlap to a considerable
extent. Hence, the differences between SB and DB are most apparent
for positive feedback loops with low cooperativity. Note that within
the mean-field approximation, DB is associated with a bimodal dis-
tribution where each mode corresponds to one of the stable states.
Hence, in the regions where there is SB but not DB, we can say that
noise induces the bimodality of the distribution. In contrast, in the
regions where there is DB but no SB, we can say that noise induces
the unimodality of the distribution.

IV. SOLVING THE TIME-DEPENDENT REDUCED
MASTER EQUATION

A. Analytic solution

Following the method proposed in Ref. 35, we next solve
the reduced master equation in time and, thus, obtain the
time-dependent protein number distribution. For convenience,
we truncate the state space at a large integer N. Let pgroup

≙ (pgroup0 , pgroup1 , . . . , pgroupN ) denote the time-dependent solution of

the reduced model. It then follows that the reduced master equation
given by Eq. (3) can be rewritten in a matrix form as

ṗ
group
≙ p

group
Q,

where

Q ≙

⎛⎜⎜⎜⎜⎜⎝

−c0p c0pq c0p
2q c0p

3q ⋯

d1 −(c1p + d1) c1pq c1p
2q ⋯

0 d2 −(c2p + d2) c2pq ⋯

0 0 d3 −(c3p + d3) ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎠
is the generator matrix of the reduced model. The solution to this
ODE can be represented using the matrix exponential as

p
group(t) ≙ pgroup(0)eQt .

It is usually difficult to compute the matrix exponential ana-
lytically. In general, we need to calculate both the eigenvalues and
eigenvectors of Q. However, the special structure of Q allows us to
bypass the eigenvector calculation. By Cauchy’s integral formula for
matrices,36 for any continuous function f, we have

f (Q) ≙ 1

2πi ∮C(zI −Q)−1f (z)dz,
where C is an arbitrary simple closed curve in the complex plane
that contains all eigenvalues of Q in its interior. If we take
f (z) = pgroup(0)etz , then we obtain

p
group(t) ≙ 1

2πi ∮C p
group(0)(zI −Q)−1etzdz. (15)

Suppose now that initially the system starts from a fixed group
n0; then, the initial distribution of the reduced model is given by
p
group
n (0) ≙ δn0(n), where δn0(n) is a Kronecker delta that takes the
value of 1 when n = n0 and the value of 0 otherwise. We shall explain
later how to extend our results to more general initial distributions.
Under the point initial distribution, Eq. (15) can be simplified to

p
group
n (t) ≙ 1

2πi ∮C(zI −Q)−1n0+1,n+1etzdz.
By Cramer’s rule of computing the inverse matrix, we can prove
that

J. Chem. Phys. 152, 174110 (2020); doi: 10.1063/5.0007221 152, 174110-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

(zI −Q)−1n0+1,n+1 ≙ 1

uN+1(z)
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pn−n0∏n−1
k=n0+1

(z + ck + dk)∥(z + cn0 + dn0)un0(z) − un0+1(z)∥wn(z), n0 < n,

un(z)vn(z), n0 ≙ n,

dn+1⋯dn0un(z)vn0(z), n0 > n,

where un(z) are polynomials defined recursively by

un(z) ≙ ∥z + cn−1p + dn−1(1 + p)∥un−1(z)
− dn−1p(z + cn−2 + dn−2)un−2(z),

u0(z) ≙ 1, u1(z) ≙ z + c0p,

(16)

with uN+1(z) = det(zI − Q) being the characteristic polynomial of Q,
and vn(z) are polynomials defined recursively by

vn(z) ≙ ∥z + cn+1p + dn+1∥wn+1(z)
− dn+2p(z + cn+1 + dn+1)wn+2(z),

vN(z) ≙ 1, vN−1(z) ≙ z + cNp + dN .

Here, vn(z) are defined with the aid of another sequence of polyno-
mials wn(z), which are defined recursively by

wn(z) ≙ ∥z + cn+1p + dn+1(1 + p)∥wn+1(z)
− dn+2p(z + cn+1 + dn+1)wn+2(z),

wN(z) ≙ 1, wN−1(z) ≙ z + cNp + dN(1 + p).
Therefore, we obtain

p
group
n (t) ≙ 1

2πi ∮C
gn0n(z)
uN+1(z) etzdz,

where gn0n(z) are polynomials defined as

gn0n(z) ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pn−n0∏n−1

k=n0+1
(z + ck + dk)∥(z + cn0 + dn0)un0(z) − un0+1(z)∥wn(z), n0 < n

un(z)vn(z), n0 ≙ n

dn+1⋯dn0un(z)vn0(z), n0 > n.

Since uN+1(z) is the characteristic polynomial of Q, we have

uN+1(z) ≙ (z − λ0)r0⋯(z − λl)rl ,
where λ0, . . ., λl are all pairwise distinct eigenvalues of Q with r0,
. . ., rl being their multiplicities, respectively. We can then apply
Cauchy’s residue theorem:

∮
C
f (z)dz ≙ 2πi∑

k

Res(f ; ak),
where ak are all singularities of f inside the simple closed curve C.
In our current case, the singularities are all the eigenvalues λk, and
thus,

∮
C

gn0n(z)
uN+1(z) etzdz ≙ 2πi

l

∑
k=0

1(rk − 1)!
drk−1

dzrk−1
gn0n(z)etz
∏j≠k(z − λj)rj ∣z=λk .

Therefore, once we have known all eigenvalues of Q, the time-
dependent solution of the reduced model, i.e., the time-dependent
distribution of total protein numbers, is given by

p
group
n (t) ≙ l

∑
k=0

1(rk − 1)!
drk−1

dzrk−1
gn0n(z)etz
∏j≠k(z − λj)rj ∣z=λk .

In most cases, the eigenvalues of Q are mutually different (any
matrix can be approximated by such matrices to any degree of accu-
racy). In this case, we have l = N and r0 = ⋯ = rl = 1, and thus, the

time-dependent solution can be simplified as

p
group
n (t) ≙ N

∑
k=0

gn0n(λk)eλkt
∏j≠k(λk − λj) . (17)

Since we have found the transient solution of the reduced model,
inserting Eq. (17) into Eq. (7) finally gives the time-dependent
distribution of free protein numbers,

pn(t) ≙ σu

σu + Cn,mσb

N

∑
k=0

gn0n(λk)eλkt
∏j≠k(λk − λj) +

Cn+m,mσb
σu + Cn+m,mσb

×

N

∑
k=0

gn0 ,n+m(λk)eλkt
∏j≠k(λk − λj) . (18)

In the general case that the reduced model starts from a general
initial distribution pn(0) = πn, the transient solution is given by

p
group
n (t) ≙ ∞

∑
n0=0

πn0p
group
n (t∣n0),

where p
group
n (t∣n0) is the transient solution given that the reduced

model starts from group n0. In what follows, we assume that the
initial protein number is zero, i.e., n0 = 0, and the gene is initially
in the unbound state, unless otherwise stated. This assumption is
common in studies comparing experimental data with deterministic
model predictions for the time dependence of auto-regulation.2 We
emphasize here that although our theory is presented in the frame-
work of auto-regulated bursty gene expression, the time-dependent
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FIG. 3. Comparison of the approximate time-dependent solution (red circles) with FSP (blue curve) when protein binding is much slower (L ≪ 1) or much faster (L ≫ 1)
than protein unbinding. (a) Case of slow protein binding. The model parameters are chosen as m = 2, ρb = 10, ρu = 5, d = 1, σu = 106, L = 10−4, p = 0.6. The red circles
are obtained by substituting the approximate eigenvalues given by Eq. (20) in our analytical solution given by Eq. (18) for N = 200. (b) Case of fast protein binding. The
model parameters are chosen as m = 2, ρb = 10, ρu = 1, d = 1, σu = 104, L = 10, p = 0.6. The red circles are obtained by substituting the approximate eigenvalues given
by Eq. (21) in our analytical solution given by Eq. (18) for N = 200. The green vertical line in (a) and (b) shows the mean protein number predicted by the deterministic rate
equations.

analytical solution derived above can be applied to arbitrary bursty
birth–death processes with general birth rates cn and general death
rates dn. This makes our method widely applicable beyond the
framework of stochastic gene expression.

B. Convergence to the steady-state solution

In fact, the steady-state solution obtained earlier can be recov-
ered from the time-dependent solution by taking t → ∞. By the
Perron–Frobenius theorem,37 when the system is ergodic, the gener-
ator matrix Qmust have zero as its eigenvalue with multiplicity one
and all other eigenvalues must have negative real parts, i.e.,

0 ≙ λ0 > Re(λ1) ≥ Re(λ2) ≥ ⋯ ≥ Re(λl), (19)

where Re(z) is the real part of z. Therefore, the only term in Eq. (17)
independent of time t is the first term and all other terms tend to zero
exponentially fast as t →∞. Since the system is ergodic, the steady-
state solution is independent of the choice of the initial distribution.
As a result, we can take n0 to be sufficiently large, allowing us to focus
on the case of n0 > n, which is now

p
group
n (t →∞) ≙ dn+1⋯dn0un(0)vn0(0)

∏j≠0(−λj) .

Since the term vn0(0)/∏j≠0(−λj) contributes the same to each term,
we can treat it as a normalizing factor. We can also carry out the
same with dn+1⋯dn0 , which contributes the same as (d1⋯dn)−1 up to
normalization. Therefore, the steady-state solution has the following
simplified expression:

TABLE I. The first eight real and approximate eigenvalues of the generator matrix Q when protein binding is much slower (L≪ 1) or much faster (L≫ 1) than protein unbinding.
In the case of L≪ 1, the model parameters are chosen as m = 2, ρb = 10, ρu = 5, d = 1, σu = 106, L = 10−4, p = 0.6 and the approximate eigenvalues are computed using

Eq. (20). In the case of L≫ 1, the model parameters are chosen as m = 2, ρb = 10, ρu = 1, d = 1, σu = 104, L = 10, p = 0.6 and the approximate eigenvalues are computed using
Eq. (21). Note that these two sets of parameters (and the associated eigenvalues) correspond to those used to calculate the time-dependent distributions in Figs. 3(a) and 3(b).

Eigenvalues when L≪ 1

Real eigenvalues 0.000 −0.994 −1.986 −2.975 −3.961 −4.944 −5.925 −6.903
Approximate eigenvalues 0 −1 −2 −3 −4 −5 −6 −7

Eigenvalues when L≫ 1

Real eigenvalues 0.000 −0.394 −0.997 −1.791 −1.992 −2.975 3.954 −4.934
Approximate eigenvalues 0 −0.4 −1 −1.8 −2 −3 −4 −5
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FIG. 4. Comparison of the semi-analytical time-dependent solution with FSP for six distinct types of dynamic behaviors at four time points. For an initial protein num-
ber equal to zero and the gene initially in the unbound state, the analytical solution is shown by red circles, while FSP is shown by the solid blue line. Specifically, the
red circles are obtained by substituting the numerically found eigenvalues of the generator matrix Q (truncated at N = 200) in Eq. (18). The dashed green vertical line
shows the mean protein number predicted by the deterministic rate equations. The dashed black vertical line shows the other stable fixed point (if there exists one) of
the deterministic rate equations. For an initial protein distribution given by a Poisson with mean 5, we show the numerical time-dependent distribution obtained using FSP
in solid gray. U, TB, and SB refer to the following three properties: unimodality at all times, transient bimodality at intermediate times (unimodal at short and long times),
and bimodality at long times (unimodal at short times), respectively. DM and DB refer to deterministic monostability and bistability, respectively. (a) U+DM. The model
parameters are chosen as m = 2, ρb = 20, ρu = 5, d = 1, σu = 106, σb = 0.01σu, p = 0.6. (b) U+DB. The model parameters are chosen as m = 4, ρb = 10, ρu = 1,

d = 1, σu = 106, σb = 0.009σu, p = 0.6. (c) TB+DM. The model parameters are chosen as m = 2, ρb = 50, ρu = 5, d = 1, σu = 106, σb = 0.0045σu, p = 0.6. (d) TB+DB. The

model parameters are chosen as m = 4, ρb = 10, ρu = 0.1, d = 1, σu = 106, σb = 250σu, p = 0.5. (e) SB+DM. The model parameters are chosen as m = 2, ρb = 50, ρu = 4,

d = 1, σu = 106, σb = 0.0016σu, p = 0.6. (f) SB+DB. The model parameters are chosen as m = 4, ρb = 10, ρu = 5, d = 0.5, σu = 106, σb = 0.3σu, p = 0.6.
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p
group
n (t →∞) ≙ K un(0)

d1⋯dn
,

where K is a normalization constant. Moreover, we can prove by
induction that

un(0) ≙ pnc0(c1 + d1)⋯(cn−1 + dn−1),
which finally leads to

p
group
n (t →∞) ≙ Kpn c0

d1
⋅
c1 + d1

d2
⋯
cn−1 + dn−1

dn
, n ≥ 1.

This is exactly the same as Eq. (4) obtained in Sec. III A.

C. Approximate eigenvalues for the cases of fast
and slow protein binding

Our analytical solution for the time-dependent protein distri-
bution as given by Eq. (18) depends on all eigenvalues of the gen-
erator matrix Q. In general, it is very difficult to compute these
eigenvalues analytically. However, as we now show, this can be per-
formed for two special cases, namely, when protein binding is much
slower or much faster than protein unbinding.

We first focus on the case of L≪ 1, i.e., protein binding is much
slower than protein unbinding. In this case, all the eigenvalues of Q
are approximately given by (see Appendix B for details)

λ ≈ −kd, k ≙ 0, 1, 2, . . . (20)

In other words, when L ≪ 1, all the approximate eigenvalues of Q
are nonpositive integer multiples of the protein decay rate.

We next focus on the case of L≫ 1, i.e., protein binding is much
faster than protein unbinding. In this case, all the eigenvalues of Q
are approximately given by (see Appendix C for details)

λ ≈ x1, . . . , xm, 0,−d,−2d,−3d, . . . , (21)

where x1, . . ., xm are all the zeros of the polynomial um(z) of degree
m defined in Eq. (16). Using the approximation given in Eq. (10), the
polynomial um(z) is defined recursively by

um(z) ≙ ∥z + ρup + (m − 1)d(1 + p)∥um−1(z) − (m − 1)dp
× ∥z + ρu + (m − 2)d∥um−2(z),

u0(z) ≙ 1, u1(z) ≙ z + ρup.

In other words, when L ≫ 1, all the approximate eigenvalues of
Q are nonpositive integer multiples of the protein decay rate com-
bined with all the zeros of the polynomial um(z). In particular, in the
non-cooperative case of m = 1, we have x1 = −ρup, and thus, all the
approximate eigenvalues of Q are given by

λ ≈ −ρup, 0,−d,−2d,−3d, . . . .

In the cooperative case ofm = 2, we have

x1,2 ≙
−2ρup − d ±

√
d2 + 4ρudpq

2
,

and thus, all the approximate eigenvalues of Q are given by

λ ≈ x1, x2, 0,−d,−2d,−3d, . . . .

Substituting these approximate eigenvalues in Eq. (18) gives the
approximate time-dependent protein distribution.

To verify the accuracy of the approximate time-dependent
solution, we compare it with FSP in the regimes of L≪ 1 [Fig. 3(a)]
and L≫ 1 [Fig. 3(b)]. Clearly, the approximate solution is in excel-
lent agreement with FSP. With the parameters chosen in Fig. 3, the
first eight real and approximate eigenvalues ofQ are listed in Table I,
from which we can see that the approximate eigenvalues are very
accurate in the two limiting regimes. When L is neither too large
nor too small, we can compute the eigenvalues ofQ numerically and
substitute them in Eq. (18) to obtain the semi-exact time-dependent
protein distribution. The transient solution obtained in this way is in
full agreement with FSP for a large range of model parameters and
over time in the regime of fast gene switching (Fig. 4).

V. CLASSIFICATION OF THE TIME TRAJECTORIES
OF AN AUTO-REGULATING GENE

A. Dynamical phase diagrams

According to both the numerical solution of the full CME and
the semi-analytical solution shown in Fig. 4, our auto-regulatory
gene expression model can exhibit three different types of dynamic
behaviors: (i) the protein distribution is unimodal at all times
[Figs. 4(a) and 4(b)], (ii) the protein distribution is unimodal at small
and large times and is bimodal at intermediate times [Figs. 4(c) and
4(d)], and (iii) the protein distribution is unimodal at small times
and is bimodal at large times [Figs. 4(e) and 4(f)]. To distinguish
between them, we refer to (i) as unimodality (U), to (ii) as transient
bimodality (TB), and to (iii) as stationary bimodality (SB; this has
already been introduced earlier).

Each type of dynamic behavior can be further divided into two
phases according to whether the deterministic model shows monos-
tability (DM) or bistability (DB). Hence, the dynamic behavior of
our auto-regulatory gene expression model can be classified into
six possible phases (Table II). Phases 1 and 6 (U+DM and SB+DB,
respectively) are cases where the stochastic and deterministic mod-
els both predict the same behavior; in other words, the presence of
noise has no effect on determining the number of modes of the pro-
tein distribution. In contrast, in the other four phases, 2–5, noise
plays an important role in the creation or destruction of bimodal-
ity. We further note that TB (the behavior of the stochastic model
in phases 3 and 4) is a purely stochastic effect since bistability in

TABLE II. Six dynamical phases of auto-regulated bursty gene expression in fast
switching conditions. There are three possible phases for the stochastic model (U,
TB, and SB) and two possible phases for the deterministic model (DM and DB), so
that in sum, there are six possible dynamical phases.

Phase Stochastic model Deterministic model

1 U DM
2 U DB
3 TB DM
4 TB DB
5 SB DM
6 SB DB
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the deterministic model can only be determined at the steady state.
The numerical solution obtained using FSP and the analytical solu-
tion indicate that each of the six dynamical phases can appear when
model parameters are appropriately chosen [Figs. 4(a)–4(f)]. Note
that the existence of these phases is not specific to an initial condi-
tion given by a delta function; as shown by the gray distributions
in Fig. 4, the same phases are also found when the initial condition
follows a Poisson distribution. To determine the regions for the six
phases in the parameter space, we illustrate the L–ρu and L–B phase
diagrams for positive feedback loops [Figs. 5(a) and 5(b)] and the
L–ρb and L–B phase diagrams for negative feedback loops [Figs. 5(c)
and 5(d)].

We first focus on the positive feedback case [Figs. 5(a) and
5(b)]. From the phase diagrams, it can be seen that the system
exhibits TB when the feedback strength L is large. The dependence
of TB on the mean protein burst size B is less strong though it
appears that B must be sufficiently large too (in fact, B must be
greater than 2/(s − 1), as will be proved later). In most biologically
relevant cases, the transcription rates in the two gene states are not
of the same order of magnitude, i.e., ρu ≪ ρb, and the mean burst
size B is large. In this situation, as the feedback strength L increases,
a positive auto-regulatory gene network typically undergoes two

successive stochastic bifurcations, from the U phase to the SB phase
and then to the TB phase [Figs. 5(a) and 5(b)]. In both phase dia-
grams, there is a triple point separating the U, SB, and TB phases
of the stochastic model; this is analogous to the triple point in the
phase transition between solid, liquid, and gaseous states of a sub-
stance due to the effects of temperature and pressure.38 Note that all
the six phases appear for high cooperativity (m = 4), but for no coop-
erativity (m = 1), only three of the six phases are observed; hence,
increasing nonlinearity in the mass action law for binding kinetics
increases the richness of the system’s temporal behavior. The rarest
phases are phases 2 and 4 (U+DB and TB+DB, respectively), imply-
ing that when cooperativity is sufficiently high such that there is DB,
the stochastic model is most likely to exhibit SB, i.e., to be in the
phase 6 (SB+DB).

We next focus on the negative feedback case [Figs. 5(c) and
5(d)]. Since the stochastic model cannot produce SB and the deter-
ministic model cannot produce DB (as determined in Sec. III), a
negative feedback loop only has two types of dynamic behaviors,
i.e., phases 1 and 3 (U+DM and TB+DM, respectively). This is in
contrast to a positive feedback loop which possesses all six dynami-
cal phases. From the phase diagrams, it can be seen that the system
exhibits TB when the feedback strength L is relatively small but

FIG. 5. Dynamical phase diagrams for auto-regulated bursty gene expression with cooperative binding in fast switching conditions. Different phases are labeled according
to the classification in Table II. (a) L–ρu phase diagram for positive feedback loops. The model parameters are chosen as ρb = 10, d = 1, σu = 106, B = 1. (b) L–B phase

diagram for positive feedback loops. The model parameters are chosen as ρb = 10, ρu = 0.1, d = 1, σu = 106. (c) L–ρb phase diagram for negative feedback loops. The model

parameters are chosen as ρu = 10, d = 1, σu = 106, B = 2. (b) L–B phase diagram for negative feedback loops. The model parameters are chosen as ρb = 0.1, ρu = 10,

d = 1, σu = 106. In each phase diagram, we keep σu as a constant and change the value of L by tuning σb. In (a)–(d), the cooperativity is chosen as m = 1 (up), m = 2
(middle), and m = 4 (down).
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the mean protein burst size B is relatively large. For negative feed-
back loops, the value of the transcriptional rate ρb in the repressed
gene state practically seems uncorrelated with TB. In the typical case
that the transcription rates in the two gene states are not of the same
order of magnitude, i.e., ρb ≪ ρu, and the mean burst size B is large,
as the feedback strength L increases, a negative auto-regulatory gene
network undergoes a stochastic bifurcation from the TB phase to the
U phase [Figs. 5(c) and 5(d)].

In both positive and negative feedback cases, we find that an
increased protein burst size broadens the region of TB to a large
extent. When all model parameters are fixed (except a possible inter-
change between ρu and ρb), a negative feedback loop requires a sig-
nificantly larger burst size to produce TB than a positive feedback
loop [Figs. 5(b) and 5(d)].

B. Analytical estimation of the observation time
window for transient bimodality

Phases displaying TB are the most interesting since they have
no deterministic counterpart. Now, we shall use the theory devel-
oped in Sec. IV A to verify the existence of TB theoretically andmore
importantly to estimate the observation time window over which it
can be detected. For convenience, we rewrite Eq. (18) as

pn(t) ≙ N

∑
k=0

γkne
λkt ,

where

γkn ≙
σu

σu + Cn,mσb

gn0n(λk)
∏j≠k(λk − λj) +

Cn+m,mσb
σu + Cn+m,mσb

×
gn0 ,n+m(λk)
∏j≠k(λk − λj) .

The coefficients associated with the exponential functions satisfy
(see Appendix D for details)

lim
L→∞

ρu→0

γkn ≙ 0, for any k ≥ 2. (22)

This shows that when L≫ 1 (fast protein binding) and ρu ≪ ρb (the
transcription rate in the repressed gene state is much smaller than
that in the active gene state), all terms can be ignored except for the
first two exponential terms, i.e.,

pn(t) ≈ γ0n + γ1ne
λ1t
≙ (γ0n + γ1n)eλ1t + γ0n(1 − eλ1t).

Since the initial protein number is assumed to be zero, we have

γ0n + γ1n ≈ pn(0) ≙ δ0(n).
Moreover, since the system is ergodic and L ≫ 1, it follows from
Eq. (11) that

γ0n ≙ pn(t →∞) ≙ (s)n
n!

p
n
q
s.

Therefore, at each intermediate time t, the protein number has a
zero-inflated negative binomial (ZINB) distribution

pn(t) ≈ eλ1tδ0(n) + (1 − eλ1t)(s)n
n!

p
n
q
s, (23)

which is a mixture of a point mass at zero and a negative bino-
mial distribution with their coefficients depending on time t. When
t is relatively large, the time-dependent protein distribution only
depends on the first few exponential terms (the steady-state protein
distribution only depends on the first exponential term), while when
t is very small, the time-dependent protein distribution depends on
all exponential terms. Since we only retain the first two exponential
terms in the approximation, the ZINB distributionmay deviate from
the real distribution when t is extremely small.

To understand when bimodality manifests, we note that the
mode of the negative binomial part is given by

μmode ≙ {0 when s ≤ 1

∥(s − 1)B∥ when s > 1,

where [x] denotes the integer part of x. Hence, the ZINB distribution
peaks at both zero and the non-zero mode [(s − 1)B], if and only if
p0(t) > p1(t) and μmode ≥ 2, i.e.,

2 ≤ (s − 1)B < 1 + eλ1t

1 − eλ1t
(1 + B)s+1. (24)

From Eq. (24), we see that there is a critical time

tc ≙ −
1

λ1
log(1 + (1 + B)s+1

sB − B − 1
), (25)

such that bimodality occurs if and only if (s − 1)B ≥ 2 and 0 < t < tc
(Fig. 6). Note that while the ZINB distribution predicts bimodality
at very small times, the real distribution may be unimodal because
the approximate distribution may deviate from the real one when
t ≪ 1 (Fig. 6). Nevertheless, the calculation provides an accurate
estimate of the observation time window for TB and furthermore
confirms the observation in Fig. 5 that for a positive feedback loop,
the phenomenon occurs when the burstiness of protein expres-
sion is sufficiently large and protein binding is much faster than
unbinding.

Here, we have looked at TB for positive feedback. As we have
shown in Fig. 5, the phenomenon also exists for negative feedback
when protein binding is slow compared to unbinding. Unfortunately
the time-dependent solution in this case depends on many expo-
nential terms (often >10 terms) which makes it almost impossible
to analytically estimate the observation time window using the same
method as we have carried out for positive feedback.

C. Relationship between the phases, the relaxation
time, and the protein mean

From our numerical simulations using FSP in Fig. 4, we observe
that the relaxation time of our auto-regulatory gene expression
model is closely related to its dynamic behavior. When the system
shows U, it relaxes to the steady state rapidly [Figs. 4(a) and 4(b)].
When the system shows SB, it takes a much longer time to reach
the steady state [Figs. 4(e) and 4(f)]. However, when the system
shows TB, it can either relax rapidly Fig. 4(c) or relax very slowly
Fig. 4(d).

To further study the possible link between the dynamical phases
of the system and the relaxation time, we compute the relaxation rate
(the inverse of the relaxation time) of our stochastic model across

J. Chem. Phys. 152, 174110 (2020); doi: 10.1063/5.0007221 152, 174110-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 6. Transient bimodality. When ρu ≪ ρb and B ≥ 2/(s − 1), a positive feedback loop produces TB when L≫ 1. The blue curve shows the real time-dependent protein
distribution simulated using FSP and the red circles show the approximate solution given by Eq. (23). The model parameters are chosen as m = 1, ρb = 10, ρu = 0.1, d = 1,

σu = 103, L = 100, p = 0.5. The critical time for TB is computed using Eq. (25) with λ1 ≈ − ρup (the approximate eigenvalues for m = 1 and L≫ 1 are computed analytically
in Appendix C). Note that FSP confirms the theoretical prediction that TB disappears when t > tc .

large regions of the parameter space. Note that here the relaxation
rate is to a good approximation given by γ = |Re(λ1)|, i.e., the spectral
gap between the zero eigenvalue (which is associated with the steady
state) and the first nonzero eigenvalue (which is associated with the

slowest transient decay) of the generator matrix Q.39 In Fig. 7, using
heat maps, we show the size of the relaxation rate as a function of
the parameters L, ρu, ρb, and B for positive feedback loops [Figs. 7(a)
and 7(b)] and for negative feedback loops [Figs. 7(c) and 7(d)].

FIG. 7. Relaxation kinetics for auto-regulated bursty gene expression. (a) The heat plot shows the relaxation rate γ as a function of the feedback strength L and the mean

protein burst size B for positive feedback loops. The model parameters are chosen as m = 1, ρb = 10, ρu = 0.1, d = 1, σu = 106. (b) The heat plot shows the relaxation rate
γ as a function of the feedback strength L and the transcription rate ρu in the unbound gene state for positive feedback loops. The model parameters are chosen as m = 1,

ρb = 10, d = 1, σu = 106, B = 1. (c) The heat plot shows the relaxation rate γ as a function of the feedback strength L and the mean protein burst size B for negative feedback

loops. The model parameters are chosen as m = 1, ρb = 0.1, ρu = 10, d = 1, σu = 106. (d) The heat plot shows the relaxation rate γ as a function of the feedback strength

L and the transcription rate ρb in the bound gene state for negative feedback loops. The model parameters are chosen as m = 1, ρu = 10, d = 1, σu = 106, B = 2. Different
phases (U, TB, and SB) are marked on each figure to show the relationship between the relaxation rate and the dynamical phases.
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FIG. 8. Steady-state protein mean for auto-regulated bursty gene expression. (a) The heat plot shows the steady-state protein mean log10⟨n⟩ as a function of the feedback
strength L and the mean protein burst size B for positive feedback loops. (b) The heat plot shows the steady-state protein mean as a function of the strength L and the
transcription rate ρu in the unbound gene state for positive feedback loops. (c) The heat plot shows the steady-state protein mean as a function of the feedback strength
L and the mean protein burst size B for negative feedback loops. (d) The heat plot shows the steady-state protein mean as a function of the feedback strength L and the
transcription rate ρb in the bound gene state for negative feedback loops. The model parameters in (a)–(d) are chosen to be the same as in the four subfigures of Fig. 7.
Different phases (U, TB, and SB) are marked on each figure to show the relationship between the steady-state protein mean and the dynamical phases.

The regions of the parameter space where each of the three phases
(U, SB, and TB) manifests are also shown.

In the positive feedback case, we find that SB (phases 5 and 6) is
always contained in the subregion with a small relaxation rate. This
clearly shows that SB significantly prolongs the relaxation time of
stochastic gene expression. In contrast, U (phases 1 and 2) is associ-
ated with a large relaxation rate and, hence, a short relaxation time.
Moreover, we find that while TB (phases 3 and 4) occupies a large
portion of the subregion with a small relaxation rate, it also occupies
a substantial portion of the subregion with a large relaxation rate.
This shows that TB does not always give rise to slow relaxation kinet-
ics; it slows down the relaxation time of a positive feedback loop only
when ρu ≪ ρb, i.e., when the transcription rate in the repressed gene
state is much smaller than that in the active gene state [Fig. 7(b)].

In the negative feedback case, we find no clear relationship
between the relaxation rate and the two possible phases of the sys-
tem (U and TB) [Figs. 7(c) and 7(d)], which is in contradistinction to
what we have observed in the positive feedback case. We emphasize
here that while Fig. 7 displays the simulation results in the non-
cooperative case, simulations in the cooperative case bear out the
same conclusions.

Next, we seek to understand the relationship between the
dynamical phases of the system and the protein mean. In Fig. 8,
we use heat maps to investigate how the steady-state protein mean
depends on the parameters L, ρu, ρb, and B for positive feedback
loops [Figs. 8(a) and 8(b)] and for negative feedback loops [Figs. 8(c)
and 8(d)]. The regions of the parameter space where each of the three
phases (U, SB, and TB) manifests are also shown. The most notable

observation is that the regions of the parameter space with the high-
est and lowest protein mean are also those where TB and Umanifest,
respectively. In addition, SB also manifests in the region where the
protein mean is large.

The connection between TB/SB and high protein mean regions
can be understood as follows: recall that a positive auto-regulatory
gene circuit exhibits TB/SB when L, B ≫ 1. Now, when L ≫ 1, the
gene is mostly in the bound state which has a larger transcription
rate than the unbound state. If both L and B are large, then the mean
protein number at the steady state is also large. Similarly, recall that
a negative auto-regulatory gene circuit exhibits TB when L≪ 1 and
B≫ 1. When L≪ 1, the gene is mostly in the unbound state which
has a larger transcription rate than the bound state. If L is small and
B is large, then the mean protein number at the steady state is also
large. Therefore, in both positive and negative feedback cases, it is
clear that the occurrence of TB/SB is closely related to the steady-
state proteinmean.While Fig. 8 shows simulation results in the non-
cooperative case, simulations including cooperativity lead us to the
same observations.

VI. SUMMARY AND DISCUSSION

In this paper, starting from a stochastic model of a bursty
auto-regulating gene with cooperative protein-gene interactions, we
used the multiscale averaging method to derive a reduced stochastic
model describing the protein dynamics in fast switching conditions.
This model was then solved exactly in steady state and in time. The
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time-dependent solution is expressed in terms of the eigenvalues
of the generator matrix of the reduced model which can be evalu-
ated either numerically or else can be obtained from an approximate
theory valid in the limit of fast or slow protein binding. The time-
dependent solution was shown to excellently agree with numeri-
cal simulations using FSP and was used to identify six different
dynamical phases of the system. The three main dynamical phases
of the stochastic model are associated with the following types of
time-evolution: (i) the protein distribution remains unimodal at all
times (unimodality); (ii) the protein distribution becomes bimodal
at intermediate times and then reverts back to being unimodal at
long times (transient bimodality); and (iii) the protein distribu-
tion switches to being bimodal at long times (stationary bimodal-
ity). For each of these phases, the deterministic model can show
either monostable or bistable behavior at long times, hence imply-
ing the existence of six dynamical phases. If the deterministic and
stochastic models share the same dynamic behavior, then noise is
not important, whereas the opposite is true if their dynamic behav-
iors are contrasting. Out of the six phases, we find that only in
two noise is not important. Transient bimodality has no determin-
istic counterpart, and hence noise plays a central role behind its
manifestation.

We investigated the relationship between the dynamical phases
and the transcription rates, the ratio of protein binding to unbinding
rates, the relaxation rate, and the mean protein number. While pos-
itive feedback loops display all six phases for sufficiently high coop-
erativity, negative feedback loops display only two. The most eclec-
tic of these phases, namely, the two phases which lead to transient
bimodality (a purely noise-induced phenomenon), manifest pro-
vided that translational burstiness is large and protein binding to the
gene is much faster (slower) than unbinding for positive (negative)
feedback loops. Furthermore, for positive feedback loops, we used
the theory to estimate the observation time window where transient
bimodality occurs and showed that the phenomenon is associated
with regions of the parameter space where the mean protein num-
bers and relaxation times are large. In contrast, for negative feedback
loops, we showed that there is no clear relationship between tran-
sient bimodality and the relaxation time, but it is also associated with
regions of the parameter space where the mean protein numbers
are high. We also demonstrated that, in most biologically relevant
cases, as the feedback strength increases, a positive feedback loop
undergoes two stochastic bifurcations from the unimodality phase to
the stationary bimodality phase and then to the transient bimodality
phase, while a negative feedback loop undergoes only one stochastic
bifurcation from the transient bimodality phase to the unimodality
phase.

Our work, thus, advances our knowledge of the conditions
under which it is possible to observe two seemingly different sub-
populations (each associated with a mode of the protein distribu-
tion) in a population of identical cells. In particular, while it is cur-
rently thought that the transient appearance of two subpopulations
can be due to a temporally varying stimulus in gene circuits with
slow promoter switching (see Fig. 5 of Ref. 40), we have shown that
no such stimulus is needed in the presence of fast switching con-
ditions (transient bimodality in phases 3 and 4). Furthermore, we
have shown that this mechanism does not rely on cooperativity and
is enhanced when protein expression is sufficiently bursty, that is,
whenmany proteins are produced from a single mRNA copy, a fairly

common scenario in eukaryotic cells because of the long lifetimes of
eukaryotic mRNA and large translation rates.41,42

For simplicity and analytical tractability, we have not included
any explicit description of cell cycle effects here. While we have an
implicit effective description of protein dilution due to cell division,
via the effective protein decay rate, it has recently been shown that,
in some parameter regimes, this type of model cannot capture the
stochastic dynamics predicted by models with an explicit descrip-
tion of the cell cycle.43 We, hence, anticipate that the inclusion
of cell division and DNA replication may alter the time-evolution
of protein distributions and may even introduce novel dynami-
cal phases hitherto undescribed. These effects are currently under
investigation.
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APPENDIX A: DERIVATION OF THE DETERMINISTIC
RATE EQUATIONS

The CME of the auto-regulatory gene expressionmodel is given
by Eq. (2). Here, we derive its mean-field approximation, i.e., we
derive equations for the mean protein number and the probability of
the gene being in the bound or unbound state, under the assumption
that the protein number is large and its fluctuations are negligible.
Let pG∗ ≙ ∑∞n=0 p1,n denote the probability of the gene being in the
bound state, and let ⟨n⟩ ≙ ∑∞n=0 npn denote the mean of the pro-
tein number. If we interchange the order of the two sums, we obtain
(when all terms are nonnegative, it follows from Fubini’s theorem
that we can always interchange the order of the two sums)

∞

∑
n=0

n−1

∑
k=0

ρbp
n−k

qp1,k ≙
∞

∑
k=0

ρbp1,k

∞

∑
n=k+1

p
n−k

q

≙

∞

∑
k=0

ρbp1,k

∞

∑
n=1

p
n
q ≙ ρbppG∗ .

Moreover, it is easy to verify that

∞

∑
n=0

Cn+m,mσbp0,n+m ≙
σb
m!

∞

∑
n=0

(n −m + 1)⋯np0,n.

Combining the two equations above, it follows from the CME
that the evolution of pG∗ is governed by the ordinary differential
equation,

d

dt
pG∗ ≙

σb
m!

∞

∑
n=0

(n −m + 1)⋯np0,n − σupG∗ .
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On the other hand, if we interchange the order of the two sums, we
obtain

∞

∑
n=0

n
n−1

∑
k=0

ρbp
n−k

qp1,k ≙
∞

∑
k=0

ρbp1,k

∞

∑
n=k+1

np
n−k

q ≙
∞

∑
k=0

ρbp1,k

×

∞

∑
n=1

(n + k)pnq
≙ ρbBpG∗ + ρbp

∞

∑
n=0

np1,n.

Moreover, it is easy to see that

∞

∑
n=0

nCn+m,mσbp0,n+m −
∞

∑
n=0

nCn,mσbp0,n

≙ −
σb(m − 1)!

∞

∑
n=0

(n −m + 1)⋯np0,n.

Combining the two equations above, it follows from the CME
that the evolution of ⟨n⟩ is governed by the ordinary differential
equation:

d

dt
⟨n⟩ ≙ − σb(m − 1)!

∞

∑
n=0

(n −m + 1)⋯np0,n +mσupG∗

+ ρuB(1 − pG∗) + ρbBpG∗ − d⟨n⟩.
By the mean-field approximation, we assume that the protein num-
ber is large and its fluctuations are negligible, i.e., n ≈ n − 1 ≈ ⋯ ≈ n
−m + 1 ≈ ⟨n⟩. This shows that

∞

∑
n=0

(n −m + 1)⋯np0,n ≙ ⟨n⟩m ∞∑
n=0

p0,n ≙ ⟨n⟩m(1 − pG∗).
Thus, under the mean-field approximation, the evolution of pG∗ and⟨n⟩ is governed by the following coupled set of ordinary differential
equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
pG∗ ≙

1

m!
σb⟨n⟩m(1 − pG∗) − σupG∗ ,

d

dt
⟨n⟩ ≙ − 1(m − 1)!σb⟨n⟩m(1 − pG∗) +mσupG∗ + ρuB(1 − pG∗) + ρbBpG∗ − d⟨n⟩.

These are the deterministic rate equations given by Eq. (13) in the
main text.

APPENDIX B: APPROXIMATE EIGENVALUES
FOR THE CASE OF SLOW PROTEIN BINDING

Our analytical solution for the time-dependent protein distri-
bution, Eq. (18), depends on all eigenvalues of the generator matrix
Q. In general, it is very difficult to compute these eigenvalues analyt-
ically. However, this can be performed in two special cases: protein
binding is much slower or much faster than protein unbinding.

We first focus on the case of L≪ 1. In this case, protein binding
is much slower than protein unbinding. Since the effective transcrip-
tion rate cn and effective protein decay rate dn have the approxima-
tions given in Eq. (9), the generator matrix of the reduced model is
then given by

Q ≙

⎛⎜⎜⎜⎝
−ρup ρupq ρup

2q ⋯

d −(ρup + d) ρupq ⋯

0 2d −(ρup + 2d) ⋯
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠
. (B1)

Recall that an eigenvalue–eigenvector pair (λ, v) of Q is related
by the characteristic equation vQ ≙ λv, which can be written in
components as

n−1

∑
k=0

ckp
n−k

qvk + dn+1vn+1 − (cnp + dn)vn ≙ λvn, (B2)

where we normalize the eigenvector v = (vn), so that v0 = 1. Using
the approximation given in Eq. (9), the characteristic equation can

be rewritten as

n−1

∑
k=0

ρup
n−k

qvk + (n + 1)dvn+1 ≙ (λ + ρup + nd)vn. (B3)

To proceed, we define the function f (z) to be the generating function
of the eigenvector, i.e.,

f (z) ≙ ∞∑
n=0

vnz
n. (B4)

Since v0 = 1, we have f (0) = 1. Then, Eq. (B3) can be converted into
the ordinary differential equation,

d(1 − z)(1 − pz)f ′(z) ≙ ∥λ(1 − pz) + ρup(1 − z)∥f (z), f (0) ≙ 1.
The solution of this equation is given by

f (z) ≙ (1 − z)−λ/d(1 − pz)−ρu/d.
We next make a crucial observation that the components of

the eigenvector v = (vn) must decay exponentially with respect to
n when the system is ergodic.44 In other words, vn has the following
approximation when n≫ 1:

∣vn∣ ∼ Ke−γn,
where K is a constant and γ > 0 describes the decay rate of vn with
respect to n. Thus, we have

lim sup
n→∞

n
√∣vn∣ ≙ e−γ < 1.
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This shows that the convergence radius of the power series given
in Eq. (B4) must be greater than 1, and thus, the generating func-
tion f (z) must be holomorphic on the unit circle. Here, f (z) is the

product of two terms, (1 − z)−λ/d and (1 − pz)−ρu/d. Since p < 1, the
second term must be holomorphic on the unit circle. On the other
hand, it is easy to see that the first term is holomorphic on the unit
circle if and only if −λ/d is a nonnegative integer. This imposes a
strong constraint on possible eigenvalues. Using this constraint, all
the approximate eigenvalues of Q are given by

λk ≈ −kd, k ≙ 0, 1, 2,⋯.

Substituting these approximate eigenvalues in Eq. (18) gives the
approximate time-dependent protein distribution for slow protein
binding conditions.

APPENDIX C: APPROXIMATE EIGENVALUES
FOR THE CASE OF FAST PROTEIN BINDING

Wenext consider the case of L≫ 1, i.e., protein binding is much
faster than protein unbinding. In this case, the effective transcription
rate cn and effective protein decay rate dn have the approximation
given in Eq. (10). Since dn = (n −m)d for any n ≥m, we have dm = 0,
and thus, the generator matrix

Q ≙ (Q1 ∗

0 Q2
)

is an upper triangular block matrix, where the upper-left block is
given by

Q1 ≙

⎛⎜⎜⎜⎝
−ρup ρupq ⋯ ρup

m−1q

d −(ρup + d) ⋯ ρup
m−2q

⋱ ⋱

0 0 (m − 1)d −(ρup + (m − 1)d)
⎞⎟⎟⎟⎠
, (C1)

and the lower-right block is given by

Q2 ≙

⎛⎜⎜⎜⎝
−ρbp ρbpq ρ2bpq ⋯

d −(ρbp + d) ρbpq ⋯

0 2d −(ρbp + 2d) ⋯
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠
.

Therefore, the eigenvalues of Q are composed of the eigenvalues
of both Q1 and Q2. Using elementary transformations, it is easy to
prove that the eigenvalues of Q1 are given by the roots of the poly-
nomial equation um(z) = 0, where um(z) is the polynomial defined in
Eq. (16). Using the approximation given in Eq. (10), the polynomial
um(z) is defined recursively by

um(z) ≙ ∥z + ρup + (m − 1)d(1 + p)∥um−1(z) − (m − 1)dp
× ∥z + ρu + (m − 2)d∥um−2(z),

u0(z) ≙ 1, u1(z) ≙ z + ρup.

Since um(z) is a polynomial of degree m, it has m zeros, say x1,
. . ., xm. Moreover, we note that Q2 is exactly the matrix defined in
Eq. (B1), with ρu replaced by ρb. Therefore, all the eigenvalues of Q2

are given by 0, −d, −2d, −3d, . . .. Then, all the eigenvalues of Q are
approximately given by

λ ≈ x1,⋯, xm, 0,−d,−2d,−3d, . . . .

In particular, in the non-cooperative case of m = 1, we have
x1 = −ρup, and thus, all the approximate eigenvalues of Q are
given by

λ ≈ −ρup, 0,−d,−2d,−3d, . . . .

In the cooperative case ofm = 2, we have

x1,2 ≙
−2ρup − d ±

√
d2 + 4ρudpq

2
,

and thus, all the approximate eigenvalues of Q are given by

λ ≈ x1, x2, 0,−d,−2d,−3d, . . . .

Substituting these approximate eigenvalues in Eq. (18) gives the
approximate time-dependent protein distribution for fast protein
binding conditions.

APPENDIX D: PROOF OF A NON-TRIVIAL EQUALITY

Here, we shall give the proof of Eq. (22). In the main text, we
have proved that

pn(t) ≙ N

∑
k=0

γkne
λkt ,

where

γkn ≙
σu

σu + Cn,mσb

gn0n(λk)
∏j≠k(λk − λj) +

Cn+m,mσb
σu + Cn+m,mσb

×
gn0 ,n+m(λk)
∏j≠k(λk − λj) . (D1)

When L≫ 1, we have computed all the approximate eigenvalues of
Q in Appendix C. In particular, the first nonzero eigenvalue λ1 must
satisfy

−ρup ≤ λ1 < 0.

Whenm= 1, this is clear because the first nonzero eigenvalue is given
by

λ1 ≙ −min(ρup,d).
When m ≥ 2, it is easy to prove that the abovementioned inequality
also holds. This clearly shows that

lim
L→∞

ρu→0

λ1 ≙ 0.

Since we have assumed that the initial protein number is zero, we
have n0 = 0, and thus,

g0n(z) ≙ pn n−1

∏
k=1

(z + ck + dk)∥(z + c0 + d0)u0(z) − u1(z)∥wn(z).
When L ≫ 1, we have c0 = ρu and d0 = 0. Since u0(z) = 1 and
u1(z) = z + c0p, we have

g0n(z) ≙ ρupnq n−1

∏
k=1

(z + ck + dk)wn(z).
Since λ0 = 0 and −λ1 ≪ 1, we have
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lim
L→∞

ρu→0

∏
j≠k

(λk − λj){≙ 0, if k ≙ 0, 1,

> 0, if k ≥ 2.

Combining the two equations above shows that for any k ≥ 2,

lim
L→∞

ρu→0

g0n(λk)
∏j≠k(λk − λj) ≙ 0.

Inserting this equation into Eq. (D1) gives Eq. (22).
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