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The dynamic problem in micropolar viscoelastic medium has been investigated by employing
eigen value approach after applying Laplace and Fourier transformations. An example of infinite
space with concentrated force at the origin has been presented to illustrate the application of the
approach. The integral transforms have been inverted by using a numerical technique to obtain the
displacement components, force stresses, couple stress and microrotation in the physical domain.
The results for these quantities are given and illustrated graphically.

1. Introduction

Modern engineering structures are often made
up of materials possessing an internal structure.
Polycrystalline materials, materials with fibrous
or coarse grain structure come in this category.
Classical elasticity is inadequate to represent the
behaviour of such materials. The analysis of such
materials requires incorporating the theory of ori-
ented media. For this reason, micropolar theo-
ries were developed by Eringen (1966a,b; 1976)
for elastic solids, fluids and further for non-local
polar fields and are now universally accepted.
A micropolar continuum is a collection of inter-
connected particles in the form of small rigid
bodies undergoing both translational and rota-
tional motions. Different authors, Cheng and He
(1995, 1997); Eringen and Suhubi (1964); Eringen
(1968); Kumar and Singh (2000), Nappa (1996)
and Singh and Kumar (1998a,b), Suhubi and Erin-
gen (1964) and Tomar and Kumar (1999) discussed
different types of problems in micropolar elastic
medium.

Eringen (1967) extended the theory of
micropolar elasticity to obtain linear constitutive
theory for micropolar material possessing inter-
nal friction. A problem on micropolar viscoelastic
waves has been discussed by McCarthy and Erin-
gen (1969). They discussed the propagation condi-
tions and growth equations governing the propa-
gation of waves in micropolar viscoelastic medium.

Cicco and Nappa (1998) discussed a problem on
Saint Venant’s principle for micropolar viscoelastic
bodies. Kumar et al (1990) studied Lamb’s plane
problem in a micropolar viscoelastic half-space
with stretch. Recently, Kumar (2000) discussed
wave propagation in micropolar viscoelastic gen-
eralized thermoelastic solids. However, most of
the problems studied so far, in micropolar vis-
coelasticity, involves the use of potential functions.
The eigen value approach has not been applied
in micropolar viscoelastic medium. Mahalanabis
and Manna (1989) applied eigen value approach
to linear micropolar elasticity by arranging basic
equations of linear micropolar elasticity in the form
of matrix differential equation. Recently, Maha-
lanabis and Manna (1997) discussed the problem
of linear micropolar thermoelasticity by using the
eigen value approach.

In this paper, we consider a two dimensional
plane strain problem in a homogeneous isotropic
micropolar viscoelastic medium. The solutions
were obtained by using eigen value approach after
employing integral transformation technique. The
integral transforms were inverted using a numeri-
cal approach.

2. Basic equations

Following Eringen (1967) the constitutive relations
and the field equations in micropolar viscoelastic
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solid without body forces and body couples can be
written as:

tkl = λIur,rδkl + µI(uk,l + ul,k) + KI(ul,k

− εklrφr), (1)
mkl = αIφr,rδkl + βIφk,l + γIφl,k, (2)

(λI + 2µI + KI)∇∇.~u − (µI + KI)∇ × ∇ × ~u

+ KI∇ × ~φ = ρ
∂2~u

∂t2
, (3)

(αI + βI + γI)∇∇.~φ − γI∇ × ∇ × ~φ + KI∇ × ~u

− 2KI
~φ = ρj

∂2~φ

∂t2
, (4)

where

λI = λ + λν

∂

∂t
, µI = µ + µν

∂

∂t
,

KI = K + Kν

∂

∂t
,

αI = α + αν

∂

∂t
, βI = β + βν

∂

∂t
,

γI = γ + γν

∂

∂t
,

where, λ, µ, K, α, β, γ, λν , µν , Kν , αν , βν , γν , are
material constants, ρ the density, j the micro
inertia, ~u the displacement vector, ~φ the rotation
vector, tkl the force stress tensor, mkl the couple
stress tensor.

The necessary and sufficient conditions for the
internal energy to be non-negative, as given by
Eringen (1967) are

0 ≤ 3λ + 2µ + K, 0 ≤ µ, 0 ≤ K,

0 ≤ 3α + 2γ, −γ ≤ β ≤ γ, 0 ≤ γ (5)

and

0 ≤ 3λν + 2µν + Kν , 0 ≤ µν , 0 ≤ Kν ,

0 ≤ 3αν + 2βν , −γν ≤ βν ≤ γν , 0 ≤ γν . (6)

3. Formulation and solution

We consider a homogeneous, isotropic micropo-
lar viscoelastic medium of infinite extent with
Cartesian co-ordinates system (x, y, z). To analyze
displacement and stresses at the interior of the
medium due to concentrated load, the continuum
is divided into two half-spaces defined by
• half-space I |x| < ∞, −∞ < z ≤ 0,
• half-space II |x| < ∞, 0 ≤ z < ∞.

Since we are discussing a two-dimensional prob-
lem, we have

~u = (u1, 0, u3), ~φ = (0, φ2, 0). (7)

Using equation (7), the set of equations (3) and (4)
reduce to

(λI + µI)
[
∂2u1

∂x2
+

∂2u3

∂x∂z

]
+ (µI + KI)

×
[
∂2u1

∂x2
+

∂2u1

∂z2

]
− KI

∂φ2

∂z
= ρ

∂2u1

∂t2
, (8)

(λI + µI)
[

∂2u1

∂x∂z
+

∂2u3

∂z2

]
+ (µI + KI)

×
[
∂2u3

∂x2
+

∂2u3

∂z2

]
+ KI

∂φ2

∂x
= ρ

∂2u3

∂t2
, (9)

γI

[
∂2φ2

∂x2
+

∂2φ2

∂z2

]
− 2KIφ2 + KI

[
∂u1

∂z
− ∂u3

∂x

]

= ρj
∂2φ2

∂t2
. (10)

Introducing the dimensionless quantities

x′ =
ω

c1
x, z′ =

ω

c1
z, u′

i =
ω

c1
ui,

φ′
2 =

µI

ρω∗2j
φ2, t′ = ωt, t′

ij =
1
µI

tij,

m′
ij =

c1

γIω
mij, ω∗2 =

KI

ρj
, c2

1 =
λI + 2µI + KI

ρ
,

where, ω is the angular frequency.
The equation (8)–(10) reduce to (on suppressing

the dashes)

∂2u1

∂x2
+(1 − a2)

∂2u3

∂x∂z
+ a2 ∂2u1

∂z2
− s∗

4
∂φ2

∂z

=
1

(s1 + s2)
∂2u1

∂t2
, (11)

∂2u3

∂z2
+(1 − a2)

∂2u1

∂x∂z
+ a2 ∂2u3

∂x2
+ s∗

4
∂φ2

∂x

=
1

(s1 + s2)
∂2u3

∂t2
, (12)

∂2φ2

∂x2
+

∂2φ2

∂z2
− 2c2

1KI

ω2γI

φ2 +
c2
1µI

ω2γI

(
∂u1

∂z
− ∂u3

∂x
)

=
1
s4

∂2φ2

∂t2
, (13)

where

s1 =
(λI + µI)

ρc2
1

,s2 =
(KI + µI)

ρc2
1

,s3 =
KIω

∗2
j

µIc2
1

,

s4 =
γI

ρc2
1j

, a2 =
s2

(s1 + s2)
, s∗

4 =
s3

(s1 + s2)
.

(14)
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Applying Laplace transform w.r.t time ‘t’ defined
by

{ui(x, z, p), φ2(x, z, p)} =

∞∫
0

{ui(x, z, t),

φ2(x, z, t)}e−ptdt (15)

and then Fourier transform w.r.t ‘x’ defined by

{ũi(ξ, z, p), φ̃2(ξ, z, p)} =

∞∫
−∞

{ui(x, z, p), φ2

(x, z, p)}eιξxdx, i = 1, 3. (16)

on equations (11)–(13), we obtain

ũ′′
1 =

1
a2

[
ξ2 +

p2

(s1 + s2)

]
ũ1 +

ιξ(1 − a2)
a2

ũ′
3

+
s∗
4

a2
φ̃′

2, (17)

ũ′′
3 =

[
a2ξ2 +

p2

(s1 + s2)

]
ũ3 + ιξs∗

4φ̃2 + ιξ

(1 − a2)ũ′
1, (18)

and

φ̃′′
2 = − c2

1µI

ω2γI

ũ′
1 − ιξc2

1µI

ω2γI

ũ3 +[
ξ2 +

2c2
1KI

ω2γI

+
p2

s4

]
φ̃2. (19)

The system of equations (17)–(19) can be written
as

d

dz
W (ξ, z, p) = A(ξ, p) W (ξ, z, p), (20)

where

W =
[

U
U ′

]
, A =

[
O I

A2 A1

]
, U =


 ũ1

ũ3

φ̃2


 ,

O =

[ 0 0 0
0 0 0
0 0 0

]
, I =

[ 1 0 0
0 1 0
0 0 1

]
,

A1 =




0 ιξ(1−a2)
a2

s∗
4

a2

ιξ(1 − a2) 0 0
−c2

1µI

ω2γI
0 0


 ,

A2 =




1
a2 (ξ2 + p2

(s1+s2)
) 0

0 a2ξ2 + p2

(s1+s2)

0 −ιξc2
1µI

ω2γI

×
0

ιξs∗
4

ξ2 + 2c2
1KI

ω2γI
+ p2

s4


 . (21)

To solve equation (20), we take

W (ξ, z, p) = X(ξ, p)eqz (22)

so that

A(ξ, p)W (ξ, z, p) = qW (ξ, z, p) (23)

which leads to eigen value problem. The charac-
teristic equation corresponding to the matrix A is
given by

det[A − qI] = 0 (24)

which on expansion provides us

q6 − λ1q
4 + λ2q

2 − λ3 = 0 (25)

where,

λ1 = (1 +
1
a2

)
p2

(s1 + s2)
+[

3ξ2 +
2c2

1KI

ω2γI

+
p2

s4
− c2

1µIs
∗
4

ω2γIa2

]
, (26)

λ2 =
[
ξ2 +

2c2
1KI

ω2γI

+
p2

s4

] [
p2

(s1 + s2)
(1 +

1
a2

)

+ 2ξ2

]
− c2

1µIs
∗
4

ω2γIa2

[
2ξ2 +

p2

(s1 + s2)

]
+

1
a2[

ξ2 +
p2

(s1 + s2)

][
a2ξ2 +

p2

(s1 + s2)

]
,

(27)

and

λ3 =
1
a2

[
ξ2 +

p2

(s1 + s2)

] [
a2ξ2 +

p2

(s1 + s2)

]
[
ξ2 +

2c2
1KI

ω2γI

+
p2

s4

]
− s∗

4

a2

[
ξ2 +

p2

(s1 + s2)

]

ξ2 c2
1µI

ω2γI

. (28)

The roots of equation (25) are ±qi, i = 1, 2, 3.
The eigen values of the matrix A are the roots of

equation (25). We assume that real parts of qi are
positive. The vector X(ξ, p) corresponding to the
eigen values qi can be determined by solving the
homogeneous equation

[A − qI]X(ξ, p) = 0. (29)

The set of eigen vectors Xi(ξ, p), (i = 1, 2, 3, 4, 5, 6)
may be obtained as

Xi(ξ, p) =
[

Xi1(ξ, p)
Xi2(ξ, p)

]
, (30)
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where

Xi1(ξ, p) =

[
aiqi

bi

−ξ

]
, Xi2(ξ, p) =

[
aiq

2
i

biqi

−ξqi

]
,

q = qi; i = 1, 2, 3 (31)

Xj1(ξ, p) =

[ −aiqi

bi

−ξ

]
, Xj2(ξ, p) =

[
aiq

2
i−biqi

ξqi

]
,

j = i + 3, q = −qi; i = 1, 2, 3 (32)

ai =
[
ξ(a2 − 1){(ξ2 +

2c2
1KI

ω2γI

+
p2

s4
) − q2

i }

−c2
1µIs

∗
4ξ

ω2γI

] /
∆i, (33)

bi = − ι

[
(ξ2 +

p2

(s1 + s2)
)(ξ2 +

2c2
1KI

ω2γI

+
p2

s4
)

+ a2q2
i {q2

i − (ξ2 +
2c2

1KI

ω2γI

+
p2

s4
)} − (ξ2

+
p2

(s1 + s2)
)q2

i +
c2
1µIs

∗
4q

2
i

ω2γI

] /
∆i, (34)

∆i =
c2
1µI

ω2γI

[
q2

i − (ξ2 +
p2

(s1 + s2)
)
]

,

i = 1, 2, 3.

(35)

The solution of equation (20) is given by

W (ξ, z, p) =
3∑

i=1

[BiXi(ξ, p) exp(qiz) + Bi+3

Xi+3(ξ, p) exp(−qiz)] , (36)

where, Bi(i = 1, 2, 3, 4, 5, 6) are arbitrary con-
stants.

The equation (36) represents the solution of
the general problem in the plane strain case of
micropolar viscoelasticity by employing the eigen-
value approach and therefore can be applied to a
broad class of problem in the domains of Laplace
and Fourier transforms.

4. Application

We consider an infinite micropolar viscoelastic
space in which a concentrated force of magnitude
F = −Foδ(x)δ(t), acting in the direction of the z-
axis at the origin of the Cartesian co-ordinate sys-
tem. The problem is plane strain w.r.t the z-axis
and the boundary conditions at the interface of two
half-spaces (z = 0) are given by

u1(x, 0+, t) − u1(x, 0−, t) = 0,
u3(x, 0+, t) − u3(x, 0−, t) = 0, (37)

φ2(x, 0+, t) − φ2(x, 0−, t) = 0, (38)
m32(x, 0+, t) − m32(x, 0−, t) = 0,

t31(x, 0+, t) − t31(x, 0−, t) = 0, (39)
t33(x, 0+, t) − t33(x, 0−, t) = −Foδ(x)δ(t). (40)

Applying the Laplace and Fourier transforms on
equations (37)–(40), we get

ũ1(ξ, 0+, p) − ũ1(ξ, 0−, p) = 0,
ũ3(ξ, 0+, p) − ũ3(ξ, 0−, p) = 0, (41)

φ̃2(ξ, 0+, p) − φ̃2(ξ, 0−, p) = 0, (42)
m̃32(ξ, 0+, p) − m̃32(ξ, 0−, p) = 0,

t̃31(ξ, 0+, p) − t̃31(ξ, 0−, p) = 0, (43)

t̃33(ξ, 0+, p) − t̃33(ξ, 0−, p) = Fo. (44)

The transformed displacement, microrotation and
stresses are given for z ≥ 0 as

ũ1(ξ, z, p) = − {a1q1B4 exp(−q1z) + a2q2B5 exp
(−q2z) + a3q3B6 exp(−q3z)}, (45)

ũ3(ξ, z, p) = b1B4 exp(−q1z) + b2B5 exp(−q2z)
+ b3B6 exp(−q3z), (46)

φ̃2(ξ, z, p) = − ξ{B4 exp(−q1z) + B5 exp(−q2z)
+ B6 exp(−q3z)}, (47)

m̃32(ξ, z, p) = s7ξ{q1B4 exp(−q1z) + q2B5 exp
(−q2z) + q3B6 exp(−q3z)}, (48)

t̃31(ξ, z, p) = {a1q
2
1s8 − ιξb1 + ξs9}B4 exp(−q1z)

+ {a2q
2
2s8 − ιξb2 + ξs9}B5 exp(−q2z)

+ {a3q
2
3s8 − ιξb3 + ξs9}B6 exp(−q3z),

(49)

t̃33(ξ, z, p) = − [ q1(b1s6 − ιξa1s5)B4 exp(−q1z)
+ q2(b2s6 − ιξa2s5)B5 exp(−q2z) + q3

× (b3s6 − ιξa3s5)B6 exp(−q3z)], (50)

and for z ≤ 0 as

ũ1(ξ, z, p) = a1q1B1 exp(q1z) + a2q2B2 exp(q2z)
+ a3q3B3 exp(q3z), (51)

ũ3(ξ, z, p) = b1B1 exp(q1z) + b2B2 exp(q2z)
+ b3B3 exp(q3z), (52)

φ̃2(ξ, z, p) = − ξ{B1 exp(q1z) + B2 exp(q2z)
+ B3 exp(q3z)}, (53)

m̃32(ξ, z, p) = − s7ξ{q1B1 exp(q1z) + q2B2 exp
(q2z) + q3B3 exp(q3z)}, (54)

t̃31(ξ, z, p) = {a1q
2
1s8 − ιξb1 + ξs9}B1 exp(q1z)

+ {a2q
2
2s8 − ιξb2 + ξs9}B2 exp(q2z)

+ {a3q
2
3s8 − ιξb3 + ξs9}B3 exp(q3z),

(55)
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t̃33(ξ, z, p) = [q1(b1s6 − ιξa1s5)B1 exp(q1z)+q2

(b2s6 − ιξa2s5)B2 exp(q2z) + q3(b3

s6 − ιξa3s5)B3 exp(q3z)], (56)

where

s5 =
λI

µI

, s6 =
(λI + 2µI + KI)

µI

,s7 =
ρω∗2

j

µI

,

s8 =
µI + KI

µI

,s9 =
KIρω∗2

j

µ2
I

, (57)

Using conditions (41)–(44) in equations (45)–(56),
we obtain

a1q1(B1 + B4) + a2q2(B2 + B5) + a3q3

(B3 + B6) = 0, (58)
(B1 − B4) + (B2 − B5) + (B3 − B6) = 0, (59)
b1(B1 − B4) + b2(B2 − B5) + b3(B3 − B6) = 0,

(60)
q1(B1 + B4) + q2(B2 + B5) + q3(B3 + B6) = 0,

(61)
[a1q

2
1s8 − ιξb1 + ξs9](B1 − B4) + [a2q

2
2s8 − ιξb2

+ ξs9](B2 − B5) + [a3q
2
3s8 − ιξb3 + ξs9]

(B3 − B6) = 0,
(62)

q1(b1s6 − ιξa1s5)(B1 + B4) + q2(b2s6 − ιξa2s5)
(B2 + B5) + q3(b3s6 − ιξa3s5)(B3 + B6) = Fo.

(63)

Solving system of equations (58)–(63), we obtain

B1 = B4 =
Fo(a3 − a2)

q1∆
, (64)

B2 = B5 =
Fo(a1 − a3)

q2∆
, (65)

B3 = B6 =
Fo(a2 − a1)

q3∆
, (66)

where

∆ = 2s6[(a2b3 − a3b2) + (a3b1 − a1b3)
+ (a1b2 − a2b1)]. (67)

Thus the functions ũ1, ũ3, φ̃2, m̃32, t̃31 and t̃33 have
been determined in the transformed domain and
these enable us to find the displacement, microro-
tation and stresses.

Particular Case: If we neglect the effect of vis-
cocity, that is, when χI = χ where χ = λ, µ, K, γ,
we obtain the expressions for displacement compo-
nent, force stresses and couple stress in micropolar
elastic medium.

Sub-Case: Neglecting the effect of micropo-
larity, the analytical expressions for displacement
component and force stresses may be obtained in
classical theory of elasticity.

5. Inversion of transforms

The transformed displacements and stresses are
functions of z, the parameters of Laplace and
Fourier transforms p and ξ respectively, and hence
are of the form f̃(ξ, z, p). To get the function
f(x, z, t) in the physical domain, first we invert the
Fourier transform using

f(x, z, p) =
1
2π

∞∫
−∞

e−ιξxf̃(ξ, z, p)dξ,

=
1
π

∞∫
0

{cos(ξx)fe−ι sin(ξx)fo}dξ, (68)

where fe and fo are even and odd parts of the
function f̃(ξ, z, p) respectively. Thus, expression
(68) gives us the Laplace f(x, z, p) of the function
f(x, z, t).

Now, for the fixed values of ξ, x and z, the
f(x, z, p) in the expression (68) can be considered
as the Laplace transform g(p) of some function g(t).
Following Honig and Hirdes (1984), the Laplace
transformed function g(p) can be inverted as given
below.
The function g(t) can be obtained by using

g(t) =
1

2πι

C+ι∞∫
C−ι∞

eptg(p)dp, (69)

where C is an arbitrary real number greater than
all the real parts of the singularities of g(p). Taking
p = C + ιy, we get

g(t) =
eCt

2π

∞∫
−∞

eιtyg(C + ιy)dy. (70)

Now, taking e−Ctg(t) as h(t) and expanding it as
Fourier series in [0, 2L], we obtain approximately
the formula

g(t) = g∞(t) + ED′ (71)

where

g∞(t) =
Co

2
+

∞∑
k=1

Ck, 0 ≤ t ≤ 2L, (72)

Ck =
eCt

L
Re

[
e

ιkπt
L g(C +

ιkπ

L
)
]

,

ED is the discretization error and can be made
arbitrarily small by choosing C large enough. The
value of C and L are chosen according to the cri-
teria outlined by Honig and Hirdes (1984).
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Figure 1. Variation of normal displacement U3(x, 1), U3 = u3/F0 with distance x.

Since the infinite series in equation (72) can be
summed up only to a finite number of N terms, so
the approximate value of g(t) becomes

gN(t) =
Co

2
+

N∑
k=1

Ck, 0 ≤ t ≤ 2L. (73)

Now, we introduce a truncation error ET that must
be added to the discretization error to produce
the total approximation error in evaluating g(t)
using the above formula. Two methods are used to
reduce the total error. The discretization error is
reduced by using the ‘Korrecktur’ method, Honig
and Hirdes (1984) and then ‘ε-algorithm’ is used to
reduce the truncation error and hence to accelerate
the convergence.

The ‘Korrecktur’- method formula, to evaluate
the function g(t) is

g(t) = g∞(t) − e−2CLg∞(2L + t) + E′
D, (74)

where

|E′
D| � |ED|.

Thus, the approximate value of g(t) becomes

gNk
(t) = gN(t) − e−2CLg

(2L+t)
N ′ , (75)

where, N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm which is

used to accelerate the convergence of the series in
equation (73). Let N be a natural number and
Sm =

∑m

k=1 Ck be the sequence of partial sums of
equation (73). We define the ε-sequence by

ε0,m = 0, ε1,m = Sm,

εn+1,m = εn−1,m+1 +
1

εn,m+1 − εn,m

;

n, m = 1, 2, 3, .....

It can be shown (Honig and Hirdes 1984) that
the sequence ε1,1, ε3,1, . . . , εN,1 converges to g(t) +
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Figure 2. Variation of normal force stress T33(x, 1), T33 = t33/Fo with distance x.

ED − Co/2 faster than the sequence of partial
Sm, m = 1, 2, 3, . . . . The actual procedure to invert
the Laplace transform consists of equation (75)
together with the ε-algorithm.

The last step is to evaluate the integral in equa-
tion (68). The method for evaluating this inte-
gral by Press et al (1986), which involves the use
of Romberg’s integration with adaptive step size.
This, also uses the results from successive refine-
ment of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the
step size tends to zero.

6. Numerical results and discussion

Following Gauthier (1982), we take the following
values of relevant parameters for the case of Alu-
minum epoxy composite as

ρ = 2.19 gm/cm3
, λ = 7.59 ×

1010 dyne/cm2
,

µ = 1.89 × 1010 dyne/cm2
, K = 0.0149 ×

1010 dyne/cm2
,

γ = 0.0268 × 1010 dyne, j = 0.00196 cm2.

For a particular model of micropolar viscoelastic
solid the relevant parameters are expressed as

χI = χ(1 + ιQ−1
i ), i = 1, 2, 3, 4 for χ = λ, µ,

K, γ respectively

where

Q1 = 0.05, Q2 = 0.1, Q3 = 0.15, Q4 = 0.1.

The comparison of values of normal displace-
ment U3[= u3/Fo], normal force stress T33[=
t33/Fo] and couple stress M32[= m32/Fo], for
micropolar viscoelastic solid (MVES), micropolar
elastic solid (MES) and elastic solid (ES) have
been studied. The computations were carried out
for two values of time t = 0.5 and t = 1.0 and



222 Rajneesh Kumar and Suman Choudhary

Figure 3. Variation of tangential couple stress M32(x, 1), M32 = m32/Fo with distance x.

for ω = 1 × 1010 sec−1 at z = 1.0 in the range
0 ≤ x ≤ 10. The solid lines [——] in graphs rep-
resent the variations for MEVS, the small dashed
lines [− − − − −] represent the variations for MES
and large dashed lines [− − − −] represent the
variations for ES. For all three cases solid or dashed
lines with center symbols represent the variations
for time t = 1.0, whereas without center symbols
are for time t = 0.5.

Figure 1 shows the variations of normal displace-
ment U3 with x. For both the times as well as
for all three solids, the values of U3 are initially
increasing and then start oscillating with the fur-
ther increase in x. Initially, value of U3 is smaller
for MES and greater for ES than that for MVES.
As time increases from t = 0.5 to t = 1.0 the val-
ues of U3 increases in the range 0 ≤ x ≤ 2 and
6 ≤ x ≤ 10 for all three cases. It is observed that
the maximum displacement occur at the maximum
time, i.e., t = 1.0, in response to the source for all
three cases.

Figure 2 shows the variations of normal force
stress T33 with x. For all three cases MVES, MES
and ES, the values of T33 for time t = 0.5 are less
than those for time t = 1.0 in the ranges 0 ≤ x ≤ 2
and 6 ≤ x ≤ 10. For fixed time t = 0.5 the values
of T33 for MVES are less than those for MES in
the range 0 ≤ x ≤ 2 and 6 ≤ x ≤ 10 whereas
for MES, the values are more than those for ES
in same ranges. Similar trend is observed for time
t = 1.0. Initially the values decrease sharply and
then follow oscillatory pattern with reference to x.

Figure 3 shows the variations of couple stress
M32 with x. The values of M32 have been taken
by multiplying their original values with 10. With
the maximum couple stress at the initial value, i.e.,
x = 0 the values of M32 decrease sharply for all
the two cases of MVES and MES. Further, with
the increase in x, for a fixed time ‘t’, the couple
stress M32, follows oscillatory behaviour. The value
of M32 is more for time t = 0.5 than those for time
t = 1.0 in the ranges 0 ≤ x ≤ 1.5 and 6 ≤ x ≤ 10
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for both the cases. For both the times the values
for MVES is less than those for MES in the ranges
0 ≤ x ≤ 1.5 and 6 ≤ x ≤ 10.
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