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In the framework of the Hartle-Hawking no-boundary proposal, we investigated quantum
creation of the multidimensional universe with a cosmological constant (A) but without
matter fields. We have found that the classical solutions of the Euclidean Einstein equations
in this model have “quasi-attractors”, i.e., most trajectories on the a-b plane, where a and
b are the scale factors of external and internal spaces, go around a point. It is presumed
that the wave function of the universe has a hump near this quasi-attractor point. In the
case that both the curvatures of external and internal spaces are positive, and A > 0, there
exist Lorentzian solutions which start near the quasi-attractor, the internal space remains
microscopic, and the external space evolves into our macroscopic universe.

§1. Introduction

In modern theories of unified physical interactions, spacetime has more than
four dimensions. It is well known that Kaluza-Klein theory !)»2) created interest in
investigations in spacetime which has more than four dimensions. Superstring the-
ories (e.g. Ref. 3)) are at the moment the most promising candidates for a unified
description of the basic physical interactions. There are five anomaly-free, pertur-
bative superstring theories. The critical dimensions of spacetime are ten for these
theories. There is now evidence that the five superstring theories are related by
duality symmetries. Furthermore, they are related to N = 1, D = 11 supergravity
theory. It is conjectured that these theories are the limits of one theory, M-theory,
in which spacetime has eleven dimensions.

Since spacetime has four large dimensions and some additional number of small
and highly curved spatial dimensions, we can see only the four large dimensions.
How does compactification of internal space take place? The first answer is through
multidimensional cosmology. In general relativity, the geometry of spacetime is dy-
namical. The three-dimensional space we observe was once as small as the internal
space, and expanded during evolution of the universe, while internal space contracted
or has remained small during evolution of the universe. Therefore, internal space is
microscopic and is not observable. This explanation is called dynamical compactifi-
cation. The second explanation involves spontaneous symmetry breaking. Though
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spacetime would have SO(D—1,1) for D > 4, after symmetry breaking only SO(3,1)
is visible, and internal space is static and at the Planck scale. This explanation is
called spontaneous compactification. Lately, another possible mechanism of com-
pactication by branes in string theory has been discussed. ¥ It is possible that the
Standard Model gauge fields exist on branes rather than in the bulk of spacetime. If
this is the case, the situation in which gravity exists in the bulk of the 10-dimensional
spacetime, while the Standard Model particles exist on a 3-brane is possible. It re-
mains unknown which mechanism of compactification explains our universe. In this
paper we consider dynamical compactification only in the view of multidimensional
cosmology.

The simplest multidimensional cosmological model that is useful for understand-
ing compactification is the type of extended Friedmann-Robertson-Walker universe.
The pioneering work for this model was done by Chodos and Detweiler. ® They found
that the 5-dimensional vacuum Einstein equations possess the Kasner solution, which
describes a universe in which the internal space shrinks, while the external space ex-
pands. Freund investigated the model in the case of D = 11 supergravity.”) Various
multidimensional models were investigated, and the manner in which the existence
of internal space might impact cosmological issues such as entropy production and
inflation (e.g. Refs. 8)-10)) was discussed.

On the other hand, the creation of the universe is a problem of great interest.
In the standard big-bang cosmology, the universe appeared from an initial singular-
ity. When the density is greater than the Planck density, classical general relativity
breaks down and quantum gravitational effects are large. Based on quantum grav-
itational theory, the scenario of quantum creation of the universe was suggested.
Vilenkin asserted that the inflationary universe appears through quantum tunneling
from nothing. 'Y Later Hartle and Hawking suggested the scenario of the creation
of the universe through a different method.!? That method is called the Hartle-
Hawking no-boundary proposal. According to this proposal the universe in the
quantum era is Euclidean manifold without “boundary”, and through analytic con-
tinuation to the Lorentzian manifold, the classical universe is created. The condition
of analytic continuation gives the initial condition of the universe. Recently, a pre-
big-bang scenario has been suggested. ) This scenario is based on string theory and
has attractive features. However, it has a graceful exit problem. In this paper we
consider quantum cosmology from the viewpoint of Hartle and Hawking.

The concept of quantum creation is extended to the multidimensional universe
with consistency. Hu and Wu %) 1%) discussed the vacuum model in which the space-
time metric has the form R x S® x S™ in the framework of the Hartle-Hawking
no-boundary proposal, where R is the time, S® is the external space, and S™ is
the internal space. They showed that the universe most probably evolves with an
exponentially expanding external space and a static internal space. This solution
implies that we observe 4-dimensional spacetime because internal spaces are com-
pact and static at Planckian scales. More complicated multidimensional quantum
cosmological models have been investigated (e.g. Refs. 16)-20),25)).

Models based on unified theories, such as supergravity theories, which are the
low energy limits of superstring theories, would be more realistic than the simplest
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A Multidimensional Cosmological Model 895
vacuum model. 16):18):20) However, it is thought that the essence of the creation of
the universe may be included in the vacuum model, and it is useful for investigating
more realistic models. Detailed analysis of the vacuum model is, therefore, impor-
tant. Hu and Wu discussed only the instanton that nucleates the most probable
universe, but the instanton solutions are unstable with respect to perturbations, and
the Euclidean classical solutions near the instanton have effects on the wave function
of the universe. Therefore we analyse instantons in more detail, and also investigate
dynamical properties of the Euclidean Einstein equations of this model by numerical
calculations. As shown in §3, the dynamical properties of the system are of interest,
and it is found that the system has a “quasi-attractor”.

The plan of the paper is as follows. In §2, we introduce the multidimensional
cosmological model with cosmological constant (A) but without matter fields. In §3,
we give the constraints on the signatures of the spatial curvature and the cosmo-
logical constant and analyze the Euclidean classical solutions. In §4, we investigate
continuation from the Euclidean classical solutions to Lorentzian solutions, and dis-
cuss the scenario quantum creation of the universe. The last section is devoted to
conclusions and remarks.

§2. The model
We consider a D(= 1+ m+n)-dimensional vacuum universe with a cosmological

constant (A) but without matter fields. For cosmological purposes, we assume a
metric of the form

-1 0 0
gap = 0 a*(t)g 0 ; (211)
0 0 bz(t)gjj
where i, 7 =1, 2, ..., mand I, J =1, 2, ..., n. The variables a and b are the scale

factors of m-dimensional and n-dimensional spaces, respectively. The gravitational
action is described as
1

" 167G

where G is the D-dimensional gravitational constant, and A is the cosmological con-
stant. The last term Spoundary is the York-Gibbons-Hawking boundary term. 21),22)
Substituting the metric, the action is given by

/dD.%'\/ —Q[R — 2/1] + Sboundarya (22)

1
S — _ /dtdm A"z Gmana™b"
167G Y Gmn
2 . -\ 2
a ab b
“mm -2} —2mn® —nm—1)(°
x[ m(m )<a> mn— n(n )<b>
km kn

where the dots denote derivatives with respect to time ¢, g,, and g, are the deter-
minants of the metrics g;; and g7, and k;, and k,, denote the signs of the curvature
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of external and internal space (1, 0 or —1), respectively. The momenta conjugate to
the scale factors a and b are given by

g = 25— _V9ile iy [Qm(m - 1)% + 2mn£] (2:4)

“ 00 167G ab|’
oL Vv Y9iGe a b
=—=— —a™b" [2mn— +2n(n —1)—|. 2-5
0 T 16nG ap 2= g (29)
The Hamiltonian H is described as
H = Ta0+mpb — L (2-6)
2 . N
VY9i9e min a ab b
= VT my, ~D[=] +2mn= — (- C(2
6nC a m(m — 1) " + mn— +n(n—1) b +V (2:7)
The potential energy V is defined by
km kn
V:m(m—l)?—i—n(n—l)b—Q—QA. (2-8)

The Einstein equations are given by

i b
- 2= 9
m— + ny —a 0, (2-9)
2
a ab  (m—1)ky,
—+(m—1) (5) +n— " —a=0, (2-10)
2
b ab  (n— 1)k,
+(n1)<b) +m—b+ 72 —a=0, (2:11)
where 5/
o= . (2:12)
m+n—1
These equations imply the Hamiltonian constraint
a\’ ab h\>
m(m — 1) (5) + Zmna +n(n—1) <5> +V=0. (2-13)

§3. Euclidean solutions

We consider the quantum creation of the universe in the framework of the Hartle-
Hawking no-boundary proposal. In the WKB approximation, the Hartle-Hawking
wave function can be expressed in the form

Lp[hij,@] ~ EkAk exp(—Bk), (3'1)

where Bj. is the Euclidean action for the solutions of the Euclidean field equations,
which are compact and have the given 3-metric h;; and matter field ¢ on the bound-
ary. The prefactor Ay represents the fluctuations around these solutions. Since the
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A Multidimensional Cosmological Model 897

factor exp(— By ) dominates wave function behavior, we analyse the classical solutions
of the Euclidean Einstein equations.
The Euclidean Einstein equations are given by

" /!

a
L bnta=0 3.2
ma+nb+a , (3-2)
2
a” a’ ab  (m—1)kn,
< N 2 T Im L a=0 3.3
" m ><) pnll =D o, (339
2
b b’ adbtt (n—1)k,
LA PR Y A o O 34
b—i—(n )<b> +mab 7 +a =0, (3-4)

where primes denote derivatives with respect to the imaginary time 7. The Hamil-
tonian constraint in the Euclidean version is described as

a\’ a't A%
m(m — 1) (3) + anﬁ +n(n—1) (5) -V =0. (3-5)

We assume that ' = 0 and/or b = 0 at 7 = 0. The Hartle-Hawking no-boundary
proposal gives the boundary condition for the Euclidean Einstein equations. Accord-
ing to this proposal, the Euclidean solutions must be analytic. At 7 = 0, therefore,
a and b can be expanded in Taylor series. This determines the boundary conditions
of the Euclidean solutions. In addition, the external space of the present universe is
macroscopic and the scale factor of the internal space is related to the gauge coupling
constant. Therefore we do not consider trivial solutions, a(7) = 0 and/or b(7) = 0
for any 7. These constraints lead to the following boundary conditions:

(a) Boundary Condition 1 (BC1)

kom = 1, (3-6)
a(0)=0, d(0)=1, (3-7)
b(0) = b, H(0) = 0. (3-8)
(b) Boundary Condition 2 (BC2)
ke =1, (3-9)
a(0) =ag, d'(0)=0, (3-10)
b(0) =0,  H(0)=1. (3-11)

The boundary condition BC2 is the symmetric version of the boundary condi-
tion BC1. These boundary conditions imply that either internal space or external
space has positive curvature (k,, = 1 or k, = 1). We can solve the Euclidean
Einstein equations numerically under these boundary conditions. Below, the fami-
lies of Euclidean solutions parameterized by by and ag are calculated.

We assume that the Euclidean solutions are connected to classical Lorentzian
solutions at a finite 7, where o’ =% = 0. Due to the Hamiltonian constraint (2-13),
the value of the potential at the connection surface must be

m(m — 1)k, n n(n — 1)k,

V= a? b2

—24=0. (3-12)
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Table I. The signatures of k,,, k, and A under the condition that the surface V = 0 exists.
m-Dkm + + + 0 0 0 - — -

(n— 1Dk, + 0 - + 0 - + 0 -
A=0 no no yes nNOo yes NO yes 1O  No
A>0 yes yes yes yes no no yes no  no
A<O0 no no yes nNOo NO yes yes yes yes

Now we discuss the constraints on the signature of the spatial curvatures and the
cosmological constant. First, it is easily shown that either internal space or external
space must have positive curvature (k,, = 1 or k,, = 1) from the boundary conditions
BC1 and BC2. Second, the condition that the connection surface V' = 0 exists gives
constraints on the signatures of k,,,, k, and A. For example, when each signature of
km and ky, is the same, and A = 0, the potential V'(a,b) cannot be zero anywhere.
The combinations of signatures of k,,, k, and A for which the surface V = 0 exists
are shown in Table L.

Even if these conditions are satisfied, however, the Euclidean solutions cannot
be necessarily connected to Lorentzian solutions, since in some classes of solutions, a
and b increase monotonically and have no velocity-zero points, i.e. points for which
a = b= 0. We calculated Euclidean solutions numerically, changing the initial values,
and investigated whether these Euclidean solutions can be connected to Lorentzian
solutions or not. Except for the case in which (m—1)k,, > 0, (n—1)k,, > 0and A > 0,
the scale factors a and b vary monotonically, and the condition @’ = ¥ = 0 cannot
be satisfied at any 7. Then, we found that Euclidean solutions can be connected to
the Lorentzian region only for the case in which (m — 1)k, > 0, (n — 1)k, > 0 and
A > 0. After all, only the case in which k,, = k, = 1 and A > 0 is possible in our
model. This implies that the internal space cannot be 1-dimensional, because the
curvature term of the Einstein equations is zero for 1-dimensional space. Therefore
the dimensions of space m and n must be greater than 2.

We now discuss the Euclidean solutions in the case that k,, = k, =1 and A >0
in detail. In this case, there are the following three exact solutions:

(1)

_Im(m4+n—-1) . 21
a= 2Asm< m(m—}—n—1)7—>’ (3-13)

1/2
b= [(”_1)(;‘;’"_1)] = by (3-14)

_ fm+n-1)(m-1) . 241 ‘
“= \/ 24 Sln(\/(m+n)(m+n— 1)T>7 (3:15)

~m+n)(n—1) . 2A _
b—\/ 5 Sln(\/(m—}—n)(m—f—n—l)T)' (3-16)

220z ¥snbny Lz uo jsenb Aq $G99081/£68/5/£0 L/21one/did/woo dno ojwepede//:sdiy wody pepeojumoq



A Multidimensional Cosmological Model 899

1/2
a— l(m—l)(n+m—1)] =ay, (317)

24

_ n(m+n-1) . / 2A
b= Tsm( mT) (3-18)

The instanton solutions (1) and (3) were discussed by Hu and Wu.' In addition
we have found the instanton solution (2).

In Figs. 1-3, the paths in the a-b plane are shown. Here we set A = 1 since we
can always set A = 1 by rescaling the cosmic time. Figures 1 and 2 are for the case
of the boundary condition BC1 (Egs. (3-3) and (3-4)). Figure 3 is for the case of
the boundary condition BC2 (Egs. (3:6) and (3:7)). The essential property of the
dynamical system is independent of the dimension of the g;; or gr; spaces, as shown
in Figs. 1 and 2. Note that this dynamical system has a characteristic point A:

— n-—+m — 1/2 n — n-—+m — 1/2
(aA,bA):Qm e+ 1)] 7[( e 1)] ) (3:19)

The trajectories of the Euclidean solutions on the scale factor plane a-b can be
classified into the following three classes. First, if by (or ag) is greater than a critical

value bey (or acr),
D—-1)(D-2
bers Qer = \/( )( ) (320)

2A ’
4
35
4
_Cr 3
25
b »
15 7
b_A V=0
Al
05}
o . . . . .
o o5 1 15 2 25 3 35 4

a

Fig. 1. Euclidean solutions in the case that m = 3, n = 2, k,, = k, = 1, A = 1 and with the
boundary condition BC1 (Egs. (3-3) and (3-4)). The critical value b, is 3.16.
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o
Q*\l o]
1

°
oo

/

Fig. 2. Euclidean solutions in the case that m = 3, n = 7, k,, = k, = 1, A = 1 and with the
boundary condition BC1 (Egs. (3-3) and (3:4)). The critical value by is 6.71.

9 T T T T T T T

b 5 V=0 -

(Fa_A) a_cr

Fig. 3. Euclidean solutions in the case that m = 3, n = 7, ky, = k, = 1, A = 1 and with the
boundary condition BC2 (Egs. (3:6) and (3-7)). The critical value ac, is 6.71.

the trajectories flow to (a,b) — (00,0) (or (0,00)) directly. Second, if by (or ag) is
less than a critical value be, (or ac;) but greater than by (or ay), the trajectories
go around the point (aa,ba) and flow to (a,b) — (0,00) (or (c0,0)). When by (or
ap) is just equal to ba (or aa), b (or a) is constant (the solution (1) (or (3))) and
the trajectory is a straight line. Third, if by (or ag) is lower than by (or an), the
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A Multidimensional Cosmological Model 901

trajectories go around the point (a4,ba) and flow to (a,b) — (00,0) (or (0,00)).

Note that the critical values b.; and a.; depend only on the dimension of the
spacetime D as described by (3-20). We call the point (a4,b4), around which the
trajectories circulate, the “quasi-attractor.” The “quasi-attractor” plays a role in
gathering the trajectories of the classical Euclidean solutions to the instanton solu-
tions (Eqgs. (3-9)—(3-14)), and approximately connecting to the Lorentzian solutions.
In the next section we discuss the properties of the Lorentzian solutions.

§4. Lorentzian solutions

In this section we investigate the Lorentzian solutions that are continued from
the Euclidean solutions we have presented in the preceding section in the case that
the curvatures of both external and internal spaces are positive and A > 0. The
Euclidean manifold is connected to the Lorentzian manifold, where the velocities of
the scale factors are vanishing, and it can be shown that at the connection surface,
the value of the potential V' must be vanishing.

There are the three following exact solutions which are analytically continued

from instantons:
m(m+n —1) 2/
= T osh [ 4| ————— 41
“ 2A o8 ( m(m—i—n—l)t)’ (41)

(1)
(42)

_ [(m+n)(m—-1) 24 '
a—\/ 21 COSh(\/(m+n)(m+n—l)t>’ (4:3)

_ [m+n)(n—1) 2A '
b_\/ 24 COSh(\/(m—i—n)(m—i—n—l)t)' (44)

[m=1)n+m-1)]""
“= 24 ’

_Inm+n-1) 2/
b= 2/1€Obh<1/n(m—|—n—1)t>' (4-6)

In the preceding section we found that the “quasi-attractor” plays a role in
gathering the paths of the classical Euclidean solutions to the instanton solutions
(Egs. (3:9)—(3-14)), and approximately connecting to Lorentzian solutions.

Strictly speaking, the Euclidean solutions near these instanton solutions cannot
analytically continue to Lorentzian solutions. Since these nearby solutions exist

(4-5)
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9 T
8l
7k
1
............ Y
b 5 ,'I
1
o
a4t do V=0 E
/ '
, 1
1
3r S ' J
’ '
/ '
'
2 F K ' R
’ [
’ [
ir Il : T
/ '
A 1
0 L L 1 L L L L L
0 1 2 3 4 5 6 7 8 9

Fig. 4. Lorentzian solutions in the case m =3, n =7, ky, = k, = 1 and A = 1. The number in
this figure represents that of the Lorentzian analytic solutions (Egs. (4:2)~(4-7)). The dotted
lines represent the instantons (Egs. (3-9)~(3-14)).

very densely, their effects are necessary for estimating the wave function of the
universe. Therefore we make detailed analysis of these solutions. The Lorentzian
solutions under the initial conditions that the velocities of the scale factors on the
connection surface V(a,b) = 0 are zero are approximately continued from these
solutions. Thus we calculate the Lorentzian solutions continued approximately from
these solutions. In Fig. 4 the Lorentzian solutions in the a-b plane are shown. The
solutions between the solutions (1) and (3) show that both external and internal
spaces expand monotonically. On the other hand, the outer solutions of the exact
solution (3) show that internal space expands and external space contracts. The

2]

scale factor
5

o

4
real time

Fig. 5. Lorentzian solution in the case m = 3, n="17 kn=k,=1, A =1, and the initial conditions
area=4,a=0,b=[21/(1—-3/4*)]"% b=0.
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A Multidimensional Cosmological Model 903

outer solutions of the exact solution (1), which are nothing but the symmetric version
of the former solutions, show that external space expands and the internal space
contracts (Fig. 5). The last solutions imply that external space of the observed
universe is macroscopic and internal space of the observed universe is microscopic.

§5. Summary and discussion

In this paper we have investigated the quantum creation of a multi-dimensional
universe with a cosmological constant but without matter fields in the framework
of the Hartle-Hawking no-boundary proposal. The most interesting result is that
there are “quasi-attractor,” i.e., most trajectories of the classical solutions of the
Fuclidean Einstein equation go around on the a-b plane, independently of the initial
values, provided that the initial values of the scale factors are smaller than a critical
value in the case that the curvatures of both the external and internal spaces are
positive and A > 0. This characteristic behavior of the evolution of the scale factors
in Euclidean time is essentially independent of the numbers of external and internal
spaces dimensions, provided that m,n > 2.

Since the trajectories approach the quasi-attractor at the first step, it plays a role
in gathering the paths of the classical Euclidean solutions to the instantons ((3-9)
—(3-14)) independently of the initial values. Then, it is very natural to assume that
the wave function has a hump near this quasi-attractor point. There Lorentzian
solutions which start from the points on the continuation surface near the quasi-
attractor give a dominant contribution to the wave function in the Lorentzian region.
As the example in Fig. 5 is shown, there are solutions for which we can interpret
that dynamical compactification takes place; i.e. the external space evolves to the
macroscopic realm and the internal space remains microscopic.

In order to understand the role of this quasi-attractor in the wave function and
the creation of the universe more deeply, and to confirm the above conjecture, it
is necessary to analyze the Wheeler-De Witt equations and to calculate the wave
function of the universe. The Wheeler-De Witt equations of the multi-dimensional
vacuum universe have been analysed by Chmielowski, 23) but only for models with
zero cosmological constant. According to his result, if neither of the subspaces has
negative curvature, then there exists no Lorentzian solution. Obviously, interesting
cases are those of the positive cosmological constant, as we have discussed in the
present paper. Analysis of the Wheeler-De Witt equations in this model is under
progress.

In order to make more realistic models, we must consider more complicated
models on the basis of fundamental theories. As shown in Fig. 5, the solutions which
show that the external space expands and the internal space collapses in finite time
are adequate models for our universe, provided that the collapse of inner space is
halted. Furthermore, because the volume of the internal space is related to the
constants of nature, the present internal space must be stable at the order of the
Planck scale. Fortunately, it is considered that the collapse of the internal space is
halted by the pressure of the gauge fields or by a quantum effects, and the internal
space is stabilized. It was shown that in D = 6, N = 2 supergravity theories,
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904 H. Ochiai and K. Sato

the solution of (the 4-dimensional Friedmann universe) x (a constant S?) is the
attractor; i.e., all cosmological solutions starting from arbitrary initial conditions
approach the above spacetime asymptotically. 22) Moreover, stable compactification
of the extra dimensions by quantum effects was studied. The quantum corrections
to the effective potential are attributed to the Casimir effects in many works (e.g.
Refs. 26),25) and references therein). In Ezawa et al.,?”) the quantum effects of
higher curvature gravity theories are investigated. From these investigations, it is
known that an effective potential of the model obtained under dimensional reduction
to a 4-dimensional effective theory has minima at the Planck scale for the scale factors
of internal spaces. Therefore the internal spaces can be stable.

Our work is simply based on canonical quantum gravity in general relativity.
It is, however, thought that general relativity is a low-energy limit of the ultimate
unified theory. Although the Einstein equation would be necessarily modified at
high energy, it must include essential points of the ultimate theory. It is natural
to conjecture that the ultimate theory may include the present simple model as an
approximate description. It seems that analysis of the simple model given in the
present paper may be useful for further investigations of the basis of fundamental
theories such as superstring theories and supergravity theories.
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