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Dynamical properties of lasers coupled face to face
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We derive a reduced model to describe two identical lasers coupled face to face. Two limits are introduced
in the Maxwell-Bloch equations: adiabatic elimination of the material polarization and large distance between
the two lasers. The resulting model describes coupled homogeneously broadened lasers, including semicon-
ductor lasers. It consists of two coupled delay differential equations with delayed linear cross-coupling and an
instantaneous self-coupling nonlinearity. The study is analytical and numerical. We focus on the properties of
steady and periodic amplitudes of the electric fields. In steady state, there are symmetric, antisymmetric, and
asymmetric solutions with respect to a permutation of the two fields. A similar classification holds for the
periodic states. The stability of these solutions is determined partly analytically and partly numerically. A
homoclinic point is associated with the asymmetric periodic solutions.
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I. INTRODUCTION

This paper deals with the nonlinear dynamics of tw
semiconductor lasers coupled face to face~F2F!: the output
of each laser is injected, after a suitable attenuation, in
other laser. The emphasis will be on the influence of
unavoidable delay due to the transit time between the
lasers. The subject of F2F coupling is not popular in exp
mental laser physics because the injection of a signal in
amplifier is a fine source of instabilities which are difficult
control. Few studies have been made for gas or solid-s
lasers in that configuration. However, with the emergence
chaos synchronization studies in semiconductor lasers m
vated by the prospect of transmitting coded information@1#,
two important factors that hampered the study of the F
configuration have turned out to be useful sources of n
physics:~i! the injected field induces chaos since the isola
lasers are operating in a stable regime;~ii ! the delay which is
the propagation time between the two lasers has conside
influence on the nonlinear dynamics by introducing a n
and easily controllable time scale in the system. Its releva
is also related to the fact that, for semiconductor lasers,
distance between the two lasers is usually much larger
the laser dimensions. Although the derivation of the mo
equations will be quite general and not tied to a particu
type of laser, the choice of values for the parameters in
figures will be for semiconductor lasers.

Stable localized synchronization of two different sem
conductor lasers coupled F2F was demonstrated in the
odic and quasiperiodic regimes@2#. More recently, synchro-
nization of two identical semiconductor lasers coupled F
and operating in a chaotic regime was reported@3#. Some
formal aspects of synchronization in the F2F configurat
have been considered@4#.

Independently of these studies, which specifically foc
on semiconductor lasers, there has been a large amou
research on the influence of the delay in the theory
coupled nonlinear oscillators with an emphasis on the Ku
1063-651X/2003/67~3!/036201~11!/$20.00 67 0362
e
e
o
i-
n

te
f

ti-

F
w
d

ble

ce
e

an
l
r
e

ri-

F

n

s
of
f
-

moto model@5,6#. Coupled nonlinear oscillators with a tim
delay may display multistability@7#, delay-induced ‘‘death’’
in which one oscillator prevents the periodic regime in t
other oscillator@8#, and stochastic resonance@9#. Analytical
expressions for the boundaries of synchronized regimes w
obtained in Ref.@10#. The relevance of these studies to t
physics of semiconductor lasers follows from the proof th
the Lang-Kobayashi model for a single mode semiconduc
laser with external feedback@11# can asymptotically be re
duced to a phase equation of which the Kuramoto equatio
a particular limit@12#. This result was extended to an array
semiconductor lasers, with a systematic study of their s
chronization properties@13,14#.

In comparison with what is known in the theory of ord
nary and partial differential equations, the mathematics
delay differential equations are underdeveloped due to
inherent difficulty associated with their structure. Few resu
are simple and little is known about generic properties of t
class of equations. In a recent paper@15#, it has been shown
that in the long delay time limit, the two Lang-Kobayas
rate equations, which are the canonical description of a se
conductor laser with external feedback, may be reduced
simpler problem which retains the essential features of
full model. That reduced model consists of a single de
differential equation with delayed linearity and instantaneo
nonlinearity. The purpose of this paper is to extend that
proach to the case of two coupled lasers in a F2F config
tion.

This paper is organized as follows. In Sec. II, we sho
that, starting with the Maxwell-Bloch equations for two F2
coupled homogeneously broadened lasers, the refer
model is asymptotically obtained by~i! adiabatically elimi-
nating the material polarization,~ii ! by introducing the long
delay time limit. The inherent symmetry of the problem su
gests several combinations of the electric fields. They
reviewed in Sec. IV. The steady state solutions, which are
equivalent of the external cavity modes of the Lan
©2003 The American Physical Society01-1
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Kobayashi equations, are analyzed in Sec. V. Hopf bifur
tions arise on these steady solutions and lead to peri
regimes which are analyzed in Sec. VI. These analytic res
are complemented by a numerical study presented in
VII and conclusions are drawn in Sec. VIII.

II. DERIVATION OF THE REFERENCE MODEL

We consider two single mode lasers, each of which
described by the usual Maxwell-Bloch equations for a hom
geneously broadened laser. The output of each laser is
jected in the other laser after a suitable attenuation.
Maxwell-Bloch equations couple the intracavity fieldẼj with
the space average of the material polarizationS̃j and inver-
sion Ñj of the active medium

dẼj

dt8
52k j~12 iD j !Ẽj2 igS̃j1k j ẽ j Ẽ32 j~ t82t32 j8 !, ~1!

dS̃j

dt8
52g'~12 ia j !S̃j1 ig ẼjÑj , ~2!

dÑj

dt8
52g i~Ñj2Ñeq!12ig~ Ẽj* S̃j2S̃j* Ẽj !, ~3!

with j 51 or 2. Thek j are the damping rates of the tw
lasing cavities and theD j are their normalized frequenc
detuning. The parametersẽ j account for the attenuation o
each field before being injected in the other laser. The fin
distance between the two lasers and the finite velocity
light imply that the injected fields are delayed with respec
the emitted fields byt j5L j /v, whereL j is the optical length
between laserj and laser 32 j , and v is the light velocity
between the two lasers. The active medium is character
by the damping ratesg' and g i , the atom-field interaction
strengthg which is chosen to be real anda j is the field-
matter frequency mismatch for a solid-state laser or the
enhancement factor for a semiconductor laser. Note
there is no generally accepted convention for the sign ofa.
This leads sometimes to apparent contradictions. It would
easy to generalize these equations to include different l
velocities in each directions, different light-matter coupli
parameters, and different material damping rates. Given
two asymptotic limits we shall introduce, this would n
change the structure of the resulting reduced equations.

A first asymptotic limit introduced in this problem i
based on the assumption that the polarization is a vari
that relaxes much faster than the inversion or the field in
of the two lasers:g'@g i ,k j . We also assume that the di
ference between the two laser frequencies is much sm
than g' so that the beat frequency is a slow variable. A
result, the material polarization can be adiabatically elim
nated,

S̃j5
ig~11 ia j !

g'~11a j
2!

ẼjÑj .
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The remaining dynamical equations~1!–~3! become

dẼj

dt8
5k jF Ẽj S 211 iD j1

g2~11 ia j !

k jg'~11a j
2!

Ñj D
1 ẽ j Ẽ32 j~ t82t32 j8 !G , ~4!

dÑj

dt8
5g iS Ñeq2Ñj2

4g2

g ig'~11a j
2!

uẼj u2Ñj D . ~5!

We assume that the photon lifetimes inside the cavit
1/k j , are identical. Therefore time can be usefully resca
as t5kt8 and T5k/g i is the dimensionless lifetime of th
carrier within the lasers. Consequently Eqs.~4! and ~5! be-
come

dẼj

dt
5 Ẽj S 2~12 iD j !1

g2~11 ia j !

k jg'~11a j
2!

Ñj D
1 ẽ j Ẽ32 j~ t2t32 j !,

dÑj

dt
5

1

T S Ñeq2Ñj2
4g2

g ig'~11a j
2!

uẼj u2Ñj D .

As a last step, we rescale the dynamical variables and
feedback rates,

Ñj5Ñj
(s)~112Nj !5~112Nj !g'k j~11a j

2!/g2,

Ẽj5
1

2g
A2g'g i~11a j

2!Ej ,

ẽ j5e jA~11a j
2!/~11a32 j

2 !.

We also define the new parameters

Ñeq5Ñj
(s)~112Pj !,n j5D j1a j ,

wherePj is the excess pumping rate above threshold andn j
the free running frequency of the laserj. All this leads to the
set of equations

dEj

dt
5~11 ia j !NjEj1 in jEj1e jE32 j~ t2t32 j !,

dNj

dt
5

1

T
@Pj2Nj2~112Nj !uE j u2#.

These equations have the form of two coupled Lan
Kobayashi equations if thea j can be interpreted as fixe
constants. Nevertheless, for a pair of solid-state lasers, tha j
are still functions of the unknown lasing frequency.

A further simplification is to assume that the two dela
are identical, i.e.,t j5t32 j5t. Following the analysis in
Ref. @15#, we introduce a scaling which is useful in the larg
delay limit,
1-2
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Ej5AtEj , Nj5tNj , pj5Pj /t, h j5te j ,

s5t/t, V j5tn j . ~6!

It yields

Ėj5~11 ia j !NjEj1 iV jEj1h jE32 j~s21!, ~7!

T

t
Ṅj5pj2Nj2S 11

2

t
Nj D uEj u2, ~8!

where the dot denotes the derivative with respect to the
mensionless times.

A second asymptotic limit is the long delay time lim
1/t→0, which leads to a substantial simplification of Eq.~8!
since it reduces toNj5uEj u22pj . Inserting this relation into
the field equations~7! leads to

Ė15~11 ia1!~p12uE1u2!E11 iV1E11h1Ē2 , ~9!

Ė25~11 ia2!~p22uE2u2!E21 iV2E21h2Ē1 , ~10!

with the notationĒj (s)[Ej (s21).
To estimate the validity of the above asymptotic limit, w

constructed numerically the bifurcation diagram of Eqs.~7!
and ~8! for two values of the ratioT/t and the bifucration
diagram of Eqs.~9! and ~10!. The result is shown in Fig. 1
Starting with h51023 and a random initial condition, we
integrate over 500 delay times to let the system reach its fi
state. We then record the extrema, that is, the intensitie
which their time derivative cross the zero value. Then,h is
slightly increased and the procedure is repeated untih
510. Then, we repeat the procedure beginning withh510
and decreasingh. The numerical time integration used
modified fourth order Runge-Kutta method with linear inte
polation of the delayed term, which gives a second or
overall accuracy.

FIG. 1. Comparing the bifurcation diagrams obtained forT/t
small but finite andT/t50. From top to bottom:T/t50.1,0.01,
and 0. In each diagram, the exterma of the solutions are plotted
T/t finite, Eqs.~7! and~8! are integrated. ForT/t50, Eqs.~9! and
~10! are integrated.
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With k51012 and g i5109, the parameterT is equal to
103. Accordingly, we choset5kt8 equal to 104 and 105,
corresponding to a propagation length~in vacuum! of 3 and
30 meters, respectively. The agreement between the bifu
tion diagrams obtained withT/t51022 andT/t50 is very
good.

To make contact with a more standard form of the mo
equations, the fields will be described in a reference fra
rotating at the mean velocityV5(V11V2)/2. It is useful to
introduce the mean and the mismatch functions

x[
1

2
~x11x2!,

dx[
1

2
~x12x2!,

where x is any of the parametersh j ,a j ,pj , or V j . This
leads from Eqs.~9! and ~10! to the equations

Ė15~11 ia!~p2uE1u2!E11he2 iVĒ21dF1~E1 ,Ē2!,
~11!

Ė25~11 ia!~p2uE2u2!E21he2 iVĒ11dF2~E2 ,Ē1!,
~12!

where the functionsdF1 anddF2 have been defined as

dF1~E1 ,Ē2![ idadpE11@dhe2 iVĒ21 idVE1

1dp~11 ia!E11 ida~p2uE1u2!E1#,

~13!

dF2~E2 ,Ē1![ idadpE22@dhe2 iVĒ11 idVE2

1dp~11 ia!E21 ida~p2uE2u2!E2#.

~14!

Equations~11! and ~12! are two cross-coupled delay dif
ferential equations plus a perturbationdF j which vanishes if
the two lasers are identical. In that case, there is an obv
analogy with the reduced equation

Ė5~11 ia!~p2uEu2!E1he2 iVĒ ~15!

derived in the same long delay time limit from the Lan
Kobayashi equations@15#.

III. PHYSICAL DISCUSSION

An experimental setup has to match the two main hypo
eses of the present study, as detailed in Sec. II: the long d
limit with respect to the characteristic times constants of
lasers, and negligible retroreflection at the laser mirro
since we are interested here only in mutual injection and
in feedback effects.

The former can be achieved by coupling the two lasers
a long single mode telecom fiber whose length should be
the order of 10 m if semiconductor lasers are used. Mo
over, unavoidable losses due to propagation effects are n

or
1-3
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problem here, since we only need an injection ratio of
order of a few percent. As a consequence, the use of a ne
density filter ~NDF! is also needed in order to control th
coupling strength between the two lasers.

The latter hypothesis can be fulfilled by placing a an
feedback~AF! device between each laser and the fiber.
AF system will be composed, starting from the emitting fa
of each laser, of a quarter wave plate with its axis oriente
45° with respect to a polarizer following it. Doing this, ligh
entering parallel to the polarizer will end up perpendicular
it after a first passage through the quarter wave plate, a
flection, and a second passage through the quarter w
plate. Doing this, feedback effects can be suppressed w
very good efficiency of at least 40 dBm.

Another method, proposed in Ref.@3#, is to remove the
two quarter wave plates and to keep just one polarizer an
NDF in order to force the lasers to operate on only o
polarization. However, retroreflection is no more controll
in this case.

IV. EXPLOITING THE SYMMETRIES

A. Symmetric and antisymmetric functions

We explore the dynamic of the system assuming the s
set of parameter for both lasers, i.e.,dx50, so thatdF j
50. This restriction suggests to decompose the fields
symmetric and antisymmetric combinations,

S5
1

2
~E11E2!, ~16!

D5
1

2
~E12E2!, ~17!

to take advantage of the inherent symmetries of the probl
When Eqs.~11! and~12! are expressed in terms ofS andD,
they lead to a pair of coupled equations where the cr
coupling appears only in the nonlinearity,

Ṡ5~11 ia!~p2uSu2!S1he2 iVS̄

2~11 ia!~2uDu2S1D2S* !, ~18!

Ḋ5~11 ia!~p2uDu2!D2he2 iVD̄

2~11 ia!~2uSu2D1S2D* !. ~19!

The system~16! and~17! exhibits the usual gauge invarianc
under the transformation (S,D)→(Seif,Deif), common to
optical devices without phase conjugation. Another symm
try, which is trivial here since the two subsystems are id
tical, is the invariance under the permutation of the fie
(S,D)→(S,2D) or (E1 ,E2)→(E2 ,E1).

B. Parametric representation

To study the bifurcation diagram of Eqs.~16! and ~17!, a
parametric representation of the fields is useful, as show
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Ref. @16#. To simplify the algebra, we concentrate on the ca
p50. We introduce two new complex functions,X and Y,
defined as

S~s!5X~s!eivs,

D~s!5Y~s!eivs,

where v is a free parameter. Inserting these definitions
Eqs.~18! and ~19! gives

Ẋ52~11 ia!@~ uXu212uYu2!X1Y2X* #1he2 i (V1v)X̄

2 ivX, ~20!

Ẏ52~11 ia!@~ uYu212uXu2!Y1X2Y* #2he2 i (V1v)Ȳ

2 ivY. ~21!

This transformation allows the mapping of periodic and qu
siperiodic solutions of Eqs.~18! and ~19! onto steady and
periodic solutions of Eqs.~20! and ~21!. As stressed in Ref
@16#, this parametric representation is not unique.
„X(s),Y(s),v… is a solution of Eqs.~20! and ~21!, the one-
parameter family„X* (s),Y* (s),v* … defined by

X* ~s!5ei (v2v* )sX~s!, ~22!

Y* ~s!5ei (v2v* )sY~s!, ~23!

wherev* is an arbitrary real number, may also verify Eq
~20! and ~21!. This is because all members of the fami
„X* (s),Y* (s),v* … correspond to the same physical soluti
„E1(s),E2(s)…. For the steady state solutions of Eqs.~20!
and ~21!, i.e., whenX(s) andY(s) are time independent, i
follows from Eqs.~22! and~23! that the parametric represen
tation is unique, i.e.,v5v* , while if X(s) and Y(s) are
Tp-periodic solutions,v andv* are only constrained by the
relation

v* 5v12k
p

Tp
,

wherek is an integer.

V. EXTERNAL CAVITY MODES

In this section, we analyze the plane wave solutions
Eqs. ~16! and ~17!, which are the simplest nontrivial solu
tions of these equations. These periodic states are the st
states of Eqs.~20! and~21! in the parametric representation
From the structure of these equations, it follows directly th
solutions with the same constant intensity for both fie
must be either in phase or dephased byp. In addition, asym-
metric modes exist that break the symmetry of the equatio

Strictly speaking, there are no external cavity modes b
cause there is no external cavity and therefore no feedbac
all. Still, we use this term to designate the steady state s
tions of Eqs.~20! and ~21! because they are algebraical
very close to the external cavity modes of a semiconduc
laser with external mirror. The formal analogy stems fro
1-4
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FIG. 2. Bifurcation diagram of
the external cavity mode solu
tions. Symmetric modes are in ful
lines, antisymmetric modes are i
dotted line, asymmetric modes ar
the loops in dash-dotted lines
Thick lines indicate stable solu
tions, thin lines indicate unstable
solutions.~a! V50; ~b! V5p/2;
~c! V5p; ~d! V53p/2. Com-
mon parameters for all figures:a
53 and p50. The insets in~a!
and ~c! are focused on the firs
asymmetric solution.
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the mutual injection which leads to a generalization of
reduced Lang-Kobayashi equations@15# which are valid in
the case of weak feedback, that is if there is only one refl
tion against the external mirror. The other justification f
using this terminology is that the bifurcation diagram
these steady states has much in common with the bifurca
diagram of Eq.~15!.

A. Symmetric and antisymmetric modes

The symmetric external cavity modes~S modes! are
„X(s),Y(s),v…5(rx,0,v). Inserting this definition in Eqs
~20! and ~21! leads to the relations

rx
25h cos~v1V!, ~24!

v52h@a cos~v1V!1sin~v1V!#. ~25!

The antisymmetric external cavity modes~AS modes!, de-
fined by „X(s),Y(s),v…5(0,ry ,v), lead to the steady stat
relations

ry
252h cos~v1V!, ~26!

v5h@a cos~v1V!1sin~v1V!#. ~27!

We first consider the caseV50. A single branch of ex-
ternal cavity mode emerges from a Hopf bifurcation ath
50. This solution is a S mode which is stable in the vicinit
of the bifurcation point where it is supercritical. It can b
approximated forh!1 by (rx

2,0,v).(h,0,2ah). Increas-
ing the feedback strengthh, pairs of S modes emerge from
Hopf bifurcations on the trivial solutionr50 located athk
53p/212kp wherek is a positive integer. In the vicinity o
03620
e
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the bifurcation point athk , the first branch of the pair can b
expressed as@rx

2,0,v#.@ehk /(11ahk),0,hk# provided that
e5h2hk !1 is positive. The other branch is given b
@rx

2,0,v#.@ehk /(12ahk),0,2hk#. It should be noticed
that the first solution is always supercritical while the seco
branch can be either super- or subcritical, depending of
sign of 12ahk . In a similar way, pairs of AS modes emerg
from the trivial solution from another set of bifurcatio
pointshk5p/212kp. The expression ofry

2 for AS modes is
the same as the expression ofrx

2 for the S modes. The prop
erties of the bifurcations leading to the S and to the
modes are the same. These results are summarized in
2~a!. For all the figures,a53 andp50.

For V5p/2, a mixed pair of~S, AS! modes emerges a
the origin (r,h)5(0,0) as shown in Fig. 2~b!. Forh!1, the
S mode can be approximated by@rx,0,v#.@h2(11ah),0,
2h# and the AS mode by@0,ry ,v#.@0,h2(12ah),h#.
These branches are both stable and supercritical and
merge at the origin. This is shown in Fig. 3~b!. As h in-
creases, other mixed pairs emerge from the trivial solution
the bifurcation pointshk5kp, k being a positive integer
For those pairs, the S mode can be expressed as@rx

2,0,v#
.$ehk /@12ahk(21)k#,0,2hk(21)k% and the AS mode by
@0,ry

2 ,v#5$0,ehk /@11ahk(21)k#,hk(21)k% where e5h
2hk !1. For the parametersa53 and p50, we havea
.21/h1. Thus, close to the bifurcation from which the
emerge, the S modes are supercritical~subcritical! and the
AS modes subcritical~supercritical! if k is odd ~even!.

Finally, it follows from the definition of the S and AS
modes, Eqs.~24! and ~25! and Eqs.~26! and ~27!, respec-
tively, that addingp to V is equivalent to the mode permu
tation S�AS. Thus the considerations forV50 and p/2
1-5
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JAVALOYES, MANDEL, AND PIEROUX PHYSICAL REVIEW E67, 036201 ~2003!
apply to V5p and 3p/2, respectively, after exchangin
symmetric and antisymmetric modes. In this way, Figs. 2~c!
and ~d! are generated from Figs. 2~a! and ~b!. In Fig. 2, the
stability off all the steady state branches has been indica
One more information about the stability appears in that
ure. All branches which emerge subcritically from the triv
solution end at a limit point where they acquire a posit
slope. Near the limit point, the new branch of solutions
always stable and loses stability at a Hopf bifurcation. T
method followed to determine the stability of these solutio
is given in Sec. VII.

B. Extrema

The maximum steady state intensity allowed by Eqs.~24!
and ~25! and ~26! and ~27! is eitherrx

25h or ry
25h. It is

reached for special values of the parameters, sinceh andv
must verify

vn52@~2n1j!p1V#,

hn52vn /a,

wherej50 for the S modes andj51 for the AS modes. For
these values ofvn the phases of the S~AS! modes increase
by an even~odd! number of half period during one time la
since v5vn implies Ej (s21)5Ej (s). These maxima are
reached by the modes withvk,0 if h.0 and by the modes
with vk.0 if h,0. These relations imply that the max
mum intensity of the S and AS modes are interleaved p
odically and separated bydh5p/a. The intervaldh de-
pends ona only, while V defines the position of the firs
maximum. The intensity difference between two maxima
equal to the variation ofh: dI 5dh. Therefore in any given
interval @0,hmax# of h, there will bep modes with negative

FIG. 3. Expanded view of Fig. 2~b! for V5p/2 close to the
origin. ~a! Detail of the first loop of asymmetric modes~dashed-
dotted line!. The thick lines are stable states, the thin lines
unstable states. There is a small domain of bistability between
symmetric and asymmetric modes in the upper part of the loop~b!
Merging of the mixed pair of solutions at the origin. The stable
mode is the thick full line, the AS mode is the dashed line which
stable close to the origin~thick dashes! and becomes unstable via
Hopf bifurcation marked by a circle, the emerging periodic orbit
not drawn. The upper thin line isuEu5Ah which is the maximum
that the field amplitudes can reach.
03620
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frequency, wherep is the integer part ofahmax/p. The curve
r25h is drawn in Fig. 2. It is more visible in the expande
view displayed in Fig. 3~b!.

C. Asymmetric modes

Solutions of a differential equation which is invariant u
der a symmetry group do not necessarily share that sym
try property. In this section, we analyze the existence
symmetry-breaking steady state solutions, where neither
S nor the AS components vanish:

X~s!5rx ,

Y~s!5rye
if.

For this purpose we use the equivalent representa
(E1 ,E2), which leads to simpler expressions. Inserting t
nontrivial asymmetric solution

E1~s!5r1eivt,

E2~s!5r2eivteiu

into Eqs.~11! and~12! and equating real and imaginary par
leads to

r1
35hr2cos@u2~v1V!#, ~28!

r2
35hr1cos@u1~v1V!#, ~29!

05vr11ar1
32hr2sin@u2~v1V!#, ~30!

05vr21ar2
31hr1sin@u1~v1V!#. ~31!

Equations~28!–~31! are also verified by the S and the A
modes, for whichr15r25r and u50 or p, respectively.
The asymmetric modes are drawn in Fig. 2. ForV50 and
p, the first loop is magnified in the inset. ForV5p/2, a
magnification of the loop formed by the asymmetric mo
closest to the origin is displayed in Fig. 3~a! with an indica-
tion of its stability. This first loop is somewhat atypical an
Fig. 4 shows the second loop which is the scaled model o
other asymmetrical loops. Another difference is that all t
asymmetric loops, except the first one forV5p/2, are en-
tirely unstable. IfV5p/2, there is in the first asymmetri
loop at least one stable branch. Close to the upper end of
loop, there is little domain of bistability between the asym
metric and the symmetric branches, as shown in the inse
Fig. 3~a!.

Equations~28!–~31! were solved numerically. As show
in Fig. 2, the asymmetric solutions withuÞ0 or p and r1
Þr2 always emerge from an S or an AS solution, never fro
the trivial solution. They also do not form isolas, i.e
branches of solutions isolated from other branches. This s
gests a perturbative analysis to find the condition of em
gence of asymmetric modes. Using the invariance of E
~28!–~31! under the transformation (h,u)→(2h,u1p),
we may restrict the analysis to values ofu close to zero, that
is, to the asymmetric modes emerging from the symme
external cavity modes. The solutions branching from the

e
e

s
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modes are simply deduced by changingh into 2h. We de-
fine a small parametere and a vicinity of the bifurcation by

h5h01e2dh,

u501edu1O~e2!,

v5v01e2dv1O~e3!,

r15r01edr1O~e2!,

r25r02edr1O~e2!.

From Eqs.~28!–~31! we have, up to first order, the fol
lowing system:

05I 01eI 11O~e2!, ~32!

05I 02eI 11O~e2!, ~33!

05H01eH11O~e2!, ~34!

05H02eH11O~e2!, ~35!

where theI j andH j are defined as

I 05r0
32h0r0cos~v01V!, ~36!

I 153r0
2dr2h0@dur0sin~v01V!2dr0cos~v01V!#,

~37!

H05$v0r01h0@a cos~v01V!1sin~v01V!#r0%,
~38!

H15v0dr1h0$du@a sin~v01V!2cos~v01V!#r0

2dr@a cos~v01V!1sin~v01V!#%. ~39!

The structure of Eqs.~32!–~35! implies that the solution is
I j5H j50. The solutionI 05H050 is nothing else than the
locus of the S mode and is verified at the bifurcation po

FIG. 4. Expanded view of the second loop in Fig. 2~a!. There
are two steady bifurcations ath1 and h2. The full line is the un-
stable steady state. For the field amplitudeuEu, there is a degen-
eracy: the upper trace refers either toE1(u) or E2(2u) and the
lower trace refers to eitherE2(u) or E1(2u), respectively.
03620
t.

SinceI 15H150 is a homogeneous system of two equatio
involving the two variablesdu anddr, we impose the van-
ishing of the determinant of this system in order to ha
(du,dr)Þ(0,0) at ordere. Using the propertyI 05H050
we find that the condition to be verified to have an asymm
ric mode emerging from a S branch is

2h0@a sin~v1V!2cos~v1V!#1v tan~v1V!50.
~40!

For the asymmetric branches emerging from the AS mod
the condition is

2h0@a sin~v1V!2cos~v1V!#2v tan~v1V!50,
~41!

with h andv verifying Eqs.~26! and ~27!.
One of these asymmetric solutions is displayed in Fig

for V50. In the domainh.h1, the solution is symmetric
and the two fields have equal amplitudes. At the first bif
cation pointh5h1, the amplitude of one of the fields grow
as the other decreases while the phase difference beco
nonzero. At the second bifurcation point, located ath5h2,
both moduli are again equal and the phase shift between
fields vanishes again. The system being invariant unde
permutation of the two fields, there is another symme
breaking solution obtained from the permutationE1�E2. It
generates the same loop for the moduli butu should be
changed into2u. All the branches displayed in Fig. 4 ar
unstable. This is not true for Fig. 3~a! where the bifurcation
diagram is calculated forV5p/2. Between the two bifurca-
tion points (h1<h<h2, the S mode is unstable and th
asymmetric mode is stable. Moreover, there is a small
main where both the S mode and the AS mode coexis
stable solutions.

VI. PERIODIC SOLUTIONS

A. Characteristic equation

In the previous sections, we have discussed the ste
state solutions of Eqs.~20! and ~21!. As the feedback
strengthh increases, all branches eventually become
stable via a Hopf bifurcation. In this section, we focus
these bifurcation points. We seek the conditions for a p
odic solution of Eqs.~20! and ~21! to emerge from a stead
states external cavity mode. For that purpose, we assume
the periodic solution is emerging from a S mode. The AS
case is treated in exactly the same way. We perform a m
tiple time scale analysis in the vicinity of the Hopf bifurca
tion as follows. We define the small parameter 0,e!1 as
the deviation from the steady state

h5h01e2dh,

and the slow time scale

s5e2s.

Treating the two times as independent, the differential ope
tor is decomposed using the chain rule
1-7
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d

ds
5]s1e2]s .

With these definitions, theX andY components of the fields
in the parametric representation, Eqs.~20! and ~21!, can be
expanded in powers ofe

X~s,s!5X01eX1~s,s!1e2X2~s,s!1 . . . ,

Y~s,s!501eY1~s,s!1e2Y2~s,s!1 . . . .

At order zero, Eqs.~20! and ~21! lead to the steady stat
solution ~26! and ~27!. The first order ine leads to the dif-
ferential equations

]sX152~11 ia!@2uX0u2X11X0
2X1* #1he2 i (V1v)X̄1

2 ivX1 , ~42!

]sY152~11 ia!@2uX0u2Y11X0
2Y1* #2he2 i (V1v)Ȳ1

2 ivY1 . ~43!

At the Hopf bifurcation, we seek solutions forX1(s,s) and
Y1(s,s) describing undamped oscillations on the fast tim
scales and amplitudes varying on the slow time scales:

X1~s,s!5rx
1~s!eivHs1rx

2~s!e2 ivHs, ~44!

Y1~s,s!5ry
1~s!eivHs1ry

2~s!e2 ivHs. ~45!

The compatibility condition for a nontrivial solution~44! and
~45! factorizes into a product of two determinants

det M~h!det M~2h!50.

M(6h) are matrices defining therx
6 and ry

6 coefficients.
The factorization of the compatibility condition is obviou
since Eqs.~42! and~43! are independent. This independen
is a property of the field’s decomposition into symmetric a
antisymmetric components. The determinant ofM(h) is

detM~h!5@ i ~v1vH!12~11 ia!rx
22he2 i (V1v1vH)#

3@2 i ~v2vH!12~12 ia!rx
22hei (V1v2vH)#

2~11a2!rx
4 .

Let us show that the two determinants cannot vanish
multaneously. It is easy to verify that detM(h) and
det M(2h) are second order polynomials inh,

det M~6h!5A6Bh1Ch2,

whereA, B, andC are complex functions ofv,vH ,a,rx
2 ,

and V. A necessary condition to have detM(6h)50 is
B50. Using the steady state relations~26! and ~27!, the
conditionB50 becomes

vHcos~V1v!50,

v sin~V1v!12h50.
03620
i-

If vH is nonzero, it follows from Eq.~26! that rx5h
5v50. Thus, this necessary condition is verified only at t
origin of the bifurcation diagram where it is also sufficien
Everywhere else, the vanishing of one determinant imp
that the other determinant does not vanish.

B. Phase relations in the vicinity of the Hopf bifurcations

We have to distinguish two cases: either detM (h)50 and
detM (2h)Þ0 or detM (2h)50 and detM (h)Þ0.

If det M(h)50, „rx
1(s),rx

2(s)… is an eigenvector of
M(h). Since detM(2h)Þ0, we have„ry

1(s),ry
2(s)…

5(0,0) and thereforeY1(s,s)50. The two fields are iden-
tical up to first order ine, i.e., E1(s,s)5E2(s,s)1O(e2)
with

E1~s,s!5S~s,s!1D~s,s!1O~e2! ~46!

5$X01eX1~s,s!%eivs1$01eY1~s,s!%eivs

1O~e2!

5$rx1e@rx
1~s!eivHs1rx

2~s!e2 ivHs#%eivs

1O~e2!.

If det M(2h)50, „ry
1(s),ry

2(s)… is an eigenvector of
M(2h) andX1(t,s)50. This implies that the two fields

E1~s,s!5S~s,s!1D~s,s!

5$rx1e@ry
1~s!eivHs1ry

2~s!e2 ivHs#%eivs

1O~e2!, ~47!

E2~s,s!5S~s,s!2D~s,s!

5$rx2e@ry
1~s!eivHs1ry

2~s!e2 ivHs#%eivs

1O~e2!,

oscillate with a phase mismatch

E2~s,s!eif5E1S s1
TH

2
,s D1O~e2!

with f5pv/vH .
Therefore Hopf bifurcations can occur on symmet

modes to give symmetric periodic solutions~46! as in Ref.
@15#. However, symmetry breaking bridges of periodic so
tions ~47! can also emerge from perfectly synchroniz
states. This requires that the two lasers start to describe
same periodic trajectory in the phase space but with a ph
mismatch. As there are only two eigenvalues which cross
imaginary axis, the only way for the system to break t
symmetry is via such a phase mismatch. Straightforward
culations show that the above results still hold at the sec
order ine.
1-8
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C. Two modes approximation and the bridges formation
mechanism

Bridges connecting steady solutions with the same s
metry have been analyzed in Ref.@17# and this analysis is
applicable here without significant modifications. We exte
this analysis to study bridges that connect symmetric
antisymmetric solutions. LetE1(s) andE2(s) be written as

E1~s!5S~s!1D~s!,

E2~s!5S~s!2D~s!,

with

S~s!5rse
ivss,

D~s!5rdeivds.

The nonlinear term in Eqs.~11! and ~12! are

uE1u2E15rse
ivss@ ursu212urdu2#1rdeivds@ urdu212ursu2#

1h.h.,

uE2u2E25rse
ivss@ ursu212urdu2#2rdeisvds@ urdu212ursu2#

1h.h.,

where h.h. stands for higher order harmonics. Equating
term ineivss andeivds in Eqs.~11! and~12! separately gives
the two complex equations

ivsrs52~11 ia!@ ursu212urdu2#rs1he2 i (V1vs)rs ,

ivdrd52~11 ia!@ urdu212ursu2#rd2he2 i (V1vd)rd .

AssumingrsrdÞ0, a further simplification is

ursu25h@2 cos~V1vd!1cos~V1vs!#/3, ~48!

urdu25h@2 cos~V1vs!1cos~V1vd!#/3, ~49!

05vs1h@a cos~V1vs!1sin~V1vs!#, ~50!

05vd2h@a cos~V1vd!1sin~V1vd#. ~51!

Figure 5 shows that the agreement between the analy
result ~48!–~51! and a numerical simulation is very goo
Note that this approximation breaks down if the two freque
ciesvs andvd are too close of each other, i.e., if combin
tion tones can interfere with eithervs or vd .

VII. NUMERICAL RESULTS

We have analyzed numerically the reference model us
a continuation algorithm adapted to delayed differen
equations@18#. This leads to a bifurcation diagram of a
steady and periodic solutions of Eqs.~20! and~21!. Figure 6
shows the bifurcation diagram including all steady and p
odic solutions, with an indication of their stability~thick
lines!. More complex solutions such as quasiperiodic or c
03620
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d
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otic solutions are not drawn on this diagram. They cannot
obtained from this algorithm.

From the originr5h50, a stable steady state emerge
If V50 or p, that steady state is unique. It is symmetric f
V50 and antisymmetric forV5p. If V5p/2 or 3p/2, a
pair of symmetric and antisymmetric solutions emerge. Th
are both stable very close to the origin@Fig. 3~b!#. For V
5p/2 (respectively 3p/2), it is the AS ~respectively S!
mode that becomes unstable first via a Hopf bifurcation. T
coexistence of stable solutions emerging from the same
furcation point results from the degeneracy of all the bifu
cations of the trivial solution, as analyzed in Ref.@15#.

Branches of periodic solutions usually form bridges,
shown in Refs.@17,19#. These bridges can connect eith
branches of the same symmetry~S to S and AS to AS!, or
branches of different symmetries~S to AS!. In Fig. 6, the
bridges of periodic solutions should not be confused with
loops of asymmetric steady state solutions which already
pear in Fig. 2. The mechanism which generates these brid
of periodic solutions has been described in Refs.@17,19#. In

FIG. 5. Comparison between the analytical approximation~thin
line! and the numerical result~thick line! for the bridge connecting
a symmetric and an antisymmetric steady state. The upper~lower!
part of the bridge emerging from the steady states is the maxim
~minimum! amplitude of the periodic solution. Full line: symmetr
steady state. Dashed line: antisymmetric steady state.

FIG. 6. The complete bifurcation diagram for the steady and
periodic external cavity mode solutions withV50. Same graphical
convention as in Fig. 2.
1-9
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Ref. @15#, a mechanism of bridge destruction has been fou
that leads from bridges of periodic solutions to op
branches of periodic solutions. All these results apply to t
problem, without any change, to bridges connecting so
tions of the same symmetry. We show in Fig. 7 that
mechanism of bridges formation can be extended to
mixed periodic solutions connecting an S and an AS mo
This bridge can emerge only at a point where the S and
modes coincide. This is the case forE1(s)5E2(s)50 only.
As V5«1p/2 and«→01, the two Hopf bifurcations lim-
iting the bridge of periodic solutions on the S and A
branches approach the axisuEu50 and at«50 they merge
with the Hopf bifurcations from which the S and the A
branches emerge. Thus for«→01 four Hopf bifurcations
coincide, while for«→02 there are only two Hopf bifurca
tions. This indicates the complexity of the bifurcation po
at V5p/2.

Another feature of the periodic solutions found in the r
erence problem~20! and ~21! is the occurrence of a ho
moclinic solution. Figure 8 shows the vicinity of a ho
moclinic point for V50. From the second loop o

FIG. 7. Birth of a bridge of periodic solutions connecting
symmetric and an antisymmetric bridge.~1!V510p/20; ~2!V
511p/20; ~3!V512p/20; ~4!V514p/20. Steady and periodic so
lutions are all unstables in this figure.

FIG. 8. Vicinity of the homoclinic solution athh for V5p.
03620
d,
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e
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S
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asymmetric solutions~counting from the origin! a Hopf bi-
furcation, indicated by a little circle in the figure, produces
branch of periodic solutions withE1ÞE2Þ0. The amplitude
of the oscillations grows from zero at the bifurcation un
the homoclinic point whereE1,max5E2,min and where the pe-
riod diverges.

Although there is no obvious fit of the numerical solutio
displayed in Fig. 9, the decomposition of the solutions
terms of theuSu andFs functions displayed in Fig. 10 is very
well approximated by classical soliton profiles

uSu5A01A1F12tanh2S t2t0

Th
D G ,

FS5A2

t

T
1A3tanhS t2t1

Th
D .

FIG. 9. Profile of the homoclinic connection in terms of th
intensity of the two fields. The period of the solution isTh

.2000.

FIG. 10. Same as in Fig. 9 but in terms of the S and AS co
ponents of the fields.
1-10
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However, there is no simple approximation foruDu because
its profile is too asymmetric. We did not pursue the search
a good fit further since the branch of periodic solutions a
its homoclinic limiting point are anyway unstable.

VIII. CONCLUSION

In this paper, we have studied a model for single mo
lasers coupled in a F2F configuration. The model can
derived from the Maxwell-Bloch equations, assuming th
the material polarization can be adiabatically eliminated a
that the two lasers are far away from each other. In addit
each laser is assumed to be pumped close to the la
threshold of the isolated laser. The resulting equations
Eqs. ~11! and ~12!. The same equations are obtained in t
same large delay limit for semiconductor lasers coupled F
There is also the implicit assumption that any refection o
beam from the incoupling mirror of the other laser is eith
negligible or canceled by a dedicated setup. This can
achieved, for instance, with polarized light.

This paper focuses on the properties of the periodic
quasiperiodic solutions of Eqs.~11! and~12!. The analysis is
made possible because these solutions correspond to
steady and periodic solutions of a set of equations obta
from Eqs.~11! and ~12! by a unitary transformation. In ad
dition, we have found a homoclinic point and solutions in
vicinity are also described. Much of the analysis is nume
cal, though analytic results are presented whenever pos
and new. The solutions for identical lasers coupled F2F
be classified according to their symmetry properties und
permutationE1�E2. There are symmetric, antisymmetri
os

v
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et
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and asymmetric solutions. The properties of the symme
solutions are similar to those of the Lang-Kobayashi eq
tions in the long delay time limit and have already be
studied in Ref.@15#. They are not repeated here. With min
changes, the same analyses apply also to the antisymm
solutions and therefore they are also not presented here.
new feature of the coupled Eqs.~11! and ~12!, compared to
the single delay differential equation studied in Ref.@15#, is
therefore the asymmetric solutions which can be of two d
ferent kinds, either steady state loops or periodic bridges

It is seen in Fig. 6 that even if the bifurcation diagram
restricted to steady and periodic solutions, it is extrem
complex. Although most of the solutions are unstable, it
necessary to draw them to understand the origin of the st
branches. This is especially clear with the branches of ste
state emerging subcritically from the trivial solutions as u
stable solutions. All these branches become stable ov
finite interval of the scaled feedback parameterh above the
limit point. The other reason to display that bifurcation di
gram is more pedagogical: it is to show how the addition
even a small linear but delayed term in an ordinary differe
tial equation can deeply change its properties.
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