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We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simu-

lation of stochastic partial differential equations obtained using phase-space representations. We derive evo-

lution equations for a single trapped condensate in both the positive-P and Wigner representations and perform

simulations to compare the predictions of the two methods. The positive-P approach is found to be highly

susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped

systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from

a variety of choices of initial state for the condensate and compare results to those for single-mode models.

@S1050-2947~98!06612-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj

I. INTRODUCTION

A key focus of the explosion of interest in the dilute

atomic gas Bose-Einstein condensates @1–3# has been the

study of the time evolution of condensates from some initial
state. Among many works, there have been theoretical inves-
tigations of the way condensates react to a range of pertur-
bations, such as ‘‘shaking’’ the trap to excite sound waves
@4–6#, removing a potential barrier to allow two condensates
to interfere @7,8#, applying electromagnetic fields to transfer
condensate population into other possibly untrapped states
@9–12#, or ‘‘stirring’’ a condensate to excite vortices @13#.
All but the last of these effects have already been demon-
strated experimentally. A common element in the theoretical
works on these topics is the description of the condensate
using the time-dependent Gross-Pitaevskii equation ~GPE! or
coupled GPEs ~or their approximate hydrodynamic ver-
sions!. The GPE can be derived as an equation for the con-
densate amplitude assuming that the condensate state is a
multimode coherent state ~on the concept of coherent states
see @14,15#!. Hence an implicit assumption underlying these
approaches is that the condensate is adequately described as
a coherent state. However, a number of experiments are now
exploring issues such as coherence @16,17# and the diffusion
of relative phase between two condensates @18#. These con-
cepts are familiar from optical systems, but additional factors
arise in condensate physics such as the dispersion associated
with the nonzero atomic mass and especially the effects of
atomic interactions. In particular, several early models for
atom lasers @19–21# suggest that coherence properties may
be strongly influenced by the nonlinear interactions. More-
over, one of the principal themes of quantum optics is the

idea that processing of quantum noise by nonlinearities leads

to interesting statistical properties @14,15#. It thus becomes

important to consider the nature of the condensate beyond

the coherent state and in particular the influence of quantum

noise on the coherence of the condensate and any eventual

‘‘atom laser.’’ For example, we may ask how different loss
profiles for an output coupler @22# might affect the noise
statistics of an atom laser.

In fact, there have been a number of studies into intrinsi-
cally quantum dynamical effects, in particular the collapse
and revival of the relative phase between two coupled con-
densates @23,24# and the robustness of such effects against
environmental decoherence @25,26#. However, these studies
have been restricted to one or two modes and assume that the
condensate wave function is independent of the number of
atoms. For large condensates, these approximations are not
necessarily valid and a many-mode approach is required. A
single-mode model may give an estimate for the phase dif-
fusion time @27#, for example, but can never describe spatial
coherence properties or the role of local density and phase
fluctuations. Hence there is a need for techniques to treat the
quantum dynamics of the condensate using a fully spatially
dependent field rather than a few-mode approach.

Closely related issues are well known in the field of quan-
tum optical solitons and nonlinear quantum optics in general.
In that situation, the propagation of the optical field is gov-
erned by a quantum nonlinear Schrödinger equation that in-
cludes the effects of fiber dispersion and the Kerr nonlinear-
ity of the medium @28,29#. Such a model leads to the
prediction that a soliton pulse injected into the fiber experi-
ences squeezing ~for general discussions of squeezing see
@14,15#! in both the electric field amplitude @28,29# and the
photon number @30,31#. Both types of squeezing have now
been observed @32,33#. While estimates for the squeezing
have also been obtained from single-mode models of the
Kerr nonlinearity @15#, the presence of fiber dispersion
means that accurate results can only be obtained from a mul-
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Fı́sica, Universidade de São Paulo, Caixa Postal 66318, São Paulo,

São Paulo 05389-970, Brazil.

PHYSICAL REVIEW A DECEMBER 1998VOLUME 58, NUMBER 6

PRA 581050-2947/98/58~6!/4824~12!/$15.00 4824 © 1998 The American Physical Society



timode treatment of the full quantum field. The Heisenberg

field operator describing a Bose-Einstein condensate ~BEC!
confined in a one-dimensional potential well obeys a strik-

ingly similar equation to that of the fiber soliton system,

differing only by the addition of the trapping potential and

the interpretation of the dispersive term that in a condensate

represents the kinetic energy. Thus, given that multimode

models have proved essential for the accurate prediction of

quantum soliton properties, it is reasonable to assume the
same may hold true in Bose condensates. In fact, we see
below that the nonlinearity occurring in the condensate prob-
lem is typically far larger than for the soliton case and thus
the role of quantum noise should be more important.

While we thus have strong motives for seeking the com-
plete evolution of the field operator, such a calculation is at
first sight a formidable task, if for no other reason than that
the Hilbert space for the system is truly vast. The numerical
calculation of the evolution of just a single operator with
significant excitation requires a large basis. The problem of
the field is far worse. Nevertheless, in this paper we intend to
demonstrate how techniques of quantum optics may be used
to provide a complete description of the condensate field
operator such that we can calculate virtually any desired
quantum expectation value. The key to our approach is the
representation of the density operator using phase-space qua-
siprobability functions. These functions then lead naturally
to a description in terms of classical fields that are subject to
evolution equations similar to the semiclassical time-
dependent GPE satisfied by the mean field but with the cru-
cial addition of stochastic driving terms. These terms do not
correspond to any physical noise sources, but are defined in
such a way as to recapture exactly the operator character of
the fully quantum-mechanical field. In particular we use two
representations: the positive-P function and the well-known
Wigner distribution. While we can perform exact calcula-
tions in the positive-P representation, we find the system
rapidly succumbs to the instabilities that have been observed
previously for that representation @34,35#. Therefore, we also
consider an approximate but robust method using the Wigner
representation. We are then able to extract a large range of
interesting averages.

It is worth noting that in terms more familiar in conven-
tional quantum field theory, the stochastic techniques we
present in this paper constitute a method of numerically
evaluating path-integral representations of quantum field av-
erages ~see @36–38#!. The phase space of the classical fields
is in these terms the space of the Feynman paths, while the
phase-space quasiprobability functions are measures over the
respective path integrals. These measures are constructively
characterized by the corresponding stochastic evolution
equations, which allows the path integrals to be calculated.
This point highlights the significance of the positive-P rep-
resentation. Provided certain boundary conditions are satis-
fied @14,15#, the positive-P representation is an exact method
for propagating the field in real ~as opposed to imaginary!
time. While it may blow up in certain cases as time
progresses, all other exact methods fail at all times. Direct
integration of the Feynman path integrals for example, is
numerically useless due to the oscillatory phase factors.

The stochastic techniques are well known in quantum op-
tics and may be familiar to readers with a background in that

subject. However, many of these ideas may be new to those
who have come to Bose-Einstein condensation from other
disciplines. Therefore we have taken a pedagogic approach
in deriving the fundamental stochastic equations. Before
treating the full quantum field problem, we review the tech-
niques in the single-mode approximation for which the
Hamiltonian corresponds to the anharmonic oscillator. The
analysis for the complete field then follows in a natural way.
Readers already well versed in the stochastic approach to
quantum dynamics may wish to pass over this earlier back-
ground in Sec. II C.

The paper is structured as follows. In Sec. II we provide a
detailed demonstration of the techniques for propagation of
quantum fields using phase-space representations. After stat-
ing the complete problem in Sec. II B, we simplify to the
corresponding one-mode Hamiltonian in Sec. II C and derive
the equivalent stochastic equations in the positive-P repre-
sentation in detail. We generalize this approach to the full
field in Sec. II D and find an approximate but more stable
method using the Wigner function in Sec. II E. There is con-
siderable freedom in the choice of initial states for our simu-
lations. We discuss these issues and present some natural
choices in Sec. III. Our numerical results illustrating some of
the possibilities of the stochastic approach are given in Sec.
IV before we conclude in Sec. V.

II. TECHNIQUES FOR PROPAGATION

OF QUANTUM FIELDS

A. General ideas

There are a number of well-established techniques in
quantum optics for the propagation of a complete quantum
field. Typically, these ideas involve a generalization of stan-
dard procedures for finding the time evolution of averages in
a system with a single mode or a few modes @14,15#. In
summary, the procedure is as follows. The system density
operator is expressed in the coherent state basis using a qua-
siprobability function such as the P, Wigner, or positive-P
distributions. The master equation describing the evolution
of the density operator is converted to an equivalent partial
differential equation ~PDE! for the distribution. If certain
conditions are satisfied @14,15#, the PDE may then be con-
verted to a set of classical stochastic ordinary differential
equations ~Langevin equations! that yield quantum expecta-
tion values as ensemble averages of moments of the phase-
space variables. This procedure has the significant advantage
of providing a natural numerical implementation in which
we calculate the evolution of a small number of phase-space
variables rather than that of a very large number of variables
describing the density matrix or a distribution function on a
large complex grid. This advantage becomes essential for
systems of several modes for which the Hilbert space is so
large that a direct numerical simulation would be impossible.
Now when we consider a quantum field, unless we are for-
tunate enough to have an analytic solution, the problem must
be treated numerically as a system with a large but finite
number of modes and the associated Hilbert space is truly
vast. One thousand atoms with just 100 modes, for example,
occupy a Hilbert space of dimension 1001000. The stochastic
treatment is now vital. One uses essentially the same proce-
dure but works with functional PDE’s and thus obtains sto-
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chastic equations for a classical field @28,29,39,40#. In the
following sections we provide a detailed derivation for the
case of a Bose condensate in one dimension.

B. Trapped Bose-Einstein condensates

We model a one-dimensional system by assuming a
highly anisotropic harmonic trap with the longitudinal and
radial trap frequencies (vz and vr , respectively! satisfying
l5vz /vr!1. Below we use parameters corresponding to a
cigar-shaped trap such as that in Refs. @7,11#. With strong
radial confinement, we assume that the nonlinearity plays a
negligible role in the radial direction. The field operator is
then assumed to factorize with its transverse dependence
completely described by a coherent-state occupation of the
lowest mode of the trap. So the Heisenberg picture boson
field operator has the form

Ĉ~x!5S mvr

p\
D 1/2

expS 2

mvrr
2

2\
D f̂~z ,t !. ~1!

Adopting harmonic-oscillator units in the axial direction with

a05A\/mvz, t5vzt , x5z/a0 , and ĉ(x ,t)5Aa0f̂(z ,t),
the one-dimensional second-quantized Hamiltonian is

Ĥ5E
2`

`

dxĉ†
Kĉ1

G

2
E

2`

`

dxĉ†ĉ†ĉĉ , ~2!

where K is the linear operator

K52

1

2

d

dx2
1

1

2
x2

2m , ~3!

m is the scaled chemical potential, and G52a/la0 is the
scaled nonlinear constant with a the s-wave scattering length.

Our ultimate aim is to calculate ~multitime! averages of ĉ
under the evolution induced by the Hamiltonian ~2!. More
generally, the system may include damping in the form of
couplings to atom reservoirs. In this case the system is de-
scribed by a density matrix satisfying a master equation

dr

dt
5Lr , ~4!

where the Liouvillian L is a superoperator that acts to the
right in the fashion

Lr52i@Ĥ ,r#1(
j

k j

2
~2Ô jrÔ j

†
2Ô j

†Ô jr2rÔ j
†Ô j!

~5!

and the Ô j are operators describing the bath couplings with
strengths k j . While we do not include damping in the
present work, it is convenient to work in a density-matrix
formalism. We now develop stochastic descriptions of the
dynamics in both the P and Wigner representations, explain-
ing the method for the P representation in detail.

C. One-mode problem

1. P representation

To illustrate the ideas underlying a phase-space approach
without the notational baggage of the full many-mode prob-
lem, we begin by treating the single-mode limit of Eq. ~2!.
The atomic field is assumed to be described by a single-

mode operator â(t) with an associated mode function c GP

determined by the solution to the time-independent GPE.
The single-mode Hamiltonian is

Ĥ ~1 !
5v̄ â†â1

x

2
â†â†â â , ~6!

with v̄5*
2`
` dxcGP

* KcGP and x*
2`
` dxucGPu

4. The first step

in our attempt to obtain a stochastic description is to express
the density matrix in a diagonal coherent state basis using the
Glauber-Sudarshan P function @14,15#

r5E d2aua&^auP~a !, ~7!

where ua& is a coherent state with the c-number complex
amplitude a . It is tempting to consider P(a) as a probability
distribution for the density matrix over the coherent states.
However, while P(a) is real, for nonclassical states it may
be highly singular and/or take on negative values @14,15#. It
is proved in Ref. @14# that there is a unique P function for
every density matrix. The quantum averages of interest are
found as moments of the P distribution that correspond to
normally ordered expectation values

^â†mân&5Tr$â†mânr%5E d2aa*manP~a ! ~8!

for integers m ,n>0. Arbitrarily ordered averages can always
be found by first rewriting them in terms of normally ordered
quantities.

We now need an equation for the time evolution of the P

function. Using ua&5exp(2uau2/2)exp(aâ†)exp(2a1â)u0&
and the definition of the P function, it is not hard to demon-
strate the operator correspondences

âr↔aP~a !, â†r↔S a1
2

]

]a D P~a !,

~9!

r â↔S a2

]

]a1
D P~a !, r â†

↔a1P~a !.

We have introduced the unusual notation a1, which for the
moment is to be read as the ordinary complex conjugate a*.

Substituting these correspondences in the master equation ṙ

52i@Ĥ (1),r# , we obtain a Fokker-Planck equation for the
time evolution of P(a)

4826 PRA 58M. J. STEEL et al.



]P

]t
5H 2

]

]a
@2i~v̄a1xa1a2!#2

]

]a1
@ i~v̄a1

1xaa12!#1

1

2

]2

]a2
~2ixa2!

1

1

2

]2

]a12
~ ixa12!J P~a ,a1!. ~10!

Note that despite the appearance of this equation, a and a1

are not to be treated as independent variables as they are
complex conjugates @14,15#.

Equation ~10! is exact and completely equivalent to the
master equation. Our motivation in obtaining it is based on
the fact that any Fokker-Planck equation with a positive-
definite diffusion matrix may be exactly rewritten in the lan-
guage of stochastic differential or Langevin equations @41#.
To be precise, consider a Fokker-Planck equation of the form

]F

]t
52(

j

]

]x j

A j~x,t !P

1

1

2(jk
]

]x j

]

]xk

@B~x,t !BT~x,t !# jkF , ~11!

in which the diffusion matrix D5BBT is clearly positive
definite. Then a third equivalent description is given by the
system of stochastic equations

dx

dt
5A~x,t !1B~x,t !E~ t !, ~12!

where the real noise sources E j(t) have zero mean and sat-

isfy E j(t)Ek(t8)5d jkd(t2t8). These equations ~and all
other stochastic equations in this paper! are to be interpreted
in the Ito approach to stochastic calculus. A complete discus-
sion of the techniques of stochastic calculus and the connec-
tion between the Fokker-Planck and Langevin descriptions is
provided by Gardiner @41#. By making such a transformation
we would apparently have achieved our aim of a stochastic
description of the quantum dynamics and could calculate ex-
pectation values by taking ensemble averages of moments of
the phase-space variables x j .

2. Positive-P representation

Unfortunately, the diffusion matrix in Eq. ~10! is clearly
not positive definite and the preceding equivalence does not
apply. However, Drummond and Gardiner @42# have shown
that in such cases, the situation may be rescued by introduc-
ing the ‘‘positive-P’’ function, which represents the density
matrix as an integral over two independent variables

r5E d2ad2b
ua&^b*u

^b*ua&
P~a ,b !. ~13!

It can be shown that with this definition the positive-P func-
tion can be chosen positive for any density matrix @14,42#.
The crucial step comes here. Referring to Eq. ~10!, we now
consider a and a1 as independent quantities and by making

the identification b5a1, we may read Eq. ~10! as the
Fokker-Planck equation in the positive-P representation cor-
responding to the original master equation. Moreover, by
writing P(a ,b) as a function of four real variables rather
than two complex variables, one may show that the resulting
434 diffusion matrix is always positive definite @14,42#.
Thus, in the positive-P representation, it is always possible
to derive an equivalent Langevin equation description using
Eq. ~12!. In the present case, Eq. ~10! leads to the stochastic
system

i
da

dt
5~v̄a1xa1a2!1Aixah1~ t !,

~14!

i
da1

dt
52~v̄a1

1xaa12!1A2ixa1h2~ t !,

where h i(t) for i51,2 are d-correlated in time with zero
mean. Note that a and a1 experience different noise
sources, so that even if they are conjugate at t50 they do
not remain so.

We emphasize that Eqs. ~14! are completely equivalent to
the master equation. Any expectation value that can be found
from the density operator may equally be found by ensemble
averaging over many trajectories using the stochastic equa-
tions. Being c-number variables, a and a1 do not satisfy the

commutation properties of the operators â and â†. Neverthe-
less, through the inclusion of the noise sources h i and the
insistence on normal ordering when taking averages, they
still account for the complete quantum dynamics. This
equivalence of the stochastic and operator approaches has
been demonstrated explicitly in the context of optical fiber
solitons in a recent paper of Fini et al. @43#. It is important to
note that the h i do not correspond to any physical noise
sources, but are included only to recapture the commutation
relations of the operators. In this sense they are quite distinct
from the operator valued noise sources that appear in ‘‘quan-
tum Langevin equations’’ @14,15#. In fact in the positive-P
representation, Plimak et al. @38# have pointed out that there
is some freedom in the precise form of the noise terms,
which can be exploited to improve convergence properties
dramatically. We also mention a well-known difficulty with
the positive-P representation. The independence of the noise
sources driving a and a1 can in some cases lead to wild
trajectories that prevent convergence of the ensemble aver-
ages @34,35,44#. This is indeed true in the present case and
we consider this problem in some detail in later sections. As
the properties of the anharmonic oscillator are well known,
we do not present simulations of the one-mode equations
~14!, but proceed directly to the multimode field problem.

D. Multimode problem

By analogy with the single-mode problem, in which
single-mode operators were replaced by classical variables
driven by white-noise sources, we might expect that a com-
plete quantum field can be replaced by classical fields suf-
fering independent noise sources at every point in space.
There are a number of ways of proving this claim. A straight-
forward ~if notationally cumbersome! method is to expand
the field in a complete set of modes and mode operators and
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proceed by a direct generalization of the method in the pre-
ceding subsection @40#. However, a more concise derivation
is obtained by introducing the functional P distribution @39#

P~$c ,c*%,t !5r ~a !~$ĉ ,ĉ†%,t !u
ĉ→c

ĉ†→c*

, ~15!

where r (a) denotes the density operator r(t) antinormally

ordered with respect to the field operators ĉ ,ĉ† in the Schrö-
dinger picture. Putting the master equation obtained from the
Hamiltonian ~2! into antinormal order and using the follow-
ing functional analogs of the operator correspondences ~9!:

ĉr↔cP~c !, ĉ†r↔S c1
2

d

dc D P~c !,

~16!

rĉ↔S c2

d

dc1
D P~c !, rĉ†

↔c1P~c !,

one finds the functional Fokker-Planck equation

]P

]t
5E

2`

`

dxH 2

d

dc~x !
$2i@Kc~x !1Guc~x !u2c~x !#%

1

1

2

d2

dc2~x !
@2iGc2~x !#J P1c.c. ~17!

As anticipated by the results for the single-mode problem in
Sec. II C, the diffusion matrix of this equation is non-
positive-definite and so there is no straightforward mapping
onto a single stochastic differential equation @14#. Just as for
the single-mode case, we move to a positive-P representa-
tion and double the phase space with the mapping

c~x ,t !→c1~x ,t !, c1~x ,t !→c2~x ,t !, ~18!

where c1(x ,t) and c2(x ,t) are independent fields. As before,
we are guaranteed a positive-definite diffusion matrix and
finally obtain the pair of Ito stochastic equations

i]tc1~x ,t !5Kc1~x ,t !1Gc2~x ,t !c1
2~x ,t !

1AiGc1~x ,t !h1~x ,t !, ~19a!

i]tc2~x ,t !52Kc2~x ,t !2Gc1~x ,t !c2
2~x ,t !

1A2iGc2~x ,t !h2~x ,t !, ~19b!

where the noise sources h1 and h2 are real, Gaussian, and d
correlated in time and space: h i(x ,t)h j(x8,t8)5d i jd(x

2x8)d(t2t8). Note that the mean number of atoms

^N̂~t !&5K E
2`

`

dxĉ†~x ,t !ĉ~x ,t !L
5E

2`

`

dxc2~x ,t !c1~x ,t !

is conserved in the ensemble average but fluctuates during a
single trajectory due to the complex noise. We remark that in
practice, it is numerically more convenient to work with the

complex conjugate equation to Eq. ~19b!. We have used the
form shown in order to make a clearer connection to Eqs.
~14!.

Although our derivation indicates that Eqs. ~19! allow one
to calculate single-time normally ordered quantum field av-
erages, it was shown by Drummond @45# that they actually
allow for multitime time-normally ordered averages to be
found. In general, an expression for an arbitrary time-

normally ordered average is obtained by replacing ĉ(x ,t) by

c1(x ,t), ĉ†(x ,t) by c2(x ,t), and the quantum averaging by
the stochastic one

^T̄ĉ†~x ,t !•••ĉ†~x8,t8!Tĉ~x9,t9!•••ĉ~x-,t-!&

5c2~x ,t !•••c2~x8,t8!c1~x9,t9!•••c1~x-,t-!.

~20!

Here T and T̄ denote, respectively, direct and reverse time
ordering of the field operators. The upper bar on the right-
hand side of this relation denotes an averaging over the ran-
dom trajectories $c1 ,c2%, with the stochastic measure char-
acterized constructively by Eqs. ~19!. In other words, this is
a path integral over trajectories $c1 ,c2%, with Eqs. ~19! pro-
viding the measure over the paths. In quantum field theory,
quantum averages of the form in Eq. ~20! appear in the well-
known Keldysh diagram techniques @46#. They are a subset
of the full set of Keldysh averages ~which in general also

contain ĉ’s under the T̄ ordering and ĉ†’s under the T or-
dering!. For this subset of quantum averages, Eqs. ~19! are
fully equivalent not just to the master equation, but to the

Heisenberg equations of motion for the quantum field, pro-
viding a constructive path-integral representations for these
averages. @Moreover, with external sources added to Eqs.
~19!, they account for the full set of Keldysh averages, thus
becoming fully equivalent to the Heisenberg equations; see
@38,47#.# In the context of field theory, it is perhaps worth
remarking on a helpful simplification that results from the
nonrelativistic nature of the problem. The density matrix at a
time t5t0 may be mapped directly onto the P, Wigner or
positive-P distributions at the same time. These are then
used as distributions for initial conditions in simulations. In
the general case, one must rather match the density matrix to
the distributions at t52` , subject to the usual assumption
of adiabatic turning on of the interaction @38#.

The positive-P representation is guaranteed to give exact
results for as long as the ensemble averages converge. How-
ever, we see below in Sec. IV that the trajectories are prone
to large excursions from the mean that quickly cause the
simulation to blow up. Such problems with the positive-P
representation are well known @34,35,44# and occur espe-
cially in systems with strong nonlinearity and weak ~or van-
ishing! damping, which is precisely the situation in the
present case of a trapped interacting Bose condensate. We
believe that this is the first case, however, for which diver-
gent trajectories appear for realistic physical values. As such
it is indication of the likelihood of strongly nonclassical be-
havior outside the description of the GPE. It is important to
realize that the failure of the positive-P representation in
such cases is not indicative of a genuine ‘‘divergence’’ in the
sense of quantum electrodynamics but merely represents a
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rapid ~presumably exponential! growth in the width of the
distribution. So while in theory the distribution remains
physically correct, in practice it becomes impossible to ac-
curately sample the whole distribution numerically. In fact,
this problem is strongly dependent on the parameter range
chosen. Drummond and Corney have successfully used the
positive-P representation to simulate evaporative cooling of
the condensate @48#. The cooling problem is a case in which
the positive-P representation can be expected to be more
robust than in zero-temperature calculations for two reasons:
The atomic density is much lower, at least initially, and there
is a considerable damping in the form of the rf field used to
remove the hotter atoms.

E. Truncated Wigner representation

In the absence of exact stable methods, we are forced to
consider approximate simulation techniques. One approach
that has proved successful in optical problems is the ‘‘trun-
cated Wigner’’ method @44#. In a similar fashion to that of
Sec. II D, the master equation can be mapped onto a Fokker-
Planck–like equation for the Wigner distribution @14,15#,
which returns symmetrized expectation values as opposed to
the normally ordered averages of the P representations. That
is to say, we define the Wigner distribution by analogy with
Eq. ~15! as

W~$c ,c*%,t !5r ~sym!~$ĉ ,ĉ†%,t !u
ĉ→c

ĉ†→c*

, ~21!

where r (sym) denotes the density operator r(t) symmetri-

cally ordered with respect to the field operators ĉ ,ĉ† ~see
Ref. @14# for the connection of this definition to more famil-
iar expressions for the Wigner function!. Using the func-
tional differentiation notation, the operator correspondences
take the form @14#

ĉr↔S c1

1

2

d

dc*
D W , ĉ†r↔S c*2

1

2

d

dc DW ,

~22!

rĉ↔S c2

1

2

d

dc*
D W , rĉ†

↔S c*1

1

2

d

dc DW .

Using these relations in the master equation, we find the
Wigner function evolution equation

]W~c ,c*!

]t
5E

2`

`

dxiH d

dc
@Kc1G~ ucu2

21 !c#

2

1

4

d3

d2cdc*
cJ W~c ,c*!1c.c. ~23!

In this case, there is no second derivative term ~the diffusion
matrix vanishes identically! and the quantum noise acts via
third-order derivatives as ‘‘cubic noise.’’ Unfortunately,
there is no simple mapping from cubic noise to a stochastic
representation @14# and as we have discussed earlier, a direct
integration of Eq. ~23! is impractical. The simplest approxi-
mation is to truncate Eq. ~23! at second order so that we are

left with a single deterministic equation for the classical field
cW , which is just the standard time-dependent GPE

i]tcW~x ,t !5KcW~x ,t !1GucW~x ,t !u2cW~x ,t !. ~24!

Although this equation is completely deterministic, it is not
the case that we have discarded all effects of quantum noise.
Noise is still included explicitly in the initial state, which is
now represented as a distribution of functions cW(x ,0). ~In
fact, even in the positive-P representation we would require
a random distribution of starting functions unless the initial
state was a coherent state.! We discuss the choice and repre-
sentation of initial states in detail in Sec. III.

In optical problems, it has been found that the Wigner
approach gives accurate results in the large photon number
limit, when it might be expected that the influence of the
third-order quantum noise is small. In Sec. IV we test the
Wigner predictions against the positive-P results for as long
as the latter are stable. Using the Wigner distribution entails
one further limitation. Typically, the physically most inter-
esting quantities are time-ordered, normally ordered aver-
ages, as provided directly by the P representations @14,15#.
As the Wigner distribution returns symmetrized moments
and we do not know the unequal time commutators for the
field operators, we cannot usually find multitime averages
with the Wigner method. An exception is the two-time nor-
mally ordered correlation function for coherent initial states

^ĉ†~x ,t !ĉ~x8,t8!&

5^c GP~x ,t !uĉ†~x ,t !ĉ~x8,t8!uc GP~x ,t !&

5c GP~x ,t !*^c GP~x ,t !uĉ~x8,t8!uc GP~x ,t !&

5c GP~x ,t !*cW~x ,t8!, ~25!

which is thus reduced to a single-time expectation value with
no ordering problems. Note that even for coherent initial
states, higher-order correlations such as

^:ĉ†(t1)ĉ(t1)ĉ†(t2)ĉ(t2):& are unavailable.

III. INITIAL STATES

The question of suitable initial states for simulation is
somewhat involved. Here we wish to use states that can be
thought of as a good representation of the ‘‘ground state of
the condensate’’ in as much as this is possible in a symmetry
broken picture. We consider only zero-temperature states
here. For T50, the simplest option is to choose an initial
coherent state, that is, precisely that state assumed at all
times in a conventional calculation with the GPE. Our simu-
lations then indicate how the actual state evolves away from

the coherent state. To do so, we set the mean field ^ĉ(x ,0)&
equal to the solution of the time-independent GPE c GP(x)
~the ‘‘ground-state wave function’’! and assume vacuum
noise in all modes. For the normally ordered positive-P rep-
resentation, vacuum noise is obtained simply by the choice
c1(x ,0)5c2(x ,0)5c GP(x). In the symmetrically ordered
Wigner representation, the noise must be explicitly included
in each mode of a suitable basis. Each trajectory begins with
a different field of the form
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cW~x ,0!5c GP~x !1(
j50

N
1

2
h jf j~x ! ~26!

where h j is a complex random variable of zero mean with

h jhk
¯ 50 and h j

*hk
¯ 5d jk . The sum is taken over N modes of

a complete basis $f j(x)% and N is taken sufficiently large
that the results are independent of N. Natural choices for the

$fk(x)% are the discrete position basis f j(x)5d(x

2 jDx)/ADx or the harmonic-oscillator basis. The latter has
the advantage that if N is not too large, the modes do not
extend to the boundary of the simulation window and there is
no risk of noise artificially ‘‘wrapping around’’ the simula-
tion. In practice, we have seen no difference in results when
using either of these bases.

However, if one wishes to find a good approximation to
the ground state of the many-body system, the coherent state
is certainly not an optimal choice. Of course, as we are using
a symmetry-breaking approach, no state can be truly station-
ary: there must always be a degree of phase diffusion asso-
ciated with the number superposition implied by the assump-
tion of a nonzero mean field. Nevertheless, there are states
we might favor over the coherent state. Standard applications
of Bogoliubov theory at zero temperature @49,50# approxi-
mate the second-quantized Hamiltonian by the diagonal ex-
pression

Ĥ5K1(
j.0

E jb̂ j
†b̂ j , ~27!

where K is a constant, b̂ j is the annihilation operator for the
quasiparticle excitation of energy E j , and the mean field
satisfies the GPE. Further, the field operator may be written
as

ĉ~x !5(
j.0

@u j~x !b̂ j2v j
*~x !b̂ j

†# , ~28!

where the mode functions u j and v j are solutions to the
Bogoliubov–de Gennes eigenvalue equations @49,50#. Our
second choice for the ground state is thus the vacuum in the
Bogoliubov representation

cW~x ,0!5c GP~x !1(
j51

N
1

2
@h ju j~x !2h j

*v j~x !# . ~29!

However, Lewenstein and You @51# have pointed out that in
a symmetry-breaking Bogoliubov method, the existence of a
zero-energy Goldstone mode requires the inclusion of an ex-
tra term in the Hamiltonian involving the condensate ‘‘mo-
mentum’’ P that accounts for the phase diffusion of the mean
field. In this case we have

Ĥ5K1

a

2
P2

1(
j

E jb̂ j
†b̂ j , ~30!

with a5N]m/]N , P5*
2`
` dxc GP(x)(dĉ1dĉ†), and dĉ

5ĉ2^ĉ&. This Hamiltonian implies an infinite amplitude
squeezing of the condensate that is clearly unphysical. It has
been shown elsewhere for one- and two-mode models
@52,53# that retaining cubic and quartic terms in the Hamil-

tonian that are neglected in the Bogoliubov method leads to
a finite squeezing. Here we do not perform a full treatment of
the effect of the higher-order terms for the multimode sys-
tem, but take for our third ‘‘ground state,’’ the lowest-energy
variational state in which each mode in the Bogoliubov basis
is independently in a minimum uncertainty Gaussian state.

We also briefly remark that the choice of initial state is
closely tied to the manner of state preparation. In many in-
stances, the appropriate state need not be the ground state. In
a recent experiment at JILA @18#, a single condensate is sub-
jected to a short p/2 pulse creating a second condensate in a
different internal state. As the pulse length is shorter than the
time required for significant nonlinear dynamical effects to
occur, the combined two condensate system might be ex-
pected to exhibit binomial statistics. If the trapping potential
were arranged so that the two clouds did not subsequently
overlap, we could then model the evolution of one of the two
condensates assuming a number variance (DN)2'N/2. In
fact, it may be checked using results in Ref. @51# that the
state in which all the Bogoliubov modes are in the vacuum
has number statistics for the condensate mode very close to
(DN)2'N/2. For a slower transfer of population, nonlinear
effects would play a role and a more complex initial state
would be appropriate @54#. As an example of a completely
different initial condition, the first-principles simulation of
evaporative cooling using the positive-P representation that
was mentioned earlier @48# begins essentially with a thermal
state for the atom field.

IV. RESULTS

A. Numerical methods

The parameters for our simulations are chosen to repre-
sent the following system. We consider a condensate of N

51000 sodium atoms in a cylindrical trap with l5vz /vr

50.025 so that the one-dimensional approximation is rea-
sonable. The radial frequency is set at either vr/2p5800 Hz
~the ‘‘strong trap’’! or vr/2p5200 Hz ~‘‘weak trap’’!. Tak-
ing the scattering length as a54.9 nm, we obtain for the
nonlinear constant G5Gstrong50.084 or G5Gweak50.042.
The initial-state mean-field solutions were obtained by
imaginary-time propagation of the GPE and quasiparticle en-
ergies and mode functions found by standard methods
@49,51#. The predictions of our simulations were checked by
ensuring that the results did not change when the time step
was decreased or the size of the spatial grid increased. Simu-
lations in the truncated Wigner representation were per-
formed with a standard second-order split step method @44#.
Due to the large nonlinearity of the system and consequently
strong noise in the positive-P simulations, the standard Euler
split-step algorithm was not able to give results independent
of time step even at a step size of dt50.0005. Hence we
used a strongly convergent semi-implicit method @44#, which
gave reliable results with 256 spatial points and a time step
dt50.001.

B. Quantities of interest

We present our results in terms of three general quantities.
To demonstrate the ability to determine two-time correlation
functions we would like to calculate the quantity
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g ~1 !~t ,0!5

K E
2`

`

dxĉ†~x ,0!ĉ~x ,t !L
N

. ~31!

This is straightforward in the positive-P representation.
However, as discussed in Sec. II E, in the Wigner represen-
tation we may calculate only unequal-time normally ordered
correlations for coherent initial states, when from Eq. ~25!
we have

g ~1 !~t ,0!5

E
2`

`

dxc GP
* ~x !cW~x ,t !

N
. ~32!

For other initial states, we can define a nominal ‘‘condensate
mode’’ operator associated with the normalized solution to
the GPE,

âGP~ t !5E
2`

`

dxc̄GP~x !ĉ~x ,t !, ~33!

where c̄GP(x)5c GP(x)/A*
2`
` dxuc GP(x)u2. Its mean value

^âGP(t)& still monitors the collapse of the wave function, but
is strictly a one-time average and can be calculated in either
representation. We may also calculate the occupation of the

condensate mode ^n̂ GP&5^âGP
† âGP&.

Finally, spatial correlations may be analyzed in terms of a
spatial squeezing spectrum. We define the localized ampli-
tude quadrature operator

X̂u~x ,t !5c̄GP~x !ĉ†~x ,t !e iu
1c̄GP~x !ĉ~x ,t !e2iu.

~34!

Defining the Fourier transformed operator

X̂u~k ,t !5

1

A2p
E

2`

`

dxe ikxX̂u~x ,t !, ~35!

the squeezing spectrum is defined as the normally ordered
expression @15,28,29,55#

Su~k ,t !52p^:X̂u~2k !X̂u~k !:&, ~36!

which in the Wigner representation becomes

Su~k ,t !52112pX̂u~2k !X̂u~k !. ~37!

The angle u for optimum squeezing is in general a function
of k. Hence a useful quantity is the spectrum of ‘‘best
squeezing’’ Smax(k ,t) that gives the largest possible squeez-
ing at each wave-number component k.

C. Comparison of methods

We first give some examples of calculations with the
same parameters using both the positive-P and Wigner simu-
lations. Figure 1 shows the two-time correlation function

g (1)(t ,0) for 1000 atoms in the strong trap configuration for
a coherent initial state. Single-mode models @27,51# predict a
Gaussian decay

g ~1 !~t ,0!5exp@2a2t2~DN !2/2N2# , ~38!

where a5Ndm/dN and (DN)2
5N is the variance in atom

number of the initial state. This model is indicated by the
dash-dotted curve. The Wigner prediction ~dotted! roughly
follows the Gaussian decay, but shows slow oscillations
about the single-mode curve and in particular exhibits a lin-
ear decay at short times. The Wigner method gives a stable
result for arbitrary times. In the inset we show the short-time
behavior, with the inclusion of the positive-P prediction in
the solid line. This line stops at just t50.3 at which point
unstable trajectories appeared. Also just visible are error bars
on the positive-P line denoting one standard deviation
~OSD! uncertainties. The dashed curves indicate the OSD
errors for the Wigner calculation. The two methods clearly
agree up to the point at which the unstable trajectories arise.
Note that the positive-P error bars are very small right up
until that point, indicating the sudden rapidity with which the
distribution diverges. In Fig. 2 we show the occupation of

the Gross-Pitaevskii ~GP! mode ^n̂ GP& as a function of time
with the Wigner result shown as the dotted line and the
positive-P result shown as the solid line. We see oscillations
in the number with an amplitude of around 5% of the starting
population. Once more while the Wigner result is stable, the
positive-P simulations fail in a very short time. Note also
that the enlargement occurs very rapidly: There is very good
agreement until just before the fatal moment with OSD er-
rors for both methods being smaller than the thickness of the
lines.

Thus, for the trap parameters considered so far, the
positive-P representation is effectively useless. While insta-
bilities of the positive-P representation are well known, this
is perhaps the first occasion in which they arise in experi-
mentally accessible parameter ranges. Given that the
positive-P fails well before the completion of a single oscil-
lation in Fig. 2, we might wonder how closely the truncated
Wigner results approximate the true dynamics. One approach
is to perform simulations at artificially low scattering lengths

FIG. 1. Two-time correlation function g (1)(t) for the coherent

initial state in the strong trap. The lines denote the positive-P

~solid!, Wigner ~dotted!, single-mode ~dash-dotted! models. The in-

set shows early times with one standard deviation errors for the

Wigner method shown in by the dashed line.
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for which the nonlinearity is less severe and the positive-P
simulations more robust. In fact, the observation of Feshbach
resonances in an optically trapped Na23 condensate @56#
demonstrates that reduced scattering lengths are now attain-
able in the presence of a sufficiently strong magnetic field.
Figure 3 shows the GP mode occupation as a function of
time for 1000 atoms in a coherent initial state, with the re-
duced interaction G5Gstrong/10. The lines have the same
meaning as in Fig. 2. The positive-P trajectories are now
stable for much longer and it is seen that both methods pro-
duce oscillations that are in agreement within the error lim-
its. Note that the error limits grow in time for the positive-P
representation but remain approximately constant for the
Wigner, corresponding to the fact that no new noise is added
after the initial condition for the Wigner method. We can
thus now have some confidence that the Wigner calculations
give results that are reasonably accurate for relatively large
condensates.

D. Comparison of initial states

We now examine the behavior exhibited by different ini-
tial states. As explained in Sec. III, we compare the standard

choice of coherent initial state with the vacuum state in the
Bogoliubov representation and the Gaussian state with inde-
pendent squeezing in each Bogoliubov mode. Figure 4 shows

the mean amplitude in the GP mode ^âGP(t)& with Wigner
results shown by the solid lines and the single-mode esti-
mates based on the initial number variance shown by the
dash-dotted lines. The mean amplitude is apparently de-
scribed relatively well by the single-mode model. The differ-
ences between the curves is largely accounted for by the
difference in number variance in the three cases, which had
the values (DN)2/N5 1, 0.5, and 0.12 in the coherent state,
Bogoliubov vacuum and squeezed Bogoliubov vacuum
cases, respectively. Figures 5–7 give the spectra of best
squeezing for the three initial states plotted as the function
ln@11Smax(k ,t)# . For the coherent state in Fig. 5, there is of
course initially no squeezing. For a short time, there is sig-
nificant squeezing at low wave numbers. However, at large
times the phase diffusion causes the long-wavelength fluc-
tuations to grow without limit @51# and the squeezing is de-
stroyed. The other two initial states shown in Figs. 6 and 7
show similar trends at large t , but are clearly different at
early times when the statistics of the initial state have not

FIG. 2. Occupation number ^n̂ GP& as a function of time for a

strong trap. The lines denote the positive-P ~solid! and Wigner

~dotted! models.

FIG. 3. Occupation number ^n̂ GP&. The lines denote the

positive-P ~solid! and Wigner ~dotted! models.

FIG. 4. Mean value ^n̂GP &. The Wigner results are shown as

solid lines and the one-mode models the dash-dotted lines.

FIG. 5. Maximum squeezing spectrum plotted as ln@11Smax# for

weak trap parameters with a coherent initial state.
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been swamped by the phase diffusion. This suggests that the
squeezing spectrum may be a useful way of characterizing
different quantum states of the condensate. Note that a
single-mode model could not predict different rates of
change for the squeezing at different wave numbers.

E. Negative scattering lengths

Finally, we briefly examine the dynamics for a single case
with a negative scattering length. In this case, the attraction
between the atoms leads to a high density at the center of the
trap and consequently the nonlinear terms play a stronger
role than in the positive scattering length case. To avoid the
need of extremely fine spatial and temporal grids, we there-
fore use the parameters of the weak trap, with the scattering
length set at aneg52aNa/10, giving G520.0042. The two-

time correlation function g (1)(t ,0) and occupation ^n̂ GP&
display similar behavior to that seen earlier for the positive
scattering length. Here we concentrate on the squeezing
spectrum that is shown in Fig. 8. This figure shows a struc-
ture that is quite different from the earlier squeezing spectra

with strong antisqueezing for wave numbers near k'3, cor-
responding to a length scale of the condensate or ‘‘soliton’’
width. In fact, this spectrum is very similar to the spectrum
of best squeezing for a fiber soliton with a Kerr law nonlin-
earity @28,29#. This is not surprising. With a strong negative
nonlinearity in a one-dimensional trap, the condensate be-
comes strongly localized at the bottom of the trap. The non-
linearity dominates over the trapping potential and the
ground-state wave function is well approximated by the fiber

soliton expression c(x)5ANsech(ANGx), with a slight ad-
ditional confinement due to the potential. Then as the propa-
gation equations for the two systems differ only by the in-
clusion of the potential for the condensate, we can expect
virtually identical spectra.

V. CONCLUSION

In this paper we have applied phase-space techniques for
the propagation of a complete quantum field to the problem
of a one-dimensional trapped Bose-Einstein condensate. As
such systems are highly nonlinear and weakly damped, the
exact approach using the positive-P representation is useful
only for short times compared to the trap period and we are
forced to use the approximate truncated Wigner method. For
parameter ranges in which both methods work, we find
agreement between the two. The Wigner method is stable
and allows the calculation of one-time averages and certain
conditional multitime averages over long periods. Dynamics
may be calculated for virtually any initial state with a rea-
sonably well-localized Wigner function.

It is interesting to compare our approach here with an-
other set of tools for discussing quantum statistical properties
of condensates: the rapidly growing field of quantum kinetic
theory ~QKT!, which has been developed in particular by
Gardiner and Zoller and their co-workers @57,58#. In QKT,
the system is divided into two distinct parts: the ‘‘condensate
region,’’ consisting of the condensate itself and a consider-
able number of the low-lying excitations, and the ‘‘thermal
region,’’ which is essentially everything else and acts as a
reservoir for the condensate region. One may then obtain
master equations for the condensate region of varying com-

FIG. 6. Maximum squeezing spectrum plotted as ln@11Smax# for

weak trap parameters with a Bogoliubov vacuum initial state.

FIG. 7. Maximum squeezing spectrum plotted as ln@11Smax# for

weak trap parameters with a squeezed Bogoliubov vacuum initial

state.

FIG. 8. Maximum squeezing spectrum Smax for a system with

attractive interactions with scattering length aneg520.049 nm and

N51000 atoms.
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plexity based on assumptions about the exchange of atoms
between the condensate and reservoir. In our own approach,
there is no distinction at all into condensate and thermal
atoms and thus no approximations required in order to imple-
ment such a distinction. The condensate itself plays no privi-
leged role within the model and we work simply with one
complete quantum field. The special properties normally as-
sociated with condensates are manifested just as different
correlations of the quantum field. The stochastic method de-
scribed here thus may also serve to provide comparisons
with the predictions of QKT from a rather different vantage
point. Indeed, Drummond and Corney’s simulations of
evaporative cooling using the positive-P representation have
produced @48# similar results to kinetic models of evapora-
tive cooling @58#. Moreover, one might envisage a hybrid
model in which the low-lying condensate modes are treated
using a stochastic approach, while the upper modes are re-
duced to a thermal reservoir using the techniques of QKT.

Finally, we point out some of the systems to which this

theory could be easily applied. As mentioned earlier, the

coherence properties of the output beams of atom lasers are

certain to be of central importance in the near future. Calcu-

lation of two-time correlations and squeezing spectra for

various laser designs is a natural application. The phase dif-
fusion between coupled condensates is also beginning to at-
tract interest and has currently only being studied theoreti-
cally within the context of Bogoliubov theory @26,59#.
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