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Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems,
and they have a close relationship with the nonequilibrium dynamical phase transitions, which however are
challenging to identify. In the system of spin-1 Bose-Einstein condensates, though dynamical phase transitions
with correspondence to equilibrium phase transitions in the ground state and uppermost excited state have been
probed, those taking place in intermediate excited states remain untouched in experiments thus far. Here we
unravel that both the ground- and excited-state quantum phase transitions in spinor condensates can be diagnosed
with dynamical phase transitions. A connection between equilibrium phase transitions and nonequilibrium
behaviors of the system is disclosed in terms of the quantum Fisher information. We also demonstrate that near
the critical points parameter estimation beyond the standard quantum limit can be implemented. This work not
only advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be
applied to a broad class of few-mode quantum systems, but also provides a new perspective on the relationship
between quantum criticality and quantum enhanced sensing.
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I. INTRODUCTION

In quantum many-body systems, excited-state quantum
phase transitions (ESQPTs) can be more appealing compared
with quantum phase transitions (QPTs), which refer to quan-
tum criticality aroused in ground states [1]. ESQPTs extend
the study of criticality to excitation spectra and have recently
been disclosed in several quantum systems [2–7]. The critical-
ities associated with QPTs and ESQPTs can reveal themselves
by nonequilibrium quantum phenomena, especially the dy-
namical phase transition (DPT) [8–19].

DPT is characteristic of the nonanalyticity in the
Loschmidt echo rate function after quantum quench. A more
experimentally accessible clue would be that physical quanti-
ties become nonanalytical as a function of time, such as the
order parameter. It is still an open question on the universal
correspondence between DPTs and QPTs, also ESQPTs.

*lzhou@phy.ecnu.edu.cn
†lanzhihao7@gmail.com
‡wpz@sjtu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In this work, taking the system of an antiferromagnetic
spin-1 Bose-Einstein condensate (BEC) as an example, we
illustrate the relationship between DPTs and equilibrium
phase transitions. Superfluidity and magnetism are simul-
taneously achieved in a spinor BEC. Due to the interplay
between intrinsic spin-dependent collision interactions and
Zeeman energy splittings controlled by an external field, the
system of a spinor condensate features a rich phase diagram
both in the ground and excited states [20–22]. QPTs have
been experimentally explored in the ground state of spin-
1 condensates with ferromagnetic [23] or antiferromagnetic
[24–26] interaction, which show interesting phenomena and
applications, such as nontrivial dynamics in space [27,28], the
Kibble-Zurek mechanism [29,30], preparation of macroscopic
many-body entangled states [31], and surpassing the standard
quantum limit (SQL) [32]. The authors in [33] showed that
the phase transition points can be mapped out through DPT
with measurement on the long-time average of fractional pop-
ulation, which was used to explore the ESQPT taking place
in the uppermost energy level [34]. However, little effort has
been devoted to the study of ESQPTs in the intermediate
excited states until recently; a topological order parameter was
proposed to characterize ESQPTs in a spinor BEC [35], whose
measurement relies on the precise operation after one period
of spin oscillation and thus can be experimentally challenging.
Besides that, a mimic of ESQPTs in spinor condensates has
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also been studied in Raman-dressed spin-orbit coupled BECs
[36,37].

Though diverging oscillation periods [38] and winding
number changing [35] are regarded to be linked to ESQPTs,
they can also be explained within mean-field theory, and an
unambiguous quantum signature of ESQPTs has not been
identified to our knowledge. On the other hand, only recently
has the spin singlet (S) ground state been experimentally
prepared and observed in an antiferromagnetic spinor BEC
[39], since its first prediction in the 1990s [40]. It is interesting
to explore the DPTs between the S state and other ground
states. Here, we show that both the QPTs and ESQPTs can
be captured with DPT. Specifically, the nonequilibrium dy-
namics of DPT could be characterized by the quantum Fisher
information (QFI), which is intimately related to Loschmidt
echoes [41–45].

Criticality can serve as a valuable resource for quantum
metrology, finding applications in estimation of external pa-
rameters at high sensitivity [46–60]. Enhanced estimation on
the control parameter in a spinor condensate has been studied
[61,62], based on equilibrium phase transitions in the ground
states. It is time consuming to prepare critical ground states
via typical adiabatic evolution, especially in an antiferromag-
netic spin-1 condensate due to the closing energy gap between
ground and first-excited states [63]. Motivated by recent study
that DPTs can be harnessed for quantum enhanced sensing
in a closed quantum system [64], we explore the prospect of
parameter estimation in a spinor condensate with DPTs.

II. QPTs AND ESQPTs IN AN ANTIFERROMAGNETIC
SPIN-1 CONDENSATE

We consider a spinor BEC of N atoms with hyperfine spin
F = 1. Within the single-mode approximation, which enables
the internal spin dynamics being isolated from the external
center-of-mass motion, the system is governed by the Hamil-
tonian (h̄ = 1) [21,22]

Ĥ = c

2N
Ŝ2 − qN̂0, (1)

where c and q characterize the interspin and effective
quadratic Zeeman energies, respectively. Here, Ŝi=x,y,z =
â†

αSαβ
i âβ are spin-1 vector operators with âm (â†

m) the bosonic
annihilation (creation) operators for the magnetic sublevels
m = 0, ±1 and Si=x,y,z the spin-1 matrices (the indices α, β

are summed over m). The atom number operators N̂m = â†
mâm

and N = ∑
m N̂m. While q can only take a positive value if it

is induced by an external magnetic field B, i.e., q ∝ B2, it can
be tuned to both positive and negative values via microwave
dressing [38,65,66]. In the following, we will concentrate on
the antiferromagnetic spinor condensate (c > 0) with zero
magnetization.

A sketch of the system phase diagram is given in Fig. 1,
which is obtained via exact diagonalization of Hamiltonian
(1) with an atom number N = 300. It will be helpful to
rewrite Hamiltonian (1) in a more generic form as Ĥ =
Ĥ0 + qĤq, and ground-state properties can be recognized as
results aroused by the competition between Ĥ0 and Ĥq: (i)
For |q| � c, the ground state is dominated by Ĥq = N̂0, thus
resulting in the polar (P) state and twin-Fock (TF) state, with

FIG. 1. Quantum phases of an antiferromagnetic spin-1 BEC of
N = 300 atoms with zero magnetization, using the number variance
�ρ0 in spin-0 component. (a) Excited spectra with every 15 eigen-
values. The green dashed lines are the ESQPT lines. The red dashed
lines represent the mean-field energy E of a CSS (4) with ρ0 = 0.7.
(b) Ground state varies with q from TF, S to P.

ρ0 ≡ 〈N̂0〉
N = 1 and 0, respectively, in the positive and negative

q direction, associated with vanishing variance �ρ0 ≡ �N̂0
N ;

(ii) Ĥ0 ∝ Ŝ2 restores SO(3) symmetry in a narrow window of
|q| < c

N2 , resulting in the S ground state with S = 0 for even
N . State S is massively entangled typical of large variance
�ρ0, and with atoms evenly distributed among the magnetic
sublevels, representing a three-fragment mesoscopic quantum
state with ρ0 = 1

3 . In the thermodynamical limit of N → ∞,
the S state disappears and the QPT is characterized by a
first-order phase transition between the P and TF states.

The excited eigenspectra display a cumulation of avoided
crossings along E = Eg + |q| [green dashed lines in Fig. 1(a);
see the inset for a enlarged view], which correspond to
singularities in the density of states under the thermodynam-
ical limit. Thus we refer to the lines as the ESQPT lines
and the variances �ρ0 of the eigenstates in the vicinity of
these lines also achieves maximum values. The three phases
separated by these lines are labeled as P′, TF′, and BA′ (bro-
ken axisymmetry). While P′ and TF′ are named according
to the corresponding ground states, BA′ is named after the
highest-energy BA state [23,67], which possesses a transverse
magnetization perpendicular to the applied external field and
thus breaks the SO(2) axisymmetry.

III. RELATION BETWEEN DPTs AND THE QFI

To explore the relation with equilibrium phase transitions,
we characterize DPTs with the QFI, which is defined as the
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fidelity susceptibility [64,68,69]

FQ(q, t ) = −4
∂2F (q, δq, t )

∂ (δq)2

∣∣∣
δq→0

, (2)

where the fidelity F (q, δq, t ) ≡ |〈ψ (q, t )|ψ (q + δq, t )〉| =
|〈ψ0|eiĤ (q)t e−iĤ (q+δq)t |ψ0〉| is actually the Loschmidt echo,
and it measures the revival of a state |ψ0〉 experiencing
time-forward propagation under Ĥ (q) followed by reversed
evolution with Ĥ (q + δq). One can expect that when the
system becomes critical with q → qc, the quantum state evo-
lution behaves singularly and exhibits quite distinct results
even for a small δq, resulting in prominent decrease of the
fidelity and a high FQ. An approximate long-time secular
analytic expression for the QFI can be found in Appendix B
as

FQ(q, t ) 
 4t2

⎡
⎣∑

n

|cn|2
(
Hn

q

)2 −
(∑

n

|cn|2Hn
q

)2
⎤
⎦, (3)

where cn = 〈ψn|ψ0〉 is the projection of the initial state |ψ0〉
onto the eigenstates |ψn〉 of the Hamiltonian (1), and Hn

q =
〈ψn|Ĥq|ψn〉. Equation (3) indicates that a peak in the QFI
can be attributed to either enhanced fluctuations in the order
parameter (Hn

q = Nn
0 = 〈ψn|N̂0|ψn〉) or those in the overlaps

between the initial state and the eigenstates.
To achieve the correspondence between DPTs and equilib-

rium phase transitions, one would expect that the overlap be-
tween the initial state and system eigenstates |cn|2 has similar
singular distribution to the order parameter around the energy
Ec

n (an excited eigenstate will however give zero value of FQ).
Among many possible choices of initial state, we propose to
use coherent spin state (CSS) |ζ 〉⊗N , with |ζ 〉 ≡ ∑

m ζm|m〉
and ζ = (

√
1−ρ0+ρm

2 eiχ+ ,
√

ρ0,
√

1−ρ0−ρm

2 eiχ− )T , where ρm =
N1−N−1

N , χ± = θs±θm
2 with θs(m) the spinor phase and mag-

netization phase, respectively. CSS can be visualized by
casting the corresponding mean-field phase diagram at dif-
ferent q into the spin-nematic phase sphere {S⊥, Q⊥, 2ρ0 −
1} with the transverse spin S⊥ =

√
〈Ŝx〉2 + 〈Ŝy〉2 and trans-

verse off-diagonal nematic moment Q⊥ =
√

〈Q̂xz〉2 + 〈Q̂yz〉2

[70], where the quadrupole operators Q̂i j ≡ â†
α[SiS j + S jSi −

(4/3)δi j]âβ (the indices α, β are summed over m). In the
thermodynamical limit, the dynamics of an initial CSS is char-
acterized by its equal-energy trajectories of the spin-nematic
component on the sphere. As shown in Fig. 2(a), on the
positive q side it can be tuned from that in the P′ phase space
(white line), the separatrix dividing the BA′ and P′ phase space
(red line linked to the unstable hyperbolic point n0 = 0), and
that in the BA′ phase space (yellow line). Similar transitions
from BA′ to TF′ phase can take place at q < 0. The spin
dynamics can be denoted as coherent oscillation with varying
amplitude and period, while for a CSS which is initially local-
ized at the separatrix, it will become singular with diverging
period [71].

Taking the CSS with {ρ0 = 0.7, ρm = 0, θs = θm = 0} as
an example [whose mean-field energy E is shown as the red
dashed line in Fig. 1(a)], at the intersections with the ESQPT
line on q = 0.6c (E = Ec = Ec

n |N→∞), for a finite system it
represents a distribution on the surface of the spin-nematic

FIG. 2. (a) Slice of the phase diagram Fig. 1 at q = 0.6c cast
into the {S⊥, Q⊥, 2ρ0 − 1} spin-nematic sphere, where the separatrix
(E = Ec, red line) separates trajectories in the BA′ phase (E > Ec,
yellow) from those in the P′ phase (E < Ec, white), and a distribution
(the blue, gray, and green circles) represents a CSS on the sphere
with ρ0 = 0.6, 0.7, 0.8, respectively. Eigenstate overlap |cn|2 with
these CSSs are plotted (right axis), associated with the eigenstate
normalized population ρn

0 (left axis, purple curve). (b) Time evolution
of the QFI FQ as a function of q. (c) Phase diagram in the q-ρ0 plane
computed with FQ at ct = 103. Green dashed curves refer to ESQPT
lines. (d) FQ calculated at ct = 103 versus q (left axis) with an initial
P state (blue curve), and an initial TF state (brown curve). The
corresponding dashed curves represent time-averaged population in
spin-0 component ρ0(t )|t→∞ (right axis).

sphere with uncertainty equal to SQL (1/
√

N) and center
located on the separatrix, which is marked as a gray circle
in Fig. 2(a). Since the mean-field energy of the CSS equals
that of the critical saddle point, it is closer to the eigenstate
at which ESQPT takes place as compared with other higher
(blue circle for ρ0 = 0.6) or lower energy CSS (green circle
for ρ0 = 0.8), resulting in the nonanalytical features of |cn|2
at Ec

n (gray line), which are not captured by other CSSs in the
P′ or BA′ phase (green line and blue line).

We use the CSS as the initial state to simulate QFI (2)
with atom number N = 1000 (see Appendix A for details
about numerical methods) and present the dynamical behavior
of FQ/N (ct )2 versus q in Fig. 2(b), where the normalization
with respect to t2 is chosen to absorb the expected long-time
growth of FQ ∝ t2. Around the critical points qc = −1.4c and
0.6c, a prominent increase in the QFI can be observed, which
correspond to the cases where the CSS is centered on the
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separatrix, linked to the saddle point ρ0 = 1 and ρ0 = 0, re-
spectively. This suggests that the quantum dynamics exhibits
abrupt change around the critical points and thus the QFI can
serve as an indicator of ESQPTs. These two QFI peaks in
the long-time limit separate the parameter space into three
regions, i.e., the BA′, TF′, and P′ phase, respectively. Apart
from the phase transition region, the QFI displays damped
oscillations.

Motivated by the feasibility that ESQPTs can be distin-
guished via the QFI, we map out the excited-state phase
diagram by varying the initial CSS. One simple choice is to
keep ρm = 0, θs = θm = 0 while varying the value of ρ0. For
such a state the ESQPT lines display a monotonic relation
with ρ0 as qc = 2(1 − ρ0) in the positive q region and qc =
−2ρ0 in the negative q region. The preparation of such a CSS
can be described by the formula

|ζ 〉⊗N
initial = 1√

N!
(ei θ

2 Q̂yz â†
0e−i θ

2 Q̂yz )N |vac〉, (4)

with cos θ = √
ρ0 and sin θ = √

1 − ρ0. In experiments,
Eq. (4) corresponds to a process in which one could first
prepare the atoms in the m = 0 hyperfine state and then apply
a combination of magnetic field ramps and resonant radio-
frequency (rf) pulses [72] to implement polar-state rotation
using the quadrupole operator Q̂yz. Using the value of FQ in the
long-time limit at ct = 103, the excited-state phase diagram is
mapped out in the q-ρ0 plane, as shown in Fig. 2(c). The verti-
cal axis of ρ0 is reversed in the right half (q > 0) with respect
to the left half (q < 0) in order to make a comparison with the
phase diagram in Fig. 1(a). The jump discontinuities signaling
the ESQPTs (green dashed lines) can be well captured. One
can also notice that the QFI in the vicinity of |q| = 2c is
typically much smaller than that around q = 0, which can be
traced to the properties of variance �ρ0 calculated in Fig. 1(a).

As for the DPT in ground states, the QFI in the long-time
limit is calculated with initial P or TF state, respectively,
which turns out to display a peak value at q 
 ±c/N , as shown
in Fig. 2(d). These QFI peaks correspond to the QPTs of
P → S and TF → S. For the time-averaged order parameter
ρ0(t )|t→∞ ≡ limT →∞ 1

T

∫ T
0 ρ0(t )dt = ∑

n |cn|2Nn
0 /N , shown

as the dashed lines, they do not display any nonanalyticity for
the present small-size mesoscopic quantum system.

IV. PROTOCOL FOR PARAMETER ESTIMATION

Despite that in principle the QFI can be measured via per-
forming many-body quantum state tomography, or measuring
the excitation rate of a quantum state upon a periodic drive
[73–75], it would be complex to implement for a quantum
system of hundreds of atoms [39], and the requirement of
real-time measure further prevents the feasibility of direct
derivation of the QFI. In the estimation theory, the QFI sets the
upper bound on the sensitivity of parameter estimation, i.e.,
�q � 1/

√
FQ(q, t ), which is termed as the quantum Cramér-

Rao bound [68]. Thus one can get access to the estimation
precision (�q)−2 through an observable Ô as

(�q)−2
Ô = |∂q〈Ô〉|2

�2Ô
� FQ, (5)

FIG. 3. (a) Maximum of the normalized estimation precision
(�q)−2

Q̂yz
over time as a function of q. The arrow indicates the preci-

sion peak around q 
 0.67c, with the corresponding time evolution
shown in the inset. The dashed lines are those for the QFI, which set
the upper bound of the precision. (b) Schematic showing the protocol
of echo for parameter estimation. (c) Density plot from the truncated
Wigner approximation simulation on the inset of (a), where time is
chosen to be that the optimal precision is achieved, at ct 
 4.88.
The scale is taken to be 100 atoms and the separatrix is shown in
green curve. Left panel: Distribution of the initial CSS on the S′

x-Qyz

space with uncertainty ellipse shown in black curve. Middle panel:
Distribution on the S⊥-Q⊥ space after the time-forward propagation.
Right panel: Distribution at the end of the echo. The uncertainty
ellipse (black solid curve) shifts in the Qyz direction as compared
with that of the initial state (black dotted curve). All calculations are
for N = 300.

with �2Ô = 〈Ô2〉 − 〈Ô〉2 representing the variance with re-
spect to the initial state |ψ0〉. Equation (5) indicates that the
value of (�q)−2

Ô can approach FQ with an appropriately cho-

sen observable. SQL corresponds to (�q)−2
SQL = Nt2.

Considering that optimal precision is more likely to be
achieved for an observable with small variance, instead of
the order parameter N̂0, we propose to use the quadrupole
operator Q̂yz as the observable (note that Q̂yz is also found to
determine the best precision in a spin-1 condensate interfer-
ometry [76]). While Ŝx and Q̂yz construct a pair of observables
exhibiting spin-nematic squeezing for an initial P state [77],
Ŝ′

x = exp(i θ
2 Q̂yz )Ŝx exp(−i θ

2 Q̂yz ) and Q̂yz are those for the
CSS (4) through a unitary transformation [78]. The initial state
then constitutes a minimum uncertainty state for Ŝ′

x and Q̂yz,
as shown in the left panel of Fig. 3(c). Similar to the definition
of the QFI in (2), the precision estimation also invokes an echo
process, which is illustrated in Fig. 3(b). We use the truncated
Wigner approximation to derive the variation of Qyz after the
echo (see Appendix A), from which the maximum values of
(�q)−2

Q̂yz
are found and they synchronize well with the behavior

of FQ, as shown in Fig. 3(a).
In Fig. 3(a) we take the CSS (4) with ρ0 = 0.7 as the initial

state. A small deviation between the peaks of (�q)−2
Q̂yz

and the
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mean-field prediction exists, as indicated by the arrow, where
the peak locates around q 
 0.67c instead of the mean-field
critical value of qc = 0.6c, and this can be attributed to the
transient and finite-size effects. FQ can be well approximated
by (�q)−2

Q̂yz
, and around the critical qc the QFI scaling beats the

SQL sensitivity (�q)−2
SQL ∼ N (see Appendix C for scaling of

the QFI). These indicate that a parameter estimation precision
beyond SQL can be achieved with the onset of criticality. We
have verified that this result remains essentially unchanged
when ρ0 is varied for the initial state, in which the critical
points accordingly vary as those have been demonstrated in
Fig. 2(c). By varying ρ0 from 0 to 1, the corresponding
qc varies in the region of [−2c, 2c], with the QFI scaling
exponents typically taking a value ∈ [1.3, 1.5]. The precise
estimation of the critical qc can then be extended to a much
wider parameter region beyond those at which ground state
QPTs take place [61,62].

To understand the physics beneath the enhanced sensing,
we explore the echo process during which (�q)−2

Q̂yz
reaches

its peak value [the inset of Fig. 3(a)]. After a time-forward
evolution under Ĥ (q), the atomic state is dispersed along the
separatrix, with its majority surpassing the saddle point, as
shown in the middle panel of Fig. 3(c). Noticeably, part of
the quasiprobability distribution even leaves the separatrix and
enters into the P′ phase space. This is due to that the motion
near the separatrix is apt to phase-space mixing [79]. At the
end of the echo after experiencing a time-reversing evolution
under Ĥ (q + δq), the state approximately recovers the initial
CSS [right panel of Fig. 3(c)], with a small shift in the Qyz

component (compare the uncertainty ellipse of initial and
final states, marked by dotted and solid lines, respectively).
A small perturbation in the control parameter [δq = 10−3c
in Fig. 3(c)] can give rise to non-negligible variation in the
observable, and this is rooted in the sensitive dependence of
quantum-state evolution in the deformation of the separatrix,
which is well captured through an echo process near the criti-
cal points.

V. CONCLUSION

In summary, we have shown the existence of QPTs
and ESQPTs in an antiferromagnetic spin-1 condensate and
demonstrated their correspondence with DPT, which is char-
acterized using the QFI. We propose that DPT with the
condensate initially prepared in a CSS can be used to probe the
quantum criticality in excited states, which gives rise to a peak
value of the QFI. It can also be used to implement sub-SQL
estimation on the effective quadratic Zeeman energy q. It is
interesting to note that the ground-state phase transitions from
symmetry-broken states to the symmetry-restored spin-singlet
state can also be indicated by the DPT. Though we have
focused on the system of the spinor condensate, the method
of exploring ESQPTs presented here can be applied to a broad
class of few-mode quantum systems.

ACKNOWLEDGMENTS

We thank Han Pu for careful reading on the manuscript
and Keye Zhang for useful discussions. This work is

supported by the Innovation Program for Quantum Science
and Technology (Grant No. 2021ZD0303200), the National
Key Research and Development Program of China (Grant
No. 2016YFA0302001), the National Natural Science Foun-
dation of China (Grants No. 12074120, No. 11374003, No.
11654005, No. 12234014, No. 12005049, and No. 11935012),
the Shanghai Municipal Science and Technology Major
Project (Grant No. 2019SHZDZX01), the Innovation Program
of the Shanghai Municipal Education Commission (Grant
No. 202101070008E00099), and the Fundamental Research
Funds for the Central Universities. W.Z. acknowledges ad-
ditional support from the Shanghai Talent Program. L.Z.
acknowledges additional support from the Natural Science
Foundation of Shanghai (Grant No. 20ZR1418500).

APPENDIX A: NUMERICAL METHODS

The phase diagram presented in Fig. 1 is obtained using
the exact diagonalization method. Due to the presence of the
SO(2) symmetry in the Hamiltonian [80], the generator Ŝz is
conserved; i.e., the magnetization M is a conserved quantity.
Then the Hamiltonian matrix Ĥ written in the |N0, M〉 ≡
|N1 = N−N0+M

2 , N0, N−1 = N−N0−M
2 〉 basis is block diagonal,

for which there are 2N + 1 blocks with the value of M running
from −N to N and each block has a dimension [ N−M

2 + 1] ×
[ N−M

2 + 1] (here [·] means taking the integer part). Each block
matrix is tridiagonal and can be diagonalized separately, and
in Fig. 1 a block matrix with M = 0 is dealt with.

To simulate the quantum Fisher information presented in
Fig. 2 we compute the time-evolved state |ψ (q, t )〉 with eigen-
state expansion. The initial state of the system is described by
a coherent spin state |ζ 〉⊗N with (assuming ρ+1 = ρ−1)

ζ =
⎛
⎝ζ+1

ζ0

ζ−1

⎞
⎠ =

⎛
⎜⎜⎝

√
1−ρ0

2 eiφ+1

√
ρ0eiφ0√

1−ρ0

2 eiφ−1

⎞
⎟⎟⎠, (A1)

where equal population in the spin-±1 sublevels is assumed.
|ζ 〉⊗N can be written in the Fock basis as

|ζ 〉⊗N = 1√
N!

(ζ+1â†
+1 + ζ0â†

0 + ζ−1â†
−1)N |0〉, (A2)

which can be expanded in the Fock basis |N0, M〉 as |ζ 〉⊗N =∑
N0,M

f (N0, M )|N0, M〉 with the coefficient

f (N0, M ) =
√

N!

N1!N0!N−1!

(√
1 − ρ0

2

)N−N0

(
√

ρ0)N0

× exp [i(N1φ+1 + N0φ0 + N−1φ−1)]. (A3)

Some spin operators such as Q̂yz couple blocks of different
M, which makes the matrix size very large and it is inconve-
nient to perform simulation. We adopt truncated the Wigner
approximation to study the dynamics [81–84] and obtain the
results presented in Fig. 3. The truncated Wigner approxima-
tion states that the Wigner function W for a quantum state
approximately follows the equation

ih̄
∂W

∂t

 {HW ,W }C, (A4)
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where HW is the Wigner-Weyl transform of the Hamiltonian,
and {· · · }C is the coherent-state Poisson bracket. Similarly in
the coherent-state picture we treat the operators â j (â†

j ) as
complex c-numbers α j (α∗

j ), and making Wigner-Weyl trans-
form to the Heisenberg equations we have

ih̄
∂α j

∂t

 {α j, HW }C = ∂HW

∂α∗
j

. (A5)

The truncated Wigner approximation then invokes first sam-
pling the Wigner distribution W with many sets of {α j, α

∗
j },

and then for each set we solve the equation of motion (A5).
Any observable of interest is obtained from the ensemble
average. To sample |ζ 〉⊗N , we first sample the polar state

1√
N!

â†N
0 |vac〉 with

⎛
⎝ α1

α0

α−1

⎞
⎠ =

⎛
⎝ (a + ib)/2

(e + f η)ei2πξ

(c + id )/2

⎞
⎠, (A6)

where a, b, c, d, η are independent random numbers drawn
from a Gaussian distribution with zero mean and unit vari-
ance, while ξ is a random number drawn from uniform
distribution in [0, 1], and [85]

e = 1

2

√
2N + 1 + 2

√
N2 + N, f = 1

4e
. (A7)

Unitary transformation to the coherent spin state is equivalent
to performing the rotation

⎛
⎜⎝

cos θ+1
2

sin θ√
2

cos θ−1
2

− sin θ√
2

cos θ − sin θ√
2

cos θ−1
2

sin θ√
2

cos θ+1
2

⎞
⎟⎠

⎛
⎝ α1

α0

α−1

⎞
⎠ (A8)

with cos θ = √
ρ0 and sin θ = √

1 − ρ0 .
We sample a system of N = 300 with 1000 trajectories.

It has been compared with the exact quantum mechanical
calculations regarding the expectation values and variances of
different spin operators, where good agreements are found.
The truncated Wigner approximation is capable of simulating
quantum dynamics on a short timescale, which is enough for
us to produce Fig. 3 in the main text. However it will deviate
significantly from the exact quantum mechanical calculations
when the evolution time becomes large, due to the omitted
high-order terms.

APPENDIX B: SECULAR APPROXIMATION
OF THE QUANTUM FISHER INFORMATION

The quantum Fisher information (QFI) can be written in a
tensor form as [86]

FQ(q, t ) = 4(〈∂qψ |∂qψ〉 − |〈ψ |∂qψ〉|2), (B1)

where |ψ〉 = |ψ (q, t )〉 = e−iĤt |ψ0〉. If Ĥ = qĤq, one can
immediately realize that FQ(q, t ) = 4t2�2Ĥq with the
variance �2Ĥq = 〈ψ0|Ĥ2

q |ψ0〉 − |〈ψ0|Ĥq|ψ0〉|2. Recognizing

Ĥ = Ĥ0 + qĤq and [Ĥ0, Ĥq] �= 0, we use the identity [87]

exp(iĤt )
∂

∂q
exp(−iĤt )

= −i
∫ t

0
dt ′ exp(iĤt ′)

∂Ĥ

∂q
exp(−iĤt ′)

= −iĤq, (B2)

where Ĥq = ∫ t
0 dt ′ exp(iĤt ′)Ĥq exp(−iĤt ′) and this leads to

FQ(q, t ) = 4�2Ĥq. Usually, it is not easy to work out the ex-
plicit form of Ĥq except that the Hamiltonian belongs to some
special classes [60]. Using the expansion |ψ0〉 = ∑

n cn|ψn〉,
in which |ψn〉 is the eigenstate of Ĥ with the corresponding
eigenenergy En, we can get

FQ(q, t ) = 4t2

⎡
⎣∑

n

∣∣∣∣∣
∑

m

cmHnm
q sinc

(
Enmt

2

)
eiEnmt/2

∣∣∣∣∣
2

−
∣∣∣∣∣∣
∑
n,m

c∗
ncmHnm

q sinc

(
Enmt

2

)
eiEnmt/2

∣∣∣∣∣∣
2
⎤
⎥⎦, (B3)

where Enm = En − Em. In the long-time limit, the sinc func-
tion gives the value of 1 with Enm = 0 and zero otherwise.
Using an assumption that only the terms with Enm = 0 sur-
vive in the t → ∞ limit [64] and considering the fact that
the spectrum of Ĥ is nondegenerate, the QFI (B3) can be
approximated by (3).

We found out that the approximation is quantitatively valid
in a moderately long time. From the viewpoint of phase-space
mixing [79], a distribution in phase space will eventually mix
up in the energy region it could reach, which will reduce its
distinguishability. The distinguishability of a quantum state
with respect to the change of Hamiltonian parameters, as
characterized by the QFI, is also expected to become coarse
in the long-time run.

APPENDIX C: SCALING OF THE QUANTUM FISHER
INFORMATION

As the standard quantum limit (SQL) corresponds to �q =
1/

√
N while in the Heisenberg limit �q = 1/N , it is impor-

tant to know the scaling of the QFI with system size for
understanding whether the dynamical phase transition cor-
responding to excited-state quantum phase transition can be
used to implement criticality-enhanced sensing beyond the
SQL. The properties of the initial state and associated phase
transitions play a central role in dynamical phase transitions,
and thus also affect the QFI scaling. Here we illustrate this
with the example studied in the main text; i.e., the system is
prepared in an initial coherent spin state with {ρ0 = 0.7, ρm =
0, θs = θm = 0}. With this initial state, the dynamical phase
transitions corresponding to excited-state quantum phase tran-
sitions are expected to take place at qc = −1.4c and 0.6c in
the N → ∞ limit.

We then study the QFI scaling around these two critical
points. The results are demonstrated in Fig. 4(a), in which
the maximum QFI (dots linked by solid lines) are numeri-
cally derived around critical points of qc = −1.4c (square)
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FIG. 4. Scaling of the QFI. (a) F max
Q versus N around qc = −1.4c

(square) and qc = 0.6c (circle). The numerical and analytical results
are represented by those linked by solid and dashed lines, respec-
tively. (b) FQ scaled by N7/5 as a function of q.

and qc = 0.6c (circle) in the long-time limit (ct = 1000).
Compared with the long-time analytical results predicted by

(3) (dots linked by dashed lines), we found that the scalings
around the negative qc are almost identical. On the other hand,
while the analytical QFI is slightly larger than the numerical
results around the positive qc, their scaling behaviors (slope
of the line) coincide. The differences between analytical and
numerical results are due to the coarse of quantum-state dis-
tinguishability in the long-time run, as discussed at the end of
Appendix B.

From data fitting on numerical results we extract the scal-
ing exponent of the QFI, which gives the values of 1.37
and 1.47, respectively, for the dynamical phase transitions
on the negative and positive q side. That the scaling expo-
nent is larger than 1 indicates the feasibility of achieving
a q-estimation precision beyond SQL as (�q)−2 ∼ FQ >

(�q)−2
SQL. In Fig. 4(b) we demonstrate the QFI scaling as a

function of q. Noticeably, the peak of the QFI shifts to a value
larger than the positive qc for small system size N ; this is
due to the finite-size effect which has also been illustrated in
Fig. 3.

APPENDIX D: EXPERIMENTAL CONSIDERATION

The echo included first evolves an initial state |ψ0〉 forward
with Ĥ (q) and then backward with Ĥ (q + δq). To implement
this, one needs to reverse the sign of the Hamiltonian Ĥ =
Ĥ0 + qĤq such that the system can experience time-reversing
evolution. In experiments, the sign of the control parame-
ter q can be varied via microwave dressing [65,66,88]. On
the other hand, the sign of Ĥ0 is determined by the spin-
dependent interaction coefficient c, which may be reversed via
transferring the atoms from the F = 1 hyperfine manifold to
that of F = 2 [89]. Another promising technique that could
be exploited is the photon-mediated spin-exchange interac-
tion, which was experimentally realized recently with the aid
of a cavity light field [90–92]. Other methods capable of
manipulating spin-dependent collision interactions, such as
photoassociation [93], also exist.
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[33] C. B. Dağ, S.-T. Wang, and L.-M. Duan, Classification of
quench-dynamical behaviors in spinor condensates, Phys. Rev.
A 97, 023603 (2018).

[34] T. Tian, H.-X. Yang, L.-Y. Qiu, H.-Y. Liang, Y.-B. Yang,
Y. Xu, and L.-M. Duan, Observation of Dynamical Quan-
tum Phase Transitions with Correspondence in an Ex-
cited State Phase Diagram, Phys. Rev. Lett. 124, 043001
(2020).

[35] P. Feldmann, C. Klempt, A. Smerzi, L. Santos, and M. Gessner,
Interferometric Order Parameter for Excited-State Quantum
Phase Transitions in Bose-Einstein Condensates, Phys. Rev.
Lett. 126, 230602 (2021).

[36] J. Cabedo, J. Claramunt, and A. Celi, Dynamical preparation
of stripe states in spin-orbit-coupled gases, Phys. Rev. A 104,
L031305 (2021).

[37] J. Cabedo and A. Celi, Excited-state quantum phase transitions
in spin-orbit-coupled Bose gases, Phys. Rev. Res. 3, 043215
(2021).

[38] L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Dynamics in
spinor condensates tuned by a microwave dressing field, Phys.
Rev. A 89, 023608 (2014).

[39] B. Evrard, A. Qu, J. Dalibard, and F. Gerbier, Observation of
fragmentation of a spinor Bose-Einstein condensate, Science
373, 1340 (2021).

[40] C. K. Law, H. Pu, and N. P. Bigelow, Quantum Spins Mixing
in Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 81, 5257
(1998).

[41] S. Peotta, F. Brange, A. Deger, T. Ojanen, and C. Flindt, Deter-
mination of Dynamical Quantum Phase Transitions in Strongly
Correlated Many-Body Systems Using Loschmidt Cumulants,
Phys. Rev. X 11, 041018 (2021).

[42] T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Dynamics
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