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The scattering of atomic nitrogen over a N-pre-adsorbed W(100) surface is theoretically described
in the case of normal incidence off a single adsorbate. Dynamical reaction mechanisms, in partic-
ular Eley-Rideal (ER) abstraction, are scrutinized in the 0.1–3.0 eV collision energy range and the
influence of temperature on reactivity is considered between 300 and 1500 K. Dynamics simulations
suggest that, though non-activated reaction pathways exist, the abstraction process exhibits a signif-
icant collision energy threshold (0.5 eV). Such a feature, which has not been reported so far in the
literature, is the consequence of a repulsive interaction between the impinging and the pre-adsorbed
nitrogens along with a strong attraction towards the tungsten atoms. Above threshold, the cross sec-
tion for ER reaction is found one order of magnitude lower than the one for hot-atoms formation.
The abstraction process involves the collision of the impinging atom with the surface prior to reac-
tion but temperature effects, when modeled via a generalized Langevin oscillator model, do not affect
significantly reactivity. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742815]

I. INTRODUCTION

The adsorption and desorption of gas-phase
atoms/molecules as well as their recombination on surfaces
are decisive processes in the chemistry of atmospheric1, 2

and interstellar media,3, 4 the behavior of thermal shields
facing plasma—spacecrafts5 and internal partitions of
tokamaks6, 7—the treatment of fuel combustion residuals5

and the heterogeneous catalysis industry.8–10

From the theoretical point of view, molecular dynam-
ics simulations have been widely used in the last decades
to help rationalizing such elementary processes.11 In par-
ticular, the interaction of N2 molecules with tungsten has
attracted interest12–23 as a benchmark system for heteroge-
neous reactivity of heavy diatomic molecules. N2 scatter-
ing on metals, a key step in ammonia synthesis,8, 10 leads
to strong surface crystallographic anisotropies in the case of
tungsten.12, 13, 17, 21–23 Consequently, dissociative adsorption
and inelastic scattering of N2 diatoms on surfaces of different
crystallographic orientations have been extensively studied,
both theoretically15, 16, 18–23 and experimentally.24–28 Besides
this fundamental aspect, N2/W reactivity is of renewed tech-
nological interest within the context of nuclear fusion.29–31

Due to the strong interaction of nitrogen atom with tungsten
surfaces, about 7.4 eV for W(100),15 Langmuir-Hinshelwood
(LH) (Refs. 9 and 32) recombination is largely endothermic
by more than 4.8 eV and thus expected to play a minor role
up to high temperatures.33 On the opposite, Eley-Rideal (ER)

a)p.larregaray@ism.u-bordeaux1.fr.

reactions,9, 32 for which molecular formation results from di-
rect abstraction of one (thermalized) adatom by one atom
originating from the gas-phase, are significantly exothermic
by about 2.4 eV (Refs. 15 and 16) and may consequently oc-
cur when the density of gas-phase atoms is non negligible,
e.g., in low temperature plasma.34 Nevertheless, to the best of
our knowledge, N2 abstraction from tungsten surfaces has not
been studied neither theoretically nor experimentally so far.

Though theoretically proposed in the late 1940s,35–37

such ER processes, characterized by sub-picosecond reac-
tion times and highly excited products, have only been ev-
idenced experimentally in the 1990s, within the framework
of H2 recombination on metals.38–40 They usually lead to
small cross sections and molecular recombination is primar-
ily governed by hot atom (HA) mechanisms.34, 41–54 In HA
reactions,34, 55 the gas-phase atom transfers part of its colli-
sion energy to one adsorbate and/or the metallic surface upon
initial collision and is subsequently deflected towards a mo-
tion mostly parallel to the surface. Consequently, depending
on surface coverage, such a hot species may react with another
adatom before being thermalized. Depending on the compe-
tition between recombination and thermalization, HA reac-
tions are characterized by dynamical features similar to ER
(short reaction times) or LH (infinite reactions times) pro-
cesses. Within the framework of H2 recombination on met-
als, the HA channel is usually more probable than the ER
one by about one order of magnitude.50, 51, 53, 56 In this work,
we theoretically study the dynamics of ER recombination
and HA formation upon scattering of a nitrogen atom under
normal incidence off a single adsorbate within the framework
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FIG. 1. Top left: Coordinate system and W(100) unitary cell. The Cartesian reference frame is originated on a tungsten top surface atom (grey circles). Black
circles represent nitrogen atoms. The plane perpendicular to the surface and containing the diagonal of the unit cell is highlighted. Top right and bottom: 2D
cuts of the PES as a function of projectile altitude (Zp) and impact parameter (b) within the diagonal plane. The FPLEPS model and DFT (PW91,RPBE)
calculations are compared. The thick black line indicates the zero energy level, taken as the N atom adsorption energy. Full lines (dashed lines) are positive
(negative) isovalues, separated by 0.1 eV (0.2 eV), δ = 3.175 Å.

of frozen and moving unreconstructed W(100) surfaces. The
W(100) surface is known to undergo a structural phase transi-
tion below 200K (Refs. 57 and 58) leading to a c(2x2) zigzag
surface-atoms arrangement. At higher temperatures, the un-
reconstructed 1x1 surface structure is observed. Such fea-
tures are correctly accounted for by density functional theory
(DFT) calculations.59 In this work, we only consider the un-
reconstructed surface and analyze temperature effects above
200K. The study mainly focuses on the rationalization of the
reaction pathways leading to N2 and HA formation and their
evolution with collision energy and surface temperature.

The paper is organized as follows. Section II presents
methodological details. Sections III A and III B present and
discuss the results for the rigid and non-rigid models, respec-
tively. Finally, we summarize and conclude in Section IV.

II. METHODOLOGY

We model the normal incidence scattering of a nitro-
gen atom (projectile) off a single nitrogen adsorbate (target)
on the W(100) surface using classical molecular dynamics.
Within the frozen surface approximation, the reaction occurs
in a 6-dimensional configuration space (3 degrees-of-freedom
for each atom). Simulating the dynamics accounting for all
the degrees-of-freedom is known to be crucial in gas-surface

elementary processes.60, 61 The coordinates of both nitrogen
atoms are referred in a Cartesian reference frame, originated
on a tungsten top surface atom. This frame as well as the
W(100) unit cell are sketched in Fig. 1 (top left). The unre-
constructed W(100) surface unit cell is a square, of lattice
constant δ = 3.175 Å. The “z” axis is defined normal to the
surface and the “x” and “y” axes lie along the square axes. The
surface is considered to be infinite and periodic in the (x, y)
dimensions. The plane perpendicular to the surface and con-
taining the diagonal of the unit cell, of particular importance
in the following, is highlighted in the figure.

In the last fifteen years, quasi-classical trajectory (QCT)
simulations, relying on the ground adiabatic electronic
state, have been extensively used to investigate elementary
gas-surface reaction dynamics,11 in particular Eley-Rideal
recombinations.41–54, 62, 63 For processes involving at least one
hydrogen atom, such a classical scattering approach has pro-
vided results in fair agreement with quantum scattering calcu-
lations in reduced dimensionalities.42, 43, 50, 53, 62–73 Due to the
high mass of the nitrogen atoms considered in this work with
respect to hydrogen, the classical approximation for atomic
motions is expected to hold even better.

Within the Born-Oppenheimer approximation, the
N+N/W(100) recombination process is supposed to take
place on the ground adiabatic electronic state. Electron-hole
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(e-h) pair excitations are thus ignored. Such non-adiabatic
effects have been shown to negligibly influence the N2 disso-
ciation and scattering dynamics on tungsten surfaces61, 74–77

as well as N scattering and short-time adsorption dynamics
on Ag(111).78, 79 Though suggested to be weak in the case of
H2 recombination on Cu(111),80 due to the ultrafast reaction
time, the influence of e-h pairs on ER dynamics has not
been intensively studied to date from the theoretical point of
view.

In this work, the potential energy surface (PES) is
a flexible periodic London–Eyring–Polanyi–Sato potential
(FPLEPS). This recently developed improved version of the
LEPS potential is now able to accurately describe the scat-
tering and dissociative adsorption of nitrogen molecules on
tungsten.21–23 Such a global PES, in which all asymptotic
channels are physically correct, is so far restricted to the de-
scription of two nitrogen atoms, i.e., one adsorbate within the
framework of ER abstraction (zero coverage limit). Figure 1
illustrates the topology of the FPLEPS PES (top right) in
the Eley–Rideal entrance channel in comparison with DFT
(Refs. 81 and 82) calculations. Two-dimensional (2D) cuts
are displayed as a function of the projectile altitude (Zp)
and impact parameter (b) within the above-mentionned
diagonal plane, the adatom siting at its hollow adsorp-
tion site (Zt = 0.65 Å) which is found to be the low-
est adsorption energy site.16 Impact parameters are given
with respect to the adsorbate equilibrium position. DFT
energies are computed within the generalized gradient
approximation83–90 and using the PW91 (bottom left) and
RPBE (bottom right) exchange-correlation functionals84, 91–95

and ultrasoft pseudopotentials.96–98 The surface has been
modeled by a five-layer slab. DFT computation details are
given elsewhere.16

As evidenced in Fig. 1, the ER entrance channel involves
a potential energy bump located above the adsorbate which
vanishes with increasing impact parameters. The N–N inter-
action is thus repulsive in the medium range (2.5 Å–3.5 Å)
upon approach of the projectile towards the adatom for im-
pact parameters lower than 1.0 Å. In the ab initio data, this
repulsion is higher when using the RPBE functional. This is
consistent with other DFT calculations in which such a func-
tional has been found to lead to more pronounced medium
range barriers when compared with the PW91 one.20 Below
Zp = 2.5 Å, the interaction is highly attractive towards the
tungsten top atoms. Such an interaction is greater when using
the PW91. The FPLEPS 2D cut quite nicely reproduces the
ab initio data. In particular, the topology of the ER entrance
channel is qualitatively captured, with the height/extension of
the bump being intermediate between the ones resulting from
the use of RPBE and PW91 functionals. Given the reasonable
agreement between the three PESs, the conclusions inferred in
the following are expected to be at least of qualitative value.

Despite the existence of the entrance channel potential
energy bump, non-activated reaction pathways exist for ER
abstraction. As an illustration, a 2D cut of the PES as the
function of the altitude of both the target (Zt) and projectile
(Zp) is displayed in Fig. 2 for b = 1.09 Å impact parameter
in the diagonal direction. The potential energy along the red
line (inset of Fig. 2) is lower than the reactant asymptote all

FIG. 2. 2D cut of the FPLEPS PES as a function of the altitude of both the
target (Zt) and projectile (Zp) for b = 1.09 Å impact parameter in the diago-
nal direction. The thick black line indicates the zero energy level, taken as the
N atomic adsorption energy. Full lines (dashed lines) are positive (negative)
and separated by 0.8 eV. Inset: Variation of the potential along the red line.
Distances are in Å.

along the path so that no activation energy is required for ER
abstraction.

QCT simulations have been performed in the following
way. The adsorbate initially sits at its equilibrium position,
i.e., at the center of the occupied cell with Zt = 0.65 Å above
the surface. The 56 meV zero point energy of the nitrogen
adatom (ZPE) is randomly shared between the 3 vibrational
modes, i.e., the adsorbate initial momentum is randomly ori-
ented. However, since the adsorption energy (7.37 eV) is high,
initial dynamical conditions of the target (ZPE or no energy
or Boltzmann distribution at surface temperature) have been
found to negligibly influence the ER recombination dynam-
ics. The projectile starts with normal incidence with respect
to the surface from Zp = 8.0 Å altitude. Taking advantage
of surface symmetry, the projectile initial coordinates (x, y)
are uniformly selected in an octant of the unitary cell. Classi-
cal equations of motions are integrated using a velocity Verlet
algorithm99, 100 with a � t = 0.121 fs time step and collision
energies are sampled within the range 0.1–3.0 eV. For each
collision energy 30 000 trajectories are run.

The exit channels definition is inspired from the one em-
ployed by Martinazzo et al. in Ref. 53. Trajectories are in-
tegrated up to the projectile’s first rebound, which is defined
as a sign change in the z linear momentum. Then, the N–N
distance is checked at each time step. If this distance gets
larger than the maximum value ascribable to the N2 diatomic
molecule, RN2 , the dynamical event is classified as HA for-
mation. RN2 is chosen large enough for the N–N interaction
to be negligible with respect to the N–W(100) one. As a con-
sequence, the total interaction energy reduces to the sum of
two separated atom-surface interactions. In practice, the re-
sults presented below are insensitive to the value of RN2 for
RN2 ≥ 2.5 Å in the case of the rigid surface. Two HA chan-
nels are considered depending on the final energy of both N
atoms. In the metastable HA process (mHA), the total energy
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FIG. 3. Opacity maps of initial coordinates (x, y) of the projectile leading to the different exit channels: reflection (magenta dots), absorption (black dots),
bound (cyan dots) and metastable (blue dots) HA formation, trapped molecules (green dots), and ER reactions (red dots) for 0.3 eV (left), 1.0 eV (center), and
2.6 eV (right) collision energy. The square represents the unitary cell in the center of which the nitrogen adatom is initially adsorbed. Distances are given in
units of δ = 3.175 Å.

of either nitrogen atom is greater than the minimum energy
to escape from surface attraction whereas in the bound HA
channel (bHA) both N atoms are trapped close to the surface.
Metastable HA trajectories are further integrated and clas-
sified as direct reflection (REF) if they do not involve any
additional rebound. The collision process is defined as ab-

sorption (ABS) if the z coordinate of any N atom gets lower
than −0.5 Å, which corresponds to the minimal potential en-
ergy barrier to diffuse into the surface (over the bridge site).
The Eley–Rideal recombination process is supposed to occur
when the z coordinate of both atoms gets greater than the ini-
tial altitude of the projectile with positive N2 center-of-mass
momentum along z. It is also required that such a momentum
only changes sign once along the entire trajectory. Otherwise,
the process is classified as trapped molecule formation (TM).
RN2 is a critical parameter of the analysis so that we checked
that the results presented in the following are insensitive to its
particular value above 2.5 Å.

Simulations have been first performed within the rigid
surface model. Then, to account for dissipation to phonons as
well as temperature effects, a generalized Langevin oscilla-
tor model101–104 has been used. In such a model the motion
of surface atoms is described through a 3D harmonic oscilla-
tor coupled to a thermal bath to take into account the energy
dissipated to the bulk. The mass associated with the surface
oscillator is the W atomic mass (see Ref. 103 and references
therein). The frequencies are chosen to represent the W(100)
surface phonons. Following Ref. 105, we have checked that
our results do not differ qualitatively when the frequencies
associated with surface oscillators are modified by 2 orders of
magnitude. Such a model has been found of reasonable valid-
ity for many gas-surface processes.78, 79, 105–107

III. RESULTS AND DISCUSSION

A. Rigid surface model

In this section, we focus on the N2 ER recombination
dynamics over a rigid W(100) surface. Nevertheless, part of
the conclusions drawn within this approximation proves valid
when energy transfers to the substrate are accounted for.

Figure 3 displays opacity maps, i.e., projections of the
projectile’s initial coordinates onto the surface unitary cell

(x, y), in the center of which the N target is adsorbed for 0.3,
1.0, and 2.6 eV collision energies. As described in the caption,
the color depends on the outcome for the collision following
the definition of the reaction channels from Sec. II. As energy
exchange with the surface is ignored so far, bound hot atoms
are formed by transferring all initial collision energy to the
target. In the opposite case, metastable hot atoms are created,
which eventually desorb.

At 0.3 eV collision energy—Fig. 3 (left)—the dynam-
ics is dominated by bound HA formation (cyan). However,
metastable HA (blue) are created due to direct impact over
the top tungsten atoms (4 corners) and over the target (center
of the occupied cell). Reflections (magenta) about the target
also appear, as a consequence of the potential energy bump
revealed in Fig. 1. Notice the absence of ER reactions (red)
at such low collision energies. At 1.0 eV—Fig. 3 (center)—
the reflections and HA formations initiated with impact pa-
rameters close to the adsorbate disappear. The relative impor-
tance of bound HA (cyan) formation decreases with respect
to the metastable HA (blue) channel. ER reactions now take
place for low impact parameter (b < 1.5 Å). At 2.6 eV colli-
sion energy—Fig. 3 (right)—the bound HAs (cyan) only re-
sult from impact close to the center of the occupied cell and
some collisions lead to direct absorption (black). The cross
sections for the different outcomes for the collision are pre-
sented in Fig. 4 (notice the different scale for left and right
plots).

The ER probability is very low compared to the prob-
ability for HA formations, in good agreement with previ-
ous results for hydrogen recombination on metals.50, 53 On
the spanned collision energy range, the cross sections for
ER and HA formation are lower than 0.4 Å2 and higher than
8.0 Å2, respectively. The metastable HA formation cross sec-
tion increases—while the one for bound HA decreases—as
projectile’s collision energy increases. This stems from the
fact that the proportion of energy transferred to the target
decreases while projectile’s velocity increases thus lowering
bound HA formation at the expense of metastable HA forma-
tion. Absorption and reflection increase with increasing col-
lision energy while trapped molecular formation remains low
and approximately constant over the whole energy range.

The ER recombination cross section increases
monotonously with collision energy above the 0.53 eV
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FIG. 4. Left: Cross sections for bound (bHA, circles), metastable (mHA,
triangles) HA formation and ER reaction (squares). Right: Cross sections
for trapped molecule formation (TM, circles), reflection (REF, triangles) and
absorption (ABS, squares) as a function of the projectile energy.

threshold. As can be seen from the opacity maps of Fig. 3
(red patterns), the impact parameters which lead to reaction
get larger with collision energy. ER recombination can be
divided into two contributions depending on the dynamics
of the abstraction process. ER1 contribution corresponds to
reactions for which the projectile motion is approximately
restricted to the above-mentioned diagonal plane in the
reactant channel (or the one cutting the two other corners of
the unit cell, equivalent by symmetry). ER2 process involves
more intricate out-of-plane dynamics. For 1.9 eV collision
energy, both contributions are presented in the opacity map
of Fig. 5 (left). Their respective cross section as a function
of collision energy (right) is also displayed. As evidenced in
the figure, ER1 and ER2 reactions exhibit the same 0.53 eV
threshold. ER2 contribution rises rapidly after threshold and
is then almost constant, oscillating around 0.15 Å2. The shape
of the total ER reaction cross section is thus mainly governed
by the ER1 contribution which increases monotonously with
collision energy beyond threshold.

The (x, y) position of the target and projectile (at first
projectile’s rebound) as well as their altitude distribution are
presented in Fig. 6 (top) for the ER1 mechanism. The cor-
responding initial conditions are presented in Fig. 5 (left).
The dynamics of ER1 contribution is rather simple: during
the vertical descent, projectiles are laterally deflected by the
potential bump above the adsorbate (Zp ∼ 2.5–3.0 Å, see
also Fig. 1) towards the top tungsten atoms on which they
bounce (around Zp ∼ 1.0 Å) being thus reoriented towards
the center of the cell. The projectile bounces at an altitude
higher than that of the target (see Fig. 6, right) and thus
picks it up from the above. The dynamics of the ER2 re-
combinations is more difficult to rationalize, as the motion
of the projectile involves out-of-plane dynamics. Typically,
the projectile moves down to the surface making a turn (in
xy plane) while being redirected towards the center of the oc-
cupied cell, where the reaction takes place. In that case the
target is picked up from below by the projectile (see Fig. 6,
right). For all ER contributions, the molecule is formed im-
mediately after the first projectile’s rebound and quickly es-
cape to the gas phase. Over the energy range considered here,
the average time spent in the strong coupling region is of the
order of 0.1 ps and does not vary drastically with collision
energy.

The absence of ER recombination below 0.53 eV is the
consequence of N–N repulsion in the entrance channel: af-
ter deflection by the potential energy bump, the N projectile
needs to be redirected towards the center of the cell to trig-
ger abstraction. Such redirection dynamics governs recom-
bination. Figure 7 displays the projections of relevant ER1
trajectories onto the 2D cut of the PES. Impact parameters
are uniformly sampled and trajectories are integrated from Zp
= 8.0 Å down to the first rebound of the projectile. Three col-
lision energies are considered: 0.1 eV (top), 0.5 eV (middle),
and 0.6 eV (bottom). Below threshold, 0.1 and 0.5 eV, low im-
pact parameter collisions (between 0 and 0.4 Å) are directly
reflected by the potential energy bump “protecting” the ad-
sorbate. Collisions initiated at larger impact parameters (be-
tween 0.4 and 2.2 Å) are deflected towards the top W atoms.

FIG. 5. Eley–Rideal contributions. Left: Opacity map of initial coordinates (x, y) of the projectile leading to ER1 (dark yellow dots), located along the diagonal,
and ER2 (dark cyan dots). The square represents the unitary cell. Right: Eley–Rideal recombination cross section (squares) decomposed in its ER1 (circles) and
ER2 (triangles) contributions as a function of projectile energy.
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FIG. 6. Opacity map of (x, y) positions of the target and projectile (left) and
their altitude distribution (right) at first projectile’s rebound for the ER1 (up)
and ER2 (bottom) mechanisms. Projectile (target) contribution is displayed
in color red (black). Distances are in Å.

As inferred from the figure, the repulsive wall on which the
projectile bounces, at the limit of the unit cell, reflects it back
to the vacuum or towards the empty neighboring cell. Such
reflection might thus trigger HA reactions for finite coverage.
As the energy of the projectiles increases, the proportion of
trajectories reflecting on the potential bump decreases and the
deviation from the z-rectilinear propagation gets smaller. At
0.6 eV, small impact parameter projectiles bounce on a repul-
sive wall which redirects it towards the center of the unitary
cell, thus triggering ER recombination (in red in the figure).
Such a picture is only qualitative, as the target is slightly dis-
placed during the projectile approach as shown in Fig. 6. It
has to be noticed that preliminary results for off-normal in-
cidence (30◦ and 45◦ with respect to surface normal) ex-
hibit threshold to ER abstraction and opacity maps display
patterns similar to the one of Fig. 6. The influence of the en-
trance potential energy bump is thus expected to play a non-
negligible role whatever the collision incidence. In a comple-
mentary study,108 a similar methodology was used to analyze
the dynamics of molecular recombination upon impact on the
neighboring empty cells. The computed ER cross section is
almost zero (∼1 × 10−3 Å2), indicating that the influence of
the adsorbed nitrogen atom is negligible outside the occupied
cell. A similar behavior is observed in the H+H/Ni(100) sys-
tem, studied by Martinazo et al.53

It is worth noticing that N2 ER recombinations involve
a collision with the W surface prior to reaction, as already
observed for H2 and HCl recombination on metals.63, 109 Con-
sequently, as the N/W mass ratio (0.076) is appreciable, po-
tential energy transfers to the phonons during recombina-
tion might be of importance. This issue is considered in
Sec. III B.

FIG. 7. Overlapping of trajectories on the 2D representation of the PES
of Fig. 1 for different collision energies: 0.1 eV (top), 0.5 eV (middle), and
0.6 eV (bottom). Impact parameters are uniformly sampled within the diago-
nal plane. All trajectories are integrated until the first bounce. Trajectories in
red indicate the zones where ER reactions take place.

B. Moving surface model

Possible energy transfers to the metal, which have been
neglected so far, are accounted for within the framework of
the generalized Langevin oscillator model. Figure 8 displays
opacity maps for 1.0 eV (upper figures) and 2.6 eV (lower fig-
ures) collision energies and three surface temperatures : 300 K
(left), 800 K (center), and 1500 K (right). The N adatom ZPE
is accounted for but, as in the rigid surface case, the dynam-
ical initial conditions for the target negligibly influence the
abstraction dynamics.

The comparison of Fig. 8 (left column) with its rigid-
surface counterpart (Fig. 3) reveals that the inclusion of
the energy dissipation to the substrate changes the ER
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FIG. 8. Opacity maps of initial coordinates (x; y) of the projectile leading to the different exit channels: reflection (magenta dots), absorption (black dots),
bound (cyan dots) and metastable (blue dots) HA formation, trapped molecules (green dots), and ER reactions (red dots) at different energies—1.0 eV (upper
figures) and 2.6 eV (lower figures)—and temperatures: 300 K (left), 800 K (center), and 1500 K (right). The square represents the unitary cell the center of which
the Nitrogen adatom is initially adsorbed. Distances are given in units of δ = 3.175 Å.

recombination dynamics. ER2 component is mainly con-
verted into trapped molecule formation (green). This latter
contribution results from intricate dynamics close to the sur-
face which induces multiple center-of-mass rebound for the
forming molecule. Consistently, reflections are less proba-
ble and bound HA contribution increases as energy exchange
upon collision of the projectile with the surface are allowed
(not shown). When the temperature increases, the well defined
patterns observed within the framework of the rigid-surface
(Fig. 3) become blurred. As in the rigid-surface case, the
formation cross section of metastable hot atoms increases—
while the formation cross section of bound HA decreases—
with the initial kinetic energy of projectiles. The direct ab-
sorption is clearly favored by the surface motion, especially
at high energies.

In Fig. 9, the calculated ER abstraction cross section at
various temperature is compared with the rigid-surface re-
sults. The ER cross section significantly decreases when sur-
face motion is accounted for. As suggested before, this is the
consequence of the disappearance of ER2 contribution (com-
pare Figs. 3 and 8). A very slight increase of the ER cross
section is observed when temperature increases from 300 K
to 1500 K (see Fig. 9). On the opposite, the cross section for
bound HA formation decreases with temperature (the cyan
contribution decreases from left to right in Fig. 8). At low
temperatures, the surface only receive energy from the nitro-
gen atoms, leading to a maximum dissipation to the substrate.
When surface temperature increases, exchange of energy be-
tween nitrogen and tungsten atoms is lower and takes place in
both directions: if surface temperature is high enough, reac-
tant nitrogen atoms may even receive energy from the metal
before being reflected back towards the vacuum. The detailed

study of energy exchanges upon N2 Eley–Rideal recombina-
tion is currently underway.110

To summarize, our results suggest that ER abstraction dy-
namics of N-pre-adsorbed atoms on W(100) by atomic nitro-
gen is essentially governed by the entrance channel N–N re-
pulsion associated with the strong attraction of the projectile
towards the top W surface atoms. Impinging atoms are radi-
ally deflected upon adatom approach and bounce on the near-
est W top atoms prior to abstraction, thus strongly reflecting
the symmetry of the metal surface. Investigations to evaluate
the influence of surface symmetry on ER abstraction dynam-
ics are currently underway.

FIG. 9. Cross section for ER abstraction within the rigid surface model and
the moving surface model at Ts = 300, 800, and 1500 K as a function of
collision energy.
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IV. CONCLUSIONS

Classical dynamics simulations of the normal scattering
of atomic nitrogen off a N-pre-adsorbed W(100) are presented
in the zero coverage limit. The adiabatic ground state potential
energy surface, which has been recently developed, accurately
reproduces the topology of the interactions. The ER abstrac-
tion and hot atom formation processes are analyzed both in
the cases of rigid and moving surfaces. Energy transfers to the
surface as well as temperature effects are accounted for using
a generalized Langevin oscillator model. In the investigated
collision energy range (0.1–3.0 eV), hot atom formation—by
energy transfer to the target or the surface—is more than one
order of magnitude more probable than ER recombination.
Such a result is similar to what is observed for ER Hydrogen
recombination on metal surfaces. A significant 0.53 eV colli-
sion energy threshold is found for ER abstraction despite the
existence of non-activated reaction pathways. Such a feature,
which to our knowledge has not been reported in ER recombi-
nation of diatomic molecule from metal surfaces, results from
an interplay between entrance channel N–N repulsion and the
strong attraction of the projectile towards the top W surface
atoms which governs low energy dynamics. The effect of sur-
face temperature on ER cross section is relatively minor.
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