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Abstract

Metabolic modeling has gained accuracy in the last decades, but the
resulting models are of high dimension and difficult to use for control
purpose. Here we propose a mathematical approach to reduce high
dimensional linearized metabolic models, which relies on time scale
separation and the Quasi Steady State Assumption. Contrary to the
Flux Balance Analysis assumption that the whole system reaches an
equilibrium, our reduced model depends on a small system of differen-
tial equations which represents the slow variables dynamics. Moreover,
we prove that the concentration of metabolites in Quasi Steady State
is one order of magnitude lower than the concentration of metabolites
with slow dynamics (under some flux conditions). Also, we propose
a minimization strategy to estimate the reduced system parameters.
The reduction of a toy network with the method presented here is
compared with other approaches. Finally, our reduction technique is
applied to an autotrophic microalgae metabolic network.

This is the accepted version of the following article: López Zazueta, C., Bernard,
O., & Gouzé, J. L. (2018). Dynamical Reduction of Linearized Metabolic Networks
Through Quasi Steady State Approximation. AIChE Journal, which has been pub-
lished in final form at https://doi.org/10.1002/aic.16406. This article may be
used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy
[ http://www.wileyauthors.com/self-archiving].

Correspondence concerning this article should be addressed to Claudia López Zazueta
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Introduction

Metabolic modeling has proved to be a very powerful tool to get a bet-
ter insight into the metabolism of an organism, while assessing the main
fluxes throughout its metabolic network.1,2 This approach has gained ac-
curacy in the last decades and turned out to be particularly efficient to
improve the production of target molecules, by understanding the biological
processes that influence the metabolites. For example, metabolic modeling
has clarified the production of triacylglycerols from microalgae and carbo-
hydrates from cyanobacteria.3 Both compounds can then be turned into
biofuel (biodiesel and bioethanol, respectively) with expected reduced envi-
ronmental impacts.4

The metabolisms of microalgae and cyanobacteria are driven by the solar
flux which supports the fixation of CO2. As a consequence, the periodic fluc-
tuation of light induces instationarity of their metabolisms, with accumula-
tion of metabolites (especially lipids and carbohydrates). Such metabolisms
are therefore never at steady state. However, most of the approaches ded-
icated to metabolism analysis assume balanced growth, i.e. Steady State
Assumption (SSA), which are not totally justified both from a biological
and from a mathematical point of view. For example, Flux Balance Analy-
sis (FBA)5 or Macroscopic Bioreaction Models (MBM)6 are based on linear
algebra to solve the equation N · V = 0, where N is the stoichiometric ma-
trix and V is the vector of intracellular reaction rates. These approaches
assume therefore two hypotheses. First that the derivative of each intracel-
lular compound (per biomass unit) is zero, and second that the dilution rate
is neglected.

Some approaches have attempted to introduce dynamics, for instance,
assuming that the cell optimizes at each time instant an objective criterion
using Dynamic Flux Balance Analysis (DFBA)7 or considering external con-

Abbreviations: QSSA, quasi steady state assumption; FBA, flux balance analysis;
QSS, quasi steady state; DRUM, dynamic reduction of unbalanced metabolism; SSA,
steady state assumptions; MBM, macroscopic bioreaction models; DFBA, dynamical flux
balance analysis; EFM, elementary flux modes; ODE, ordinary differential equations.
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ditions that might change continuously in a hybrid system.8

However, the resulting metabolic models are of high dimension, which
makes their mathematical analysis and their parameter identification com-
plex. Identifying conditions to maximize productivity by a rigorous mathe-
matical analysis is generally not possible. Here we propose an approach to
reduce the dimension of a dynamical metabolic model, so that model based
control strategies can be derived. Contrary to most of the existing work,
the idea is to keep the dynamical component of the model, which is crucial
especially when dealing with microalgae and cyanobacteria.

A first attempt in this direction was carried out with the Dynamic Reduc-
tion of Unbalanced Metabolism (DRUM) method.1 This modeling approach
considers subnetworks in Quasi Steady State (QSS) that are interconnected
by metabolites that can accumulate. Then, Elementary Flux Modes (EFM)
are computed in each subnetwork to reduce them by a Quasi Steady State
Assumption (QSSA). Finally, dynamics of the connector metabolites form
a reduced system of Ordinary Differential Equations (ODE). This approach
has proven to provide sound results, a way to dynamical reduce the model
together with an efficient representation of the accumulation of lipids and
carbohydrates in microalgae submitted to light / dark cycles. However, as
most of the methods developed for metabolic analysis, it relies on a series
of assumptions whose mathematical bases have not been rigorously estab-
lished. Beyond the Quasi Steady State Assumption (QSSA), which assumes
“fast” and “slow” parts on the metabolism without delimiting them rigor-
ously, these approaches also neglect the intracellular dilution term due to
growth.

The main objective of our work is to provide mathematical foundations
for the reduction of metabolic networks to dynamical models of low dimen-
sion. To achieve this objective, in a first stage we simplify the approach
assuming linear kinetics for the whole metabolism. However, our method
can be applied to any metabolic network whose kinetics can be locally lin-
earized.

In this article, we compute an exact reduced model for any network in
the class of systems addressed, whose metabolism is forced by a continuous
input. In addition, we propose an algorithm to estimate the parameters of
the reduced system.

In the method presented in this work we conserve the factor of dilution,
which improves the precision of the approximation and preservers qualitative
(stability) features of the original system.

We also show that Flux Balance Analysis (FBA) cannot be applied to the
class of system studied in this work and and we discuss the accuracy of the
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Dynamic Reduction of Unbalanced Metabolism (DRUM) for linear systems,
approximation which relies on a series of hypotheses including Quasi Steady
State Assumption (QSSA) and omission of the dilution due to growth.

In the first section of this article, we present the class of metabolic sys-
tems under study, which consists of metabolic networks with slow and fast
reactions forced by a continuous input. We also write the system of Ordinary
Differential Equations corresponding to any metabolic network of this class,
and we formulate it as a slow-fast system. Then, we verify the conditions
for applying the Theorem of Tikhonov for singularly perturbed systems9–11

to obtain a reduced system. From these approximations, we demonstrate
that the concentration of each metabolite in Quasi Steady State (QSS) is
one order of magnitude lower than the concentration of any metabolite with
slow dynamics, subject to some flux constraints. This result is one of the
main outcome of the paper.

In the second section of this article, we introduce a method based on
minimization for the calibration of the reduced system. In addition, when
data of a metabolite involved in fast reactions is available, we can com-
pute the corresponding parameters for its estimation in Quasi Steady State
(QSS).

In the third section of this article we apply the approach to a toy
metabolic network. The toy model includes a periodic input and reflects
standard bricks in metabolic networks: combination of reversible and non-
reversible reactions, with chains and cycles. We then compare with the
reduced model with Flux Balance Analysis (FBA) and the Dynamic Reduc-
tion of Unbalanced Metabolism (DRUM) method.

Finally, we apply our method to an autotrophic microalgae metabolic
network. We use the simplified network of Yang et al.12 The reduction is
carried out considering the macromolecules as the elements with the high-
est concentration. Using the data from Lacour et al.,13 we calibrated the
reduced model. The simulations of the reduced model accurately fits the
experimental data.

To conclude, we draw some conclusions and provide perspective for a
rigorous slow-fast analysis of a larger class of metabolic networks.

The Slow-Fast Linear Metabolic Model

Metabolic system hypotheses

The class of metabolic networks studied in this paper consists of metabolic
systems with fast and slow reactions, which are forced by a continuous in-
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put. To describe the elements of this class, we focus on a general network
assuming that one internal component of this (Xm) is consumed with a low
rate (see Figure 1). We consider then two subnetworks, before and after
this component. The first subnetwork contains m−2 metabolites, while the
second contains n − m − 1 metabolites. We also suppose that the entire
network is a connected graph, meaning that any pair of nodes (metabolites)
are connected to each other by a non directed path (a sequence of reactions
without considering their direction). The model is kept general in the sense
that a priori all the fluxes are possible within the two subnetworks.

Figure 1: System of kinetic reactions with n metabolites and slow input. Subnetworks of
fast reactions are connected by metabolites consumed at low rates. The metabolites within the
subnetworks of fast reactions are in Quasi Steady State.

We suppose that there are fast and slow reactions in the system. The fast
reactions are depicted in Figure 1 by blue arrows and their reaction rates
are denoted by kij/ε, where ε is a very small positive number. A reaction
with rate kij/ε consumes only the element Xj and produces just Xi (single
reactant-single product hypothesis). Similarly for the slow reactions, which
are represented by the black arrows, the reaction with rate kij consumes Xj

and produces Xi. Notice that reversible reactions are allowed in the fast
subnetworks (see Figure 2).

We assume that one dimensional metabolic flux enters in the metabolism
fromX1 and finishes into variableXn. The input I(t) is a positive continuous
function of time t in an interval [0, T ], feeding in the system at a slow rate.
Moreover, we consider a constant dilution affecting every metabolite. The
rate of dilution µ > 0 is considered as a parameter smaller than any reaction
rate (a classical hypothesis14).

For a metabolic network in the class of systems addressed in this work
(see Figure 1), the hypothesis of single reactant - single product reactions
implies that the ODE of metabolite concentrations is a non-homogeneous
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linear system with a continuous positive input. However, the approach de-
veloped in this paper is suitable for any metabolic network whose kinetics
can be locally linearized. In Appendix E of the Supporting Information
we show a metabolic network example with nonlinear enzymatic reactions,
whose kinetics are linearized around a functional point.

Figure 2: Single reactant-single product hypothesis: fast reaction kji/ε just consumes one
metabolite (Xi) and produces another (Xj). This conditions leads to a linear system of equations.

Henceforth, we focus on a metabolic network with linear kinetics and a
continuous positive input. In order to obtain some conclusions about the
accumulation of metabolites, we make some assumptions about the fluxes
in the network.

Assumption 1. We assume that a connector metabolite is not the origin
of any fast reaction, nor the origin of an output with large rate.

On the other hand, for detecting when the input flux leads to the ac-
cumulation of metabolites which have fast outflows, we introduce the next
definitions. For these, we consider that our metabolic network model (Fig-
ure 1) can be represented with a directed graph, where the metabolites are
the vertex and the reactions are the directed edges (arrows). Only inputs
and outputs are allowed to be edges with one vertex: final or initial vertex,
respectively (the dilution due to growth does not appear on the graph).

Definition 1. (Flux). A flux from Xi to Xj is a directed path which has
as initial vertex Xi and as final vertex Xj .

The following definition of trap is equivalent to the definition for com-
partmental linear systems,15 considering the metabolites as compartments
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and the arrows (reactions, inputs and outputs) as flows into and out of
the compartment. A compartmental system can also be represented by
a directed graph. Then, a trap is defined as a compartment or a set of
compartments from which there are no transfers to the environment nor to
compartments that are not in the trap.15 Indeed, it has been proved that
an autonomous linear compartmental system has a trap if, and only if, its
compartmental matrix is singular.15

Definition 2. (Trap). Consider a graph with set of vertices N and a subset
of this T = {Xk1 , . . . , Xkl} ⊂ N, n > l ≥ 1. We say that T is a trap if

• for every vertex Xki ∈ T there is no flux from Xki to any metabolite
of N \ T and

• no Xki ∈ T has an output to the exterior of the graph.

In this case, we also say that Xki ∈ T is in a trap.

Definition 3. (Flux trap). Consider a flux F with initial vertex X1 and
final vertex Xn in a graph with vertices N = {X1, . . . , Xn}. We say that the
graph has a trap for the flux F if there is a subset TF = {Xk1 , . . . , Xkl} ⊂
N \ {X1, Xn}, such that

• TF is a trap (as a consequence, there is no flux from any Xki ∈ TF to
Xn) and

• for every vertex Xki ∈ TF there is a flux from X1 to Xki .

We also say that Xki ∈ TF is in a flux trap. When it is clear which is the
flux F taken into account, we only say that the graph has a flux trap and we
denoted by T.

Remark. Notice that in a metabolic system with linear kinetics where the
dilution factor is omitted, if there is a trap, then the system is undetermined,
i.e. its (Jacobian) matrix is singular.15 This case results in additional com-
plexity from a mathematical point of view and it will not be discussed in
this paper, because the factor of dilution is not omitted in our approach.

On the other hand, we include the mathematical concept of flux trap, to
detect the accumulation of metabolites with fast dynamics as a consequence
of a input flux. However, from a biological point of view, the presence of
traps or flux traps is very unlikely, unless organisms have been modified to
indefinitely accumulate a metabolite.
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In the system depicted in Figure 1 we assume the existence of a flux from
X1 to Xn. It then has a flux trap if there exists in one of the subnetworks
a metabolite, Xi for some i = 2, . . . , n − 1, i 6= m, such that there is a flux
from X1 to Xi, but there is no flux from Xi to Xn. A flux going from X1 to
Xn has to pass through Xm as well. Hence, there is a flux trap if and only
if there is a flux trap in one subnetwork with fast dynamics.

Assumption 2. The model represented in Figure 1 has no flux trap for the
assumed flux going from X1 to Xn. We refer to this conditions saying that
the system has no flux traps.

Assumption 2 implies that if Xi is any metabolite in one of the subnet-
works with fast dynamics and it is reached by the flux, then it has one fast
outflow at least.

Dynamics of Metabolite Concentrations

We write the ordinary differential equations that describes the metabolite
concentrations of the model in Figure 1 as follows:

dX1

dt
= I(t)− (k21 + µ)X1 (1)

dX2

dt
= k21X1 +

(m−1∑

j=3

k2j
ε

Xj

)
−
(m−1∑

i=3

ki2
ε

+ µ
)
X2

...

dXm

dt
=

km,m−1

ε
Xm−1 −

(
km+1,m + µ

)
Xm

...

dXn−1

dt
=
( n−2∑

j=m+1

kn−1,j

ε
Xj

)
−
( n∑

i=m+1
i 6=n−1

ki,n−1

ε
+ µ

)
Xn−1

dXn

dt
=

kn,n−1

ε
Xn−1 − µ ·Xn,

with initial conditions Xi(0) = x0i for every i = 1, . . . , n.
System (1) is a non-homogenous linear system, continuous in a domain

[0, T ] × R
n
+ if I(t) is continuous in the interval [0, T ]. Moreover, system

(1) is positive if and only if its (Jacobian) matrix is a Metzler matrix and
I(t) ≥ 0.16

For the mathematical analysis, we suppose that all the variables and
the time have been non dimensionalized by appropriately normalizing the
concentrations and time constants.
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Parameter definition and order of magnitude

In order to distinguish the two time-scales in system (1), we make the fol-
lowing hypothesis about the order of the parameters. For this purpose, we
use the “big O” or Landau order symbol.17 Although the Landau symbol
is defined for functions, we can also use it to indicate the order of our pa-
rameters. For this, we consider a parameter as the constant function which
takes its value.

Recall that fast reactions have rates kij/ε, while slow reactions kij . We
then suppose that ε is a small positive number such that

kij = O(1) as ε → 0 ∀i, j.

Henceforth, we consider ε fixed. Additionally, I(t) is a slow input and µ is
lower or equal to the magnitude of any slow reaction (an usual hypothesis14).
Hence, we suppose

I(t) = O(1) ∀t ∈ [0, T ], (2)

µ ≤ O(1).

For integrating the factor of dilution µ without affecting the order of the
parameters in the system (1), we define

kj
ε

:=

n∑

i=2
i 6=j

kij
ε

+ µ (3)

The definition given in (3) implies

n∑

i=2
i 6=j

kij < kj . (4)

Also, kj = O(1), as a consequence of condition (2) for µ.

Fast metabolites variable rescaling

In order to write the original system (1) as a singularly perturbed system,
we define new variables for the metabolites with fast dynamics and their
initial conditions as follow:

Yi : =
Xi

ε

Yi(0) = y0i :=
x0i
ε
.
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Hence, we represent system (1) as the following slow-fast system:

dY2

dt
=

1

ǫ

[
k21X1 +

(m−1∑

j=3

k2jYj

)
− k2Y2

]
(5)

...

dYm−1

dt
=

1

ǫ

[(m−2∑

j=2

km−1,jYj

)
− km−1Ym−1

]

dYm+1

dt
=

1

ǫ

[
km+1,mXm +

( n−1∑

j=m+2

km+1,jYj

)
− km+1Ym+1

]

...

dYn−1

dt
=

1

ǫ

[( n−2∑

j=m+1

kn−1,jYj

)
− kn−1Yn−1

]

dX1

dt
= I(t)− (k21 + µ)X1 X1(0) = x0

1 (6)

dXm

dt
= km,m−1Ym−1 − (km+1,m + µ)Xm Xm(0) = x0

m

dXn

dt
= kn,n−1Yn−1 − µ ·Xn Xn(0) = x0

n.

Notice that ε is a parameter that we previously fixed. From a mathematical
viewpoint, we will consider ǫ → 0 to apply Tikhonov’s Theorem.

In the linear system (5) we can consider the initial conditions as any
nonnegative values, since global and local asymptotic stability are equiva-
lent.

Hereafter, we say that Equation (5) and Equation (6) are the fast and
the slow part of the system (1), respectively. Furthermore, since the dy-
namics of Yi = Xi/ε are fast according to (5), we consider the metabolites
X2, . . . , Xm−1, Xm+1, Xn−1 to be in Quasi Steady State.

Model properties

Let us rewrite the fast part (5) under a matrix form. We define

K ′ :=

(
K ′

1 0
0 K ′

2

)
,
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where

K ′

1 :=




−k2 k23 . . . k2,m−1

k32 −k3 . . . k3,m−1

...
...

...
km−1,2 km−1,3 . . . −km−1


 ,

K ′

2 :=




−km+1 km+1,m+2 . . . km+1,n−1

km+2,m+1 −km+2 . . . km+2,n−1

...
...

...
kn−1,m+1 kn−1,m+2 . . . −kn−1


 .

Then system (5) can be written as

ǫ
dY

dt
= I ′ +K ′ · Y, (7)

with Y = (Y2, . . . , Ym−1, Ym+1, . . . , Yn−1)
T and

I ′ = (k21 ·X1, 0, . . . , 0,
(m−1)−th entry

km+1,m ·Xm , 0, . . . , 0)T .

Property 1. For every fixed scalars X1, Xm, Xn, system (7) has a stable
equilibrium point.

Proof. The matrices K ′

1, K
′

2 are strictly column diagonally dominant as a
consequence of (4). Therefore, they are stable matrices.18

Remark. For any constant values of X1, Xm, Xn, we obtain

Y := (Y 2, Y 3, . . . , Y m−1, Y m+1, . . . , Y n−1),

the equilibrium point of system (5) after computing the inverses of the ma-
trices K ′

1, K
′

2. Indeed, K ′

1 and K ′

2 are nonsingular matrices, because they
are strictly column diagonally dominant.18 Hence,




Y 1

Y 2

...
Y m−1


 = (K ′

1)
−1 ·




−k21X1

0
...
0


 , (8)




Y m+1

Y m+2

...
Y n−1


 = (K ′

2)
−1 ·




−km+1,mXm

0
...
0


 .

The equalities in (8) imply that the fast variables Y i in QSS are linear
combinations of X1 and Xm.
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Boundary Layer Correction

The boundary layer correction is aiming at correcting the initial transient
of the fast variables, so that the approximation is also accurate at the very
first time of the simulation. For this, we consider a time variable τ = t/ǫ.

The boundary layer correction is defined as the function Ŷ (τ) = Y (t)−Y (t).
Then, the boundary layer problem of system (5)-(6) is written as

dŶ2

dτ
=k21x

0
1 +

m−1∑

j=3

k2j

(
Ŷj + Y j(0)

)
(9)

− k2

(
Ŷ2 + Y 2(0)

)

...

dŶm−1

dτ
=

m−2∑

j=2

km−1,j

(
Ŷj + Y j(0)

)

− km−1

(
Ŷm−1 + Y m−1(0)

)

dŶm+1

dτ
=km+1,mx0

m +

n−1∑

j=m+2

km+1,j

(
Ŷj + Y j(0)

)

− km+1

(
Ŷm+1 + Y m+1(0)

)

...

dŶn−1

dτ
=

n−2∑

j=m+1

kn−1,j

(
Ŷj + Y j(0)

)

− kn−1

(
Ŷn−1 + Y n−1(0)

)

with initial conditions

Ŷi(0) = Yi(0)− Y i(0) =
x0
i

ε
− Y i(0).

For obtaining Quasi Steady State Approximation (QSSA) using the The-
orem of Tikhonov, the stability of the origin for the boundary layer equation
(9) is a necessary condition.10 Notice that the (Jacobian) matrices of system
(5) and (9) are equal. Then, as in Property 1, we have the following result.

Property 2. Consider the boundary layer system (9). Then its equilibrium
point Ŷ (τ) = 0 is stable.
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Reduced system

From Equation (8) we obtain the expressions of Y m−1 and Y n−1 in terms
of X1 and Xm, respectively. We then substitute in the slow part (6) and
we obtain a reduced system with the variables X1, Xm, Xn. Hence, we
express the QSS approximation of the original system (1), deduced from the
Theorem of Tikhonov as follows:

Xi := ε · Y i = ε · ci ·X1 ∀i = 2, . . . ,m− 1, (10)

Xi := ε · Y i = ε · ci ·Xm ∀i = m+ 1, . . . , n− 1,

dX1

dt
= I(t)− (k21 − µ)X1 (11)

dXm

dt
= km,m−1cm−1 ·X1 − (km+1,m + µ)Xm

dXn

dt
= kn,n−1cn−1 ·Xm − µ ·Xn.

where ci are parameters that satisfy Y i = ci ·X1 or Y i = ci ·Xm, respectively,
deduced from Equation (8). The initial conditions for the reduced system
(11) are the same that for (6), i.e., Xi(0) = x0i for i = 1,m, n.

Property 3. Let (Xi) be the solution of the original system (1) and (Xi)
the solution of system (10)-(11). Then

Xi(t) = Xi(t) +O(ε) ∀t ∈ [0, T ],

i = 1,m, n,

and there exists 0 ≤ T0 < T such that

Xi(t) = Xi(t) +O(ε2) ∀t ∈ [T0, T ],

i = 2, . . . , n− 1, i 6= m.

Additionally, if (Ŷi) is the solution of the boundary layer system (9) and
X̂i := εŶi for every i = 2, . . . , n− 1, i 6= m,

Xi(t) = Xi(t) + X̂i

( t
ε

)
+O(ε2) ∀t ∈ [0, T ].

Proof. After Properties 1 and 2, we conclude that system (5)-(6) satisfies
the conditions of Tikhonov’s Theorem.9,10,19 Then a simple multiplication
Xi = εY i leads to the desired result.
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Observe that the concentration of metabolites supposed to be in QSS is
expressed as a linear combination of X1 and Xm multiplied by ε. Since ε
is a very small positive number, this suggests that the concentration of the
metabolites in the slow part of the system is higher.

Theorem 1. Suppose that the model in Figure 1 has no flux trap. Hence,
with the notation of system (1) and Property 3, for every t ∈ [T0, T ],

Xi(t) = ε · O
(
X1(t)

)
i = 2, . . . ,m− 1, (12)

Xi(t) = ε · O
(
Xm(t)

)
i = m+ 1, . . . , n− 1.

Moreover, for every t ∈ [T0, T ] we have

Xi(t) = ε · O
(
Xj(t)

)
, j ∈ {1,m, n}, (13)

i = 2, . . . , n− 1, i 6= m.

Theorem 1 states that, after the initial fast transient, any metabolite in
QSS has a concentration one order of magnitude lower than any metabolite
in the slow part.

Proof of Theorem 1. To demonstrate the first affirmation we consider the
equalities in (10) and we will show that ci = O(1) if ci 6= 0, for i = 2, . . . ,m−
1. Since K ′

1 is a nonsingular matrix,

(K ′

1)
−1 =

1

det(K ′

1)
· C,

where C is the transpose matrix of cofactors ofK ′

1.
20 We then have according

to Equation (8)

Y i =
1

det(K ′

1)
C1,i−1 · (−k21X1),

then ci =
1

det(K ′

1)
C1,i−1 · (−k21).

If K ′

1 has no traps (i.e. the subnetwork with metabolites X2, . . . , Xm−1 has
no traps), then

det(K ′

1) = (−1)m−2 · O(km−2
ij ),

as stated by Proposition 1 of Appendix A in the Supporting Information.
Moreover, Corollary 2 (Appendix A in the Supporting Information) implies
that the cofactors C1,i−1 have order

C1,i−1 = (−1)m−1 · O(km−3
ij ).
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On the other hand, if K ′

1 has a trap T not reached by the flux, as a con-
sequence of Proposition 2 and Corollary 2 of Appendix A in the Supporting
Information,

C1,i−1

det(K ′

1)
= (−1) · O(k−1

ij ) Xi 6∈ T

C1,i−1

det(K ′

1)
= 0 Xi ∈ T,

We conclude that
−k21 · C1,i−1

det(K ′

1)
= O(1)

if C1,i−1 6= 0, for every i = 2, . . . ,m− 1. The same reasoning applies for K ′

2

and the variables which are linear combinations ofXm. Hence, in accordance
with (10),

Xi = ε · O(ci ·X1)

= ε · O(X1) ∀i = 2, . . . ,m− 1,

Xi = ε · O(ci ·Xm)

= ε · O(Xm) ∀i = m+ 1, . . . , n− 1,

and we obtain the equalities in (12) from Property 3.
In order to verify the second affirmation, we consider the reduced system

(11). Then we deduce that the local maximum or minimum points of X1,
Xm and Xn satisfy

Xm =
km,m−1 · cm−1

km+1,m + µ
X1

Xn =
kn,n−1 · cn−1

µ
Xm.

But cm−1 = O(1), cn−1 = O(1) and µ/kij ≤ O(1) for all i, j as stated by
(2). Thus,

O(X1) = O(Xm) ≤ O(Xn).

Finally, we obtain the equalities in (13) using Property 3.
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Reduced model calibration

Calibration of the slow system

We suppose that the slow metabolite concentrations are measured at r dif-
ferent time instants 0 ≤ t1 < t2 < · · · < tr ≤ T :

Zi(tj) = Xi(tj) +N (tj) i = 1,m, n

where N (tj) is the measurement noise. From these measurements, in a first
stage we want to calibrate the parameters for the reduced model (11). The
objective is to find the value for the parameter vector

θ = (θ1, θ2, θ3, θ4, θ5)

such that the solution of the reduced system

dX1

dt
= I(t)− θ1 ·X1 X1(0) = x0

1 (14)

dXm

dt
= θ2 ·X1 − θ3 ·Xm Xm(0) = x0

m

dXn

dt
= θ4 ·Xm − θ5 ·Xn Xn(0) = x0

n.

best fits the data Z1, Zm and Zn. For this, we define a cost criterion that
characterizes the modeling error:

F0(θ) =
∑

i=1,m,n

∑

j=1,...,r

(
Zi(tj)−Xi(tj , θ)

)2

The approach consists in determining the best value

θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5)

such that
F0(θ̂) = min{F0(θ) : θ ∈ D},

with D ⊂ R
5
+ a domain for the parameters. This can be carried out by

using a minimization algorithm, based on gradient descent, or such as the
Nelder-Mead algorithm.

Calibration for a metabolite in QSS

After the calibration of the slow system (14), we can estimate the concen-
tration dynamics of a metabolite in QSS if there are data of this. For this
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purpose, we assume that a fast metabolite is measured at different time
instants 0 ≤ t′1 < t′2 < · · · < t′r′ ≤ T :

Zi(t
′

j) = Xi(t
′

j) +N (t′j)

for some i ∈ {2, . . . , n− 1} \ {m}.
We first use the value of the slow metabolites

(
Xi(t, θ̂)

)
i=1,m,n

obtained from calibration of the reduced system (14), to estimate the pa-
rameter αi such that

Xi := αi ·X1 if i ∈ {2, . . . ,m− 1}

Xi := αi ·Xm if i ∈ {m+ 1, . . . , n− 1}.

Indeed we look for value of α̂i that minimize the differences

F1(αi) =

r′∑

j=1

(
αi ·X1(t

′

j , θ̂)− Zi(t
′

j)
)2

for i ∈ {2, . . . ,m− 1} and

F2(αi) =
r′∑

j=1

(
αi ·Xm(t′j , θ̂)− Zi(t

′

j)
)2

for i ∈ {m + 1, . . . , n − 1}. Consequently, the least squares solution is the
following:21

α̂i =

∑r′

j=1
Zi(t

′

j) ·X1(t
′

j , θ̂)∑r′

j=1
X1(t′j , θ̂)

2
if i ∈ {2, . . . ,m− 1}

α̂i =

∑r′

j=1
Zi(t

′

j) ·Xm(t′j , θ̂)∑r′

j=1
Xm(t′j , θ̂)

2
if i ∈ {m+ 1, . . . , n− 1}.

In general, measurements of fast metabolites are difficult, and there-
fore rarely done. It is worth noting that the reduction and calibration of
the model for the fast metabolites can be done for any subset of measured
metabolites.
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Practical remark

Let us emphasize that, even if no metabolite with fast dynamics is measured,
this approach provides a reduced model (14) which can be calibrated. If not
all the accumulative metabolites are measured, the reduced model may also
be calibrated, but the identifiability of the parameters should be demon-
strated.22 Furthermore, the dynamics of all the measured metabolites are
eventually predicted by means of the reduced model of equations.

This is an important point, since the calibration of fast variables (which
is indeed experimentally much more tricky) can be done only on a very
restricted number of metabolites.

A Toy Metabolic Network

We consider a toy system of enzymatic reactions mimicking the character-
istics of a real metabolic network but of lower dimension. In this model we
have included some recurrent features of the metabolic network of a pho-
toautotrophic microalga cell, such as a cycle and several reversible reactions.
For instance, in the chain that includes the citric acid cycle, lower glycolysis,
upper glycolysis and carbohydrate synthesis.

We thus construct our example with a chain that contains one reversible
reaction and a cycle. This toy Network N1 is depicted in Figure 3. Addition-
ally, to represent the effect of a periodic factor on the metabolism (such as
sun light for microalgae) we introduce a periodic input I(t) = k[cos(t·ω)+1].

We suppose that slow reaction rates have order O(10−2), and fast reac-
tion rates O(101). Then, we choose ε := 10−2/101 = 10−3.

For instance, we suppose the slow reaction rate k21 = 0.01 · min−1 =
10−2 ·min−1. On the other hand, we assume that the fast reaction from X2

to X3 has rate equal to 20 ·min−1 = 2× 101 ·min−1. Then we establish

k32
ε

= 20 ·min−1,

which implies k32 = 20 ε · min−1 = 0.02 · min−1. Recall that O(k32) =
O(k21) = 10−2. For the definition of the rest of parameters, see Table 1.

Following the method proposed in the first section of this article, we write
a singularly perturbed system to apply Tikhonov’s Theorem (see Figure 4).
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Figure 3: Metabolic Network N1. Metabolites X1, X4 and X9 can accumulate and have slow
dynamics, while the others are in Quasi Steady State. Reactions from metabolites in QSS are
faster than those from metabolites with slow dynamics. The input is I(t) = k[cos(t · ω) + 1].

Parameter Value Units Parameter Value Units

ε 0.1× 10−2 - k43/ε 20 min−1

ω 0.4× 10−2 - k32/ε 20 min−1

µ 0.2× 10−2 min−1 k68/ε 20 min−1

k 0.2× 10−1 min−1 k75/ε 10 min−1

k21 0.1× 10−1 min−1 k23/ε 10 min−1

k54 0.2× 10−1 min−1 k56/ε 10 min−1

x0i 0.1× 10−1 µmol/m3 k87/ε 20 min−1

k98/ε 10 min−1

Table 1: Parameters considered for the simulation of dynamics in Network N1 (Figure 3). The
initial conditions x0

i are all the same for i = 1, . . . , 9.
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Figure 4: Behavior of the slow-fast system in standard form (see Equation (5)-(6)) that is
obtained after the variable rescaling of Network N1 (Figure 3). Notice that the all the metabolite
concentrations have the same order of magnitude, as a consequence of defining Yi = Xi/ε for the
metabolites in the fast part. The parameters considered are specified in Table 1.

Moreover, we obtain an algebraic system that let us rewrite every vari-
able of the fast part in terms of the variables of the slow part:

X2 = ε ·
k21 · k3

d1
X1, X3 = ε ·

k21 · k32
d1

X1, (15)

X5 = ε ·
k54 · k6 · k7 · k8

d2
X4, X6 = ε ·

k54 · k68 · k75 · k87
d2

X4,

X7 = ε ·
k54 · k75 · k6 · k8

d2
X4, X8 = ε ·

k54 · k75 · k87 · k6
d2

X4,

where d1 = k3 · k2 − k23 · k32 and d2 = k5 · k6 · k7 · k8 − k56 · k68 · k75 · k87.
Subsequently, we achieve a reduced system by substituting the expres-
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sions of (15) in the equations of the slow part:

dX1

dt
= k[cos(t · ω) + 1]− (k21 + µ)X1 X1(0) = x0

1 (16)

dX4

dt
=

k21 · k32
d1

k43X1 − (k54 + µ)X4 X4(0) = x0
4

dX9

dt
=

k54 · k75 · k87 · k6
d2

k98X4 − µX9 X9(0) = x0
9.

As expected, the concentration of metabolites belonging to the fast part is
one order of magnitude lower than the concentration of metabolites in the
slow part (see Theorem 1 and Figure 5).

In the first section of this article, we described the boundary layer cor-
rection that can be applied to the variables in QSS. To see the effect of
the boundary layer correction in this toy network, see Appendix C in the
Supporting Information.
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Figure 5: Dynamics of Network N1 (Figure 3). Thick line: numerical solution of the original
system (1); thin line: reduced system obtained using the method developed in this work (15)-(16).
The parameters considered for the simulation are specified in Table 1.
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Figure 6: Zoom on the dynamics of metabolites in QSS (see also Figure 5).

Calibration of the slow dynamics

For this example, we consider that a few measurements of the metabolite
concentrations are available. We represent it as the solution of the original
system (1) for Network N1 plus a white noise:

Zi(tj) := Xi(tj) + β(tj) j = 1, 2, . . . , r (17)

where β ∼ N (σi) and σi = m(Xi) × 10−1 for every i = 1, . . . , n. For
simplicity we suppose that the data is obtained at the same time instants
t1, . . . , tr for the slow and the fast parts of the system.

Following the notation in the second section of this article, we find the
vector parameter θ̂ that minimizes the cost function F0. We used the func-
tion fminsearch in Scilab to compute the minimum of the square differences
function F0, with the Nelder-Mead algorithm (see Table 2).
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i Theoretical Estimated Error

value θi value θ̂i percent
1 0.12× 10−1 0.114× 10−1 04.7
2 0.10× 10−1 0.085× 10−1 15.2
3 0.22× 10−1 0.186× 10−1 15.3
4 0.20× 10−1 0.174× 10−1 12.8
5 0.20× 10−2 0.179× 10−2 10.5

Table 2: Original parameter (θi) and numerical approximation (θ̂i) of the parameters for Equa-
tion (16), written as Equation (14). The parameters considered for simulation of the original
dynamics in Network N1 are specified in Table 1.

Calibration of coefficients for metabolites in QSS

After estimating the parameters θ̂i we consider the equalities in (15) for
finding αi such that

Xi = αi ·X1 i = 2, 3 (18)

Xi = αi ·X4 i = 5, 6, 7, 8.

We then obtain the parameters α̂i which resolve the linear least squares
problem, as in the second section of this article (see Table 3).

Lastly, we obtain a new approximation given by the following system:

dX1

dt
= k[cos(t · ω) + 1]− θ̂1X1 X1(0) = x0

1 (19)

dX4

dt
= θ̂2X1 − θ̂3X4 X4(0) = x0

4

dX9

dt
= θ̂4X4 − θ̂5X9 X9(0) = x0

9

Xi = α̂i ·X1 i = 2, 3,

Xi = α̂i ·X4 i = 5, 6, 7, 8.
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i Theoretical Estimated Error
value αi value α̂i percent

2 0.750× 10−3 0.727× 10−3 3.0
3 0.500× 10−3 0.498× 10−3 0.4
5 0.599× 10−2 0.568× 10−2 5.1
6 0.399× 10−2 0.384× 10−2 4.0
7 0.300× 10−2 0.288× 10−2 4.0
8 0.200× 10−2 0.194× 10−2 2.9

Table 3: Original parameters (αi) and numerical approximations (α̂i), solutions of the least
square linear problems for approximating the coefficients in (18). The parameters considered for
the simulation of the original dynamics in Network N1 are specified in Table 1.
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Figure 7: Calibrated system of toy Network N1 (Figure 3). Thick light line: original system
(1); dots: supposed data with white noise (17); solid thin line: calibrated system (19) with the
parameters in Table 2 and Table 3. The original parameters are specified in Table 1.
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Figure 8: Zoom on the dynamics of metabolites in QSS (see also Figure 7).

Comparison between DRUM and FBA

The reduced system for the toy Network N1 (depicted in Figure 3) obtained
after the DRUM1 approach is

dX1

dt
= k[cos(t · ω) + 1]− k21X1 X1(0) = x0

1 (20)

dX4

dt
= k21X1 − k54X4 X4(0) = x0

4

dX9

dt
= k54X4 X9(0) = x0

9,

(see Appendix D in the Supporting Information for details). Remark that
equations (16) and (20) coincide when µ = 0. However, for nonzero growth
rate, omitting µ can imply differences between both systems even in their
qualitative behaviors (see Figure 9).

On the other hand, the principal hypothesis of Flux Balance Analysis
is that metabolic networks reach a steady state, under any external condi-
tions.5,23 From the numerical solutions depicted in Figure 5 and Figure 6,
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we can observe that the dynamics of the metabolic Network N1 do not reach
an equilibrium in the delimited period of time. Indeed, the metabolic system
of N1 have no equilibrium point, because it is forced by a continuous (non
constant) periodic input.

This is typically a case where FBA is a rough approximation. To illus-
trate this fact, we applied FBA to the toy metabolic Network N1 and we
compare with our approach. The purpose of FBA is to resolve the algebraic
equation

N · V (X) = 0

for the variables X1, . . . , X8, where X is the vector of metabolite concen-
trations, N is the stoichiometric matrix and V (X) is the vector of kinetics
reactions. We recall that FBA methods omit the dilution due to growth. As
a consequence, the concentration of X9 cannot be estimated from resolving
the FBA algebraic equation mentioned above. The results are explained
with details in Appendix D.2 of the Supporting Information.
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Figure 9: Comparison of different approaches to approximate the dynamics of Network N1
(Figure 3). Thick light solid line: graphical behavior of the original system (1); dark solid line:
system obtained using the method proposed in this work (15)-(16); square dotted line: system
obtained after DRUM (20); thin line: Flux Balance Analysis solution (see Appendix D in the
Supporting Information for details). The parameters considered are specified in Table 1. In this
figure, for the metabolites in QSS there is no approximation from the framework Drum. For X9

there is no approximation solution with FBA. The reduction method developed in this work gives
the most accurate approximation to the original dynamics.

Reduction of an Autotrophic Microalgae Metabolic

Network

The proposed method is applied to the metabolism of autotrophic microal-
gae. A metabolic network taken from Yang et al.12 was used to represent
the metabolism of autotrophic microalgae. The network has 61 reactions
and 59 metabolites. We assume that each enzymatic reaction can be repre-
sented by a Michaelis-Menten kinetics. Then, the metabolic system can be
linearized around the working mode to end up to the structure proposed in
this paper (see Appendix E in the Supporting Information for details).

The inputs in the system are a function representing CO2 uptake rate
and a function fueled by the photon flux density (PFD), which represents
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the light step in photosynthesis.
Macromolecules such as lipids and carbohydrates are stored during the

day and reach relatively high concentration in microalgae. According to our
approach, we suppose that these elements are in the slow part of the system
(see Theorem 1). The rest of the metabolites are considered to have lower
concentration, and then to be in QSS.

We assume there is no metabolite that accumulates as high as macro-
molecules between the inputs and the metabolites in the slow part, and
that this is because the intermediate metabolites are consumed by fast re-
actions. A closer look at the considered metabolic network shows that the
macromolecules (lipids, carbohydrates and chlorophyll) are all produced di-
rectly from a metabolite in the fast part and they are not consumed after.
According to the generalized reduction presented in Appendix B of the Sup-
porting Information, metabolites in the fast part (put into QSS) are linear
combinations of the inputs.

Property 4. Consider a linear metabolic system of n metabolites with sev-
eral inputs I1(t), I2(t), . . . , Ik(t). Suppose that metabolites X1, X2, . . . , Xm

are not consumed by any reaction, while Xm+1, Xm+2, . . . , Xn are consumed
by fast reactions. Then, applying our reduction strategy, the equations of
slow metabolites are equal to linear combinations of the inputs and the term
of growth dilution:

dXi

dt
=

k∑

j=1

βi
jIj(t)− µXi ∀i = 1, . . . ,m,

where βi
j = 0 if there is no flux from Ij(t) to Xi.

Proof. See Appendix B in the Supporting Information.

Derived from Property 4, we can deduce the reduced system composed
of the microalgae macromolecules equations:

dXi

dt
= bi · L(t) + ci · C0 + ni ·N0 − µ ·Xi − ei,

Xi(0) = x0i , where Xi is the concentration of a macromolecule, L(t) is the
function representing the continuous evolution of light intensity, C0 and N0

are the controlled concentration constants of CO2 and NO3, respectively,
µ > 0 is the dilution due to growth, bi, ci and ni are nonnegative num-
bers combining the parameters of the original system (whose kinetics are
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unknown), as well as the real number ei that also depends on functional
equilibrium points of the linearized system (see the Appendix E in the Sup-
porting Information for details). These constants will be re-estimated by
our approach.

We consider experimental data described in Lacour et al.13 The same
light-day pattern has been considered as in the experiments. PDF at noon
was 1,500 µmol.m−2.s−1. The data available only include the concentration
of carbohydrate [CAR], neutral lipids [NL] and chlorophyll [CHLO]. From
the simplified autotrophic microalgae metabolic network,12 we assume that
Glucose-6-phosphate [G6P], Diacylglycerol [DG] and Glutamate [GLU] are
the direct precursors of [CAR], [NL] and [CHLO], respectively. Also, we
consider Acetyl-coenzyme A [AcCoA] as the direct precursor of [DG].

Therefore, we calibrated a system of three equations representingX1 =CAR,
X2 =NL and X3 =CHLO concentrations:

dX1

dt
= b1 · L(t) + c1 · C0 − µ ·X1 − e1, (21)

dX2

dt
= b2 · L(t) + c2 · C0 − µ ·X2 − e2,

dX3

dt
= b3 · L(t) + c3 · C0 + n3 ·N0 − µ ·X3 − e3.

Notice that in the first two equations of (21) we consider n1 = 0 and n2 = 0,
because in the simplified network there is no flux from the NO3 input to CAR
nor DG (see Proposition 33 in the Appendix B of this article).

We use the minimization method described in the second section of this
article and the fminsearch tool in Scilab, to estimate the parameters of
system (21). The fminsearch tool in Scilab is based on the Nelder-Mead
algorithm (http://www.scilab.org). The simulation results for the reduced
system are presented in Figure 10 and its calibrated parameters in Table 4.
The numerical simulations demonstrate that the reduced system accurately
approximates the experimental data.
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Figure 10: Dynamical behavior of Carbohydrates, Lipids and Chlorophyll in the metabolism
of autotrophic microalgae. Experimental data was obtained from Lacour et al.13 The reduced
model (21) was calibrated using the data. The parameters obtained after the calibrations are in
Table 4. Light pattern (PFD) is also represented.
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Parameter Value Units
b1 0.400× 10−4 (gC/gC).µmol−1.m2

b2 0.200× 10−4 (gC/gC).µmol−1.m2

b3 0.400× 10−6 (gC/gC).µmol−1.m2

e1 0.147× 10−1 (gC/gC).s−1

e2 0.100× 10−1 (gC/gC).s−1

e3 0.300× 10−3 (gC/gC).s−1

C0 0.172× 10−1 gC/gC
N0 0.287× 10−1 gC/gC
c1 0.100× 10−3 s−1

c2 0.100× 10−3 s−1

c3 0.100× 10−3 s−1

n3 0.100× 10−2 s−1

µ 0.100× 10−6 s−1

Table 4: Parameters obtained after the calibration of system (21) with experimental data ob-
tained from Lacour et al.13 The initial conditions of the system are x0

1 = 0.35 gC/gC, x0
2 = 0.2

gC/gC and x0
3 = 0.0125 gC/gC.

Discussion and Conclusion

In this work we have reduced a metabolic network to a small number of
macroscopic reactions, eliminating internal metabolites under the QSSA.
We have shown that this computation is possible for a non-homogeneous
linear system of n equations, accounting for a continuous input. Moreover,
our approach is suitable for any metabolic network whose kinetics can be
locally linearized.

The method proposed in the first section of this article incorporates the
dilution factor with the coefficients of reaction rates, allowing to check the
stability conditions for obtaining an accurate approximation. On the other
hand, when the dilution factor is omitted for resolving a system in QSS, as
most approaches do, the reduced models obtained lose accuracy, as shown
for the toy network N1 in this article.

We emphasize that, writing the dynamical system into the proper canon-
ical form of singularly perturbed systems is crucial to rigorously separate the
time scales. QSSA applied to non canonical forms can lead to erroneous con-
clusions,24 as well as when the conditions of Tikhonov’s Theorem are not
fulfilled.11

Additionally, for a system with no flux traps, we proved that the concen-
tration of metabolites in QSS is very low in comparison to the accumulative
metabolites (Theorem 1) as a consequence of the two time-scales. Using the
reverse reasoning, we can detect slow reactions associated to accumulative
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metabolites and fast reactions related to metabolites with low concentration.
The Theory of Singularly Perturbed Systems is a tool which has already

been used to justify the Quasi Steady State Assumption in metabolic net-
works.25,26 However, our approach combines this tool with others and even-
tually it leads to an alternative approach with a different reduction strategy.
Note also that we use the concepts of trap15 and flux trap, which were, to the
best of our knowledge, never considered previously for Quasi Steady State
Reductions of metabolic networks. As future work, more generalized systems
including nonlinear kinetics can be studied with the framework developed
in this article.
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List of Figures

Figure 1. System of kinetic reactions with n metabolites and slow input.
Subnetworks of fast reactions are connected by metabolites consumed at low
rates. The metabolites within the subnetworks of fast reactions are in Quasi
Steady State.
Figure 2. Single reactant-single product hypothesis: fast reaction kji/ε just
consumes one metabolite (Xi) and produces another (Xj). This conditions
leads to a linear system of equations.
Figure 3. Metabolic Network N1. Metabolites X1, X4 and X9 can accu-
mulate and have slow dynamics, while the others are in Quasi Steady State.
Reactions from metabolites in QSS are faster than those from metabolites
with slow dynamics. The input is I(t) = k[cos(t · ω) + 1].
Figure 4. Behavior of the slow-fast system in standard form (see Equa-
tion (5)-(6)) that is obtained after the variable rescaling of Network N1
(Figure 3). Notice that the all the metabolite concentrations have the same
order of magnitude, as a consequence of defining Yi = Xi/ε for the metabo-
lites in the fast part. The parameters considered are specified in Table 1.
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Figure 5. Dynamics of Network N1 (Figure 3). Thick line: numerical
solution of the original system (1); thin line: reduced system obtained using
the method developed in this work (15)-(16). The parameters considered
for the simulation are specified in Table 1.
Figure 6. Zoom on the dynamics of metabolites in QSS (see also Figure 5).
Figure 7. Calibrated system of toy Network N1 (Figure 3). Thick light
line: original system (1); dots: supposed data with white noise (17); solid
thin line: calibrated system (19) with the parameters in Table 2 and Table 3.
The original parameters are specified in Table 1.
Figure 8. Zoom on the dynamics of metabolites in QSS (see also Figure 7).
Figure 9. Comparison of different approaches to approximate the dynamics
of Network N1 (Figure 3). Thick light line: graphical behavior of the original
system (1); dark line: system obtained using the method proposed in this
work (15)-(16); square dotted line: system obtained after DRUM (20); thin
line: Flux Balance Analysis solution (see Appendix D in the Supporting
Information for details). In this figure, for the metabolites in QSS there is no
approximation from the framework Drum. For X9 there is no approximation
solution with FBA. The parameters considered are specified in Table 1.
Figure 10. Dynamical behavior of Carbohydrates, Lipids and Chlorophyll
in the metabolism of autotrophic microalgae. Experimental data was ob-
tained from Lacour et al.13 The reduced model (21) was calibrated using
the data. The parameters obtained after the calibrations are in Table 4.
Light pattern (PFD) is also represented.
Figure 11. Possible scenarios where k21 = 0 in a system with two metabo-
lites and one output. Both cases represent a flux trap in X1.
Figure 12. Boundary layer correction applied to the toy Network N1. The
boundary layer term is only added to the approximations of the metabolites
in QSS. Therefore, dynamics of the slow reduced system (16) are the same
as in Figure 5. Thick light line: original system (1); solid line: approxima-
tion obtained after the approach proposed in this work (15); dashed line:
approximation with the boundary layer correction (34). The parameters
considered are in Table 1.
Figure 13. Zoom on the initial fast transient of the simulations in Fig-
ure 12. Notice that the approximation without boundary layer correction
(solid line) does not have the same initial condition as the original system
(thick light line), while the system with boundary layer correction (dashed
line) accurately approximates the original system in the first fast transient
interval.
Figure 14. Subnetworks SN1 (above) and SN2 (below) of N1. The in-
ternal metabolites X2, X3, X5, X6, X7 and X8 are assumed to be in Quasi
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Steady State. Metabolites X1, X4 and X9 are supposed to be external to
the subsystems in QSS.
Figure 15. Metabolic Network N2. Arrows between metabolites represent
enzymatic reactions catalyzed by an enzyme eji, with substrate Xi, product
Xj and product formation rate kji or kji/ε, respectively. The input I(t) =
k[cos(t · ω) + 1] is a periodic continuous function.
Figure 16. Dynamics of the network with enzymatic reactions N2 (Fig-
ure 15). Thick light solid line: nonlinear system describing the Michaelis-
Menten reactions of N2 (41); thin dark solid line: linearized system (44);
dashed line: value of the functional equilibrium points (X∗

i ). The parame-
ters considered for the simulation are stated in Table 5.
Figure 17. Zoom on dynamics of the network with enzymatic reactions N2
(see also Figure 16).
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A Complements for the Proof of Theorem 1

For the following demonstrations recall that all the terms kij = O(1) have
the same order, µ ≤ O(1), and that ε is a very small positive number (see
the first section of this article).

Lemma 1. Consider a constant matrix A = (aij) of dimension n× n, such
that O(aij) = 1 when ε → 0 for every i, j. Suppose that A is nonsingular
and let εµ > 0. Then

det(A− εµ · I) = (−1)n · O(εµ).

Proof. If λ(1) = 0, λ(2), . . . , λ(n) are the eigenvalues of A, we have that

det(A− λ · I) = (−1)n · (λ− λ(1)) · · · (λ− λ(n))

= (−1)n · (λ)(λ− λ(2)) · · · (λ− λ(n)).

Substituting λ by εµ in the formula above, we obtain the desired result.

Lemma 2. Suppose that M is a column diagonal dominant matrix of size
n × n, such that det(M) 6= 0. If every off-diagonal entry of M is nonneg-
ative, then all the cofactors of M have the same sign equal to (−1)n−1 and
sgn(det(M)) = (−1)n.

Proof. Since −M is nonsingular and column diagonal dominant, by the The-
orem of Gershgorin, −M is a positive stable matrix.18 Then its inverse
matrix is nonnegative27 (i.e. each entry of (−M)−1 is nonnegative). But

−((−M)−1) = (M)−1 =
1

det(M)
· C ≤ 0,

where

C =




C11 C12 . . . C1n
C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn




T

,

is the transpose matrix of cofactors of M .20 Then

Cij
det(M)

≤ 0 ∀i, j = 1, . . . , n,
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which implies that all the cofactors Cij = (−1)i+jMij , with Mij the minor
of M obtained from removing the i-th row and the j-th column,20 have the
same sign. Moreover, since all the principal minors of −M are positive,27

then det(−M) > 0. We conclude that

sgn(Cij) = (−1)n−1

and that det(M) = (−1)n det(−M) is negative if n is odd and positive is n
is even.

Proposition 1. Consider a linear system with n metabolites and no traps.
We suppose that there is an output from the n-th metabolite to the exterior
of the system. If Mn is the (Jacobian) matrix of the system, then

det(Mn) = (−1)n·O(knij).

Proof. The matrix of the system is written as

Mn =



−
∑n

i=2
ki1 − k∗1 − εµ · · · k1n

...
. . .

...

kn1 · · · −
∑n−1

i=1
kin − kn+1,n − εµ


 ,

where k∗i ≥ 0. Notice that an output from the i-th metabolite is equivalent
to k∗i > 0. Here, without loss of generality, we begin supposing that the
n-th has an output. Then kn+1,n > 0.

We prove the proposition by induction over n. For n = 2, consider the
matrix

M2 =

(
−k21 − εµ k12

k21 −k12 − k32 − εµ

)
(22)

of a system with two metabolites and one output. The determinant of M2

is

det(M2) = k21(k32 + εµ) + εµ(k12 + k32 + εµ).

If k21 ·k32 6= 0, then det(M2) = O(k2ij). We examine in which cases k21 ·k32 =
0.

Figure 11: Possible scenarios where k21 = 0 in a system with two metabolites and one output.
Both cases represent a flux trap in X1.
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If k32 = 0, the system has no output, contrary to our hypothesis. On
the other hand, k21 = 0 implies that X1 is in a trap (see Figure 11). We
conclude that det(M2) = O(k2ij). The case in dimension n = 2 with more
than one output is verified immediately.

We make the following induction hypothesis: consider a linear system of
n − 1 metabolites with no traps and one output at least. If Mn−1 is the
matrix of this system, then det(Mn−1) = (−1)n−1 · O(kn−1

ij ).
Now we prove the case of a network with n metabolites. We take into

account that all the cofactors Cij of Mn have the same sign, as claimed by
Lemma 2. It holds

det(Mn) =− kn+1,nCnn (23)

+
[ n−1∑

j=1

kjnCjn −
( n−1∑

i=1

kin + εµ
)
Cnn
]
,

where Cjn = (−1)j+n(Mn)jn are cofactors of Mn.
20

Suppose that kni = 0 and k∗i = 0 for every i ∈ {1, . . . , n− 1}. Then Xn

is isolated and the rest of metabolites {X1, . . . , Xn−1} form a trap. Hence,
kni > 0 or k∗i > 0 for some i ∈ {1, . . . , n−1} and we can apply the hypothesis
of induction to deduce that

Cnn = (−1)n−1 · O(kn−1).

On the other hand, the term in the squared brackets in (23) is the de-
terminant of the matrix (Mn + kn+1,n · δnn), where δnn is a matrix of size
n× n with zero at every entry, except for in the entry nn which is equal to
1

If k∗i = 0 for every i = 1, . . . , n− 1, then

det(Mn + kn+1,n · δnn) = (−1)n · O(εµ)

according to Lemma 1 and the statement of Proposition 2 is proved. In other
case, suppose k∗,n−1 > 0 without loss of generality. Hence, if we develop the
determinant of (Mn+kn+1,n · δnn) by the n−1-th column and we substitute
in (23), we have

det(Mn) =− kn+1,nCnn − k∗,n−1(Mn + kn+1,n · δnn)n−1,n−1 (24)

+
[ n∑

j=1
j 6=n−1

kj,n−1(Mn + kn+1,n · δnn)j,n−1

−
( n−2∑

i=1

ki,n−1 + εµ
)
(Mn + kn+1,n · δnn)n−1,n−1

]
,
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where (Mn + kn+1,n · δnn)j,n−1 are cofactors of (Mn + kn+1,n · δnn). More-
over, the matrix (Mn + kn+1,n · δnn) satisfies the conditions of Lemma 2.
Then, all its cofactors have the same sign. Particularly, sgn((Mn + kn+1,n ·
δnn)n−1,n−1) = (−1)n−1, and then

sgn(−kn+1,nCnn) = sgn(−k∗,n−1(Mn + kn+1,n · δnn)).

Once again, the term in square brackets in (24) is equal to det(Mn +
kn+1,n · δnn + k∗,n−1 · δn−1,n−1). We proceed as for det(Mn + kn+1,n · δnn) to
extract the following term

−k∗,n−2(Mn + kn+1,n · δnn + k∗,n−1 · δn−1,n−1)n−2,n−2

which has the same sign as−kn+1,nCnn. In n steps, we arrive to an expression
of the determinant where all the terms have the same sign and one term is
the determinant of a matrix whose entries by column sum −εµ. That is to
say, if we define

M̃i := (Mn + kn+1,n · δnn +
n−i∑

j=1

k∗,n−jδn−j,n−j),

for every i = 2, . . . , n, where we define

0∑

j=1

k∗,n−jδn−j,n−j = 0.

Then

det(Mn) =− kn+1,nCnn −
n∑

i=2

k∗,i−1(M̃i)i−1,i−1

+
[
(−1)n · O(εµ)

]
,

with (M̃i)i−1,i−1 is a principal minor of M̃i and the term in square brackets
represents

det




−
∑n

i=2
ki1 − εµ k12 . . . k1n

k21 −
∑n

i=1
i 6=2

ki2 − εµ . . . k2n

...
...

. . .
...

kn1 kn2 . . . −
∑n−1

i=1
kin − εµ




,

according to Lemma 1. Moreover,

sgn(−kn+1,nCnn) = sgn(−k∗,i−1(M̃i)i−1,i−1) = (−1)n,
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for every i = 2, . . . , n, as a consequence of Lemma 2. Therefore, we conclude

det(Mn) = (−1)n · O(knij).

Recall that in our model (Figure 1) we only suppose that there is not flux
trap. For this reason, we analyze the determinant of the matrix associated
to a system with traps. For instance, with the matrix M2 defined in (22),
if the system has a trap, k21 = 0 and its determinant has order O(εµ).
In general, we can expect that a system with a trap has determinant with
order εµ. This happens because a trap implies a block of zeros in the matrix.
Indeed, remember that the j-th column of the matrix system represents the
reactions whose origin is the metabolite Xj . Then, if Xj is in a trap, kij = 0
for every i with Xi out of the trap.

In the presence of a trap, the matrix of the system is reducible.20 That
is to say, after the same number of interchanges of rows than columns,
the matrix of a system with a trap can be transformed in a square block
triangular matrix (keeping the dominant diagonal structure):

Mn =

(
M ′ 0
∗ T

)
, (25)

where M ′ and T are square matrices that correspond to the metabolites
which are not in a trap and the metabolites which are in a trap, respectively.
If Cij is a cofactor of Mn and det(T) has order εµ, then the coefficients

k21C1i
det(M ′) · det(T)

can be affected by a factor of order (εµ)−1 (see the proof of Theorem 1).
However, it is possible to see that when there is a trap which is not

reached by the flux, then the determinant of the block corresponding to the
trap is also a factor of the cofactors C1i, where Xi is not in that trap. This
is why we distinguish a flux trap of a simple trap (see Definitions 2 and 3),
by determining if the input of interest reaches them or not.

A matrix with a trap that is not a flux trap has the following form:

Mn =



M ′

r×r [C1]r×s 0r×p

0s×r [C2]s×s 0s×p

0p×r [C3]p×s Tp×p


 , r + s+ p = n, (26)

where T represents the trap not reached by a specific flux, [Ci] represents
columns of metabolites that connect the trap with the rest of the system,
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but which are not nourished by the flux not even by the trap. M ′ is again
the block corresponding to the rest of metabolites, including those with an
input or an output.

Since the matrix in (26) is square block triangular, its determinant is
the product of the determinants of the diagonal blocks.28 Then, this deter-
minant has a factor det(T) = (−1)p·O(εµ), as claimed by Lemma 1.

Furthermore, the cofactors C1j have the factor det(T) for every j =
1, . . . , r, because the sub matrix (Mn)1n is also square block triangular.
Then, when dividing by the determinant of Mn, this factor is neutralized. In
this way we rule out having a large coefficient of order (εµ)−1 for estimating
the concentration of Xi, 1 ≤ i ≤ r, for every metabolite that is not in a
trap. Whereas the minors M1j = 0 for j > r, as a consequence of the block
of zeros in the lower left corner. In fact, the metabolites not reached by
the flux are not related to this either in QSS. Therefore we have proved the
following proposition.

Proposition 2. Consider the matrix Mn in its triangular form (25), such
that the square block T corresponds to metabolites in a trap and M ′ to
metabolites not in the trap. Then

det(Mn) = det(M ′) · det(T),

Moreover, if the trap is not reached by a specific flux, then Mn has the form
(26) and its minors satisfy

(Mn)1j = (M ′)1j · det(C2) · det(T ) ∀j = 1, . . . , r,

with (M ′)1j a minor of M ′, and

(Mn)1j = 0 ∀j = r + 1, . . . , n.

Corollary 1. If Mn has a trap, then

det(Mn) = ±O(εµ).

Proof. The square block T is equal to a singular matrix minus εµ · I. Then,
by Lemma 1, its determinant has order ±O(εµ).

Now we consider some minors of the matrix Mn and we study the order
of their determinants, as required for the proof of Theorem 1.
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Proposition 3. Let us suppose that Mn represents a system with no traps.
Moreover, assume a flux from X1 to Xn. Consider the minor of Mn resulting
from removing the first line and the n-th column:

(Mn)1n = det




k21 −(
∑n

i=1
i 6=2

ki2 + εµ) . . . k2,n−1

k31 k32 . . . k3,n−1

...
...

. . .
...

kn−1,1 kn−1,2 . . . −(
∑n

i=1
i 6=n−1

ki,n−1 + εµ)

kn1 kn2 . . . kn,n−1




(27)

Then
0 < (Mn)1n = O(kn−1

ij ).

Proof. The demonstration is by induction over the squared matrix size. For
the case of a minor with dimension two we have:

det

(
k21 −(

∑3

i=1
i 6=2

ki2 + εµ)

k31 k32

)
= k21k32 + k31(

3∑

i=1
i 6=2

ki2 + εµ)

= O(k2ij),

since there is a flux from X1 to X3 and no traps. We then suppose the
validity of this lemma for a minor of dimension up to n − 2 (induction
hypothesis).

If we develop the determinant (Mn)1n by the first column, we verify that
the minor resulting from striking the first column and the x-th row of the
matrix in (27) satisfies the hypothesis of this lemma after x− 1 changes of
columns, for x = 1, 2, . . . , n − 2. Hence we apply the induction hypothesis
to these minors and we obtain that they are quantities (−1)x−1 · O(kn−2

ij ),
where x is the number of the struck row.

Since there is no traps by hypothesis, the minor obtained after omitting
the first column and the last row of the matrix in (27) has a column which is
strictly diagonal dominant. We can then apply Proposition 1 and conclude
that it has order (−1)n−2 · O(kn−2

ij ).

Therefore, we conclude that the minor (Mn)1n is the sum of positive
quantities of order O(kn−1

ij ):

0 < (Mn)1n =k21 · O(kn−2

ij ) + · · ·

+ (−1)x+1(−1)x−1kx1 · O(kn−2

ij ) + . . .

+ (−1)n(−1)n−2kn1 · O(kn−2

ij )

=O(kn−1

ij ).
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For the other minors we obtain a similar result. Indeed, every minor
obtained from striking the first row and the x-th column can be transformed
in a matrix of the form (Mn)1n, by n − x changes of rows. Therefore, the
following assertion holds.

Corollary 2. When Mn has no traps, the minor (Mn)1x has order (−1)n−x ·
O(kn−1

ij ), for every x = 1, . . . , n.

B Generalization of the Quasi Steady State Re-

duction of Linear Metabolic Systems

In this Appendix, we generalized the Quasi Steady State Reduction obtained
in the first section of this article (see Property 3). The following reduction
is valid for any linear system of metabolic reactions, with any number of
subnetworks of fast reactions and all possible reactions between metabolites.
Also, the generic network can include a finite number of continuous inputs,
entering at any metabolite.

B.1 Generic Linear System with two time-scales

As the main manuscript, we consider linear system with metabolites con-
sumed by slow or fast reactions. Without loss of generality, we suppose
that metabolites X1, X2, . . . , Xm are only consumed by slow reactions and
that metabolites Xm+1, Xm+2, . . . , Xn can be consumed by a fast reaction.
Then, we consider the following system of equations:

dXi

dt
= Fi(t,X1, . . . , Xn, ε) Xi(0) = x0

i , (28)

where

Fi := Ii(t) +

m∑

j=1
j 6=i

kij ·Xj +

n∑

j=m+1

kij
ε
Xj − ki ·Xi

for i = 1, . . . ,m, where

ki :=
n∑

j=1
j 6=i

kji + µ,

and

Fi := Ii(t) +

m∑

j=1

kij ·Xj +

n∑

j=m+1
j 6=i

kij
ε
Xj −

ki
ε

·Xi
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for i = m+ 1, . . . , n, where

ki
ε

:=
n∑

j=1
j 6=i

kji
ε

+ µ.

Without loss of generality, we suppose Ii(t) ≥ 0.

B.2 Canonical Form of Singularly Perturbed Systems.

Equation (28) is a slow-fast system, where the variables X1, X2, . . . , Xm

are in the slow part and Xm+1, Xm+2, . . . , Xn are in the fast part. Indeed,
making the change of variable

Yi =
Xi

ε

for the fast variables, we obtain

dXi

dt
= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε) Xi(0) = x0

i , (29)

ε
dYi

dt
= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε) Yi(0) = y0i , (30)

where y0i := x0i /ε,

Gi :=Ii(t) +

m∑

j=1
j 6=i

kij ·Xj +

n∑

j=m+1

kijYj − ki ·Xi

for i = 1, . . . ,m, and

Gi :=Ii(t) +

m∑

j=1

kij ·Xj +

n∑

j=m+1
j 6=i

kijYj − ki · Yi

for i = m+ 1, . . . , n.
Equation (30) evaluated in ε = 0 is equivalent to algebraic equation

0 = Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0) ∀i = m+ 1, . . . , n,
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which can be rewritten in the matrix form



−km+1 km+1,m+2 . . . km+1,n

km+2,m+1 −km+2 . . . km+2,n

...
...

...
kn,m+1 kn,m+2 . . . −kn


 ·




Ym+1

Ym+2

...
Yn




= −




Im+1(t) +
∑m

j=1
km+1,jXj

Im+2(t) +
∑m

j=1
km+2,jXj

...
In(t) +

∑m

j=1
knjXj


 .

Notice that the matrix above is stable, since it is strictly column diagonally
dominant.18 Define this matrix as

K :=




−km+1 km+1,m+2 . . . km+1,n

km+2,m+1 −km+2 . . . km+2,n

...
...

...
kn,m+1 kn,m+2 . . . −kn


 .

Then the solution to the algebraic problem is




Ym+1

Ym+2

...
Yn


 = K−1 ·




−
(
Im+1(t) + km+1,j ·Xj

)

−
(
Im+2(t) + km+2,j ·Xj

)

...

−
(
In(t) + knj ·Xj

)




.

The entries of K−1 are

bij =
Cji

detK
,

where Cji a cofactor of K. Thus, we write every Yi as a linear combination of
the kinetics in the slow-part and the inputs on the fast part (if they exist):

Xi

ε
= Yi =

n∑

j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑

j=1

kj′,j ·Xj

)
.

It follows

Xi = ε ·
[ n∑

j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑

j=1

kj′,j ·Xj

)]
,

for i = m+ 1, . . . , n.

B.3 Reduction of the Slow-Fast Linear System
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To deduce the reduced system after Tikhonov’s Theorem, define

Gi(t,X1, . . . , Xm, 0) := Gi(t,X1, . . . , Xm, Y m+1, . . . , Y n, 0) =

Ii(t) +

m∑

j=1
j 6=i

kij ·Xj +

n∑

j=m+1

kij

[ n∑

j′=m+1

|bjj′ | ·
(
Ij′(t) +

m∑

i′=1

kj′,i′ ·Xi′

)]
− ki ·Xi.

Thus, the QSSR is

dXi

dt
= Gi(t,X1, . . . , Xm, 0) Xi(0) = x0

i , (31)

for all i = 1, . . . ,m. For the variables in QSS,

Xi = ε ·
[ n∑

j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑

j=1

kj′,j ·Xj

)]
, (32)

for all i = m+ 1, . . . , n.
The following proposition is a consequence of Tikhonov’s Theorem.10

Proposition 4 (Tikhonov’s Theorem). Let (Xi) be the solution of (28) and
(Xi) defined by (31)-(32). If there is a solution for (31), then

Xi(t) = Xi(t) +O(ε) ∀i = 1, . . . ,m,t ∈ [0, T1],

and there exists 0 ≤ T0 such that

Xi(t) = Xi(t) + ε · [O(ε)] ∀i = m+ 1, . . . , n,t ∈ [T0, T1].

Now we see that |bij′ | = 0 if there is not a flux from Xj′ to Xi.

Proposition 5. Let K be the Jacobian matrix of the fast eq. (30)and con-
sider metabolite Xj′. With out loss of generality suppose 1 ≤ j′ ≤ r and
rewrite this matrix as

K =

(
[K ′]r×r [C1]r×s

0s×r [C2]s×s

)
, r + s = n−m, (33)

where K ′ is the matrix representing the metabolites with a flux from Xj′

(including Xj′) and C2 is the square block corresponding to metabolites not
reached by any flux from Xj′. Then,

det(K) = det(K ′) · det(C2).

Furthermore, its minors satisfy

(K)j′i = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

with (K ′)j′i a minor of K ′, and

(K)j′i = 0 ∀i = r + 1, . . . , r + s.
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Proof. Since K defined in (33) is a square block triangular matrix, its deter-
minant is the product of the determinants of the diagonal blocks.28 Then,

det(K) = det(K ′) · det(C2).

For i = 1, . . . , r, the submatrix obtained from deleting the j′-th row and
the i-th column of K is also a square block triangular matrix. Then, its
determinant is

(K)j′i =

∣∣∣∣
(K ′)j′i [C ′

1]
0 [C2]

∣∣∣∣ = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

where (K ′)j′i is a minor of K ′ and [C ′

1] is the matrix C1 without its first
row. On the other hand, for i = r + 1, . . . , (r + s), the minor (K)j′i is also
the determinant of a square block triangular matrix, i.e.

(K)j′i =

(
K ′ C1

0 C2

)

j′i

= 0 ∀i = r + 1, . . . , r + s,

as a consequence of the block of zeros below K ′. We conclude

(K)j′i = 0 ∀i = r + 1, . . . , (r + s).

Proposition 5 states that the only elements in the sum

n∑

j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑

j=1

kj′,j ·Xj

)

which are different from zero are those with index j′ such that there is a
flux from Xj′ to Xi (i.e. when |bij′ | 6= 0). Furthermore, notice that in

m∑

j=1

kj′,j ·Xj

the parameter kj′,j 6= 0 if and only if there is a reaction consuming Xj and
producing X ′

j , where Xj is in the slow part and Xj′ is in the fast part of the
system.

C Boundary layer correction for the toy model

In this section we illustrate the effects of the boundary layer correction,
applied to the toy Network N1 as described in the first section of this article.
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According to Tikhonov’s Theorem,10 the solution of the original system
(1) for the toy Network N1 (in Figure 5) can be approximated with an error
of order O(ε). Indeed, in this paper we prove that this approximation is
valid in any time interval [0, T ], where the input I(t) is nonnegative and
continuous, if we consider the boundary layer correction X̂.

The details about the boundary layer system (9) are in the first section
of this article, and the approximation

Xi(t) = Xi(t) + X̂i

( t
ε

)
+O(ε) ∀t ∈ [0, T ], (34)

for every i = 2, . . . , 8, i 6= 4, is stated in Property 3 at the first section of
this article.

The boundary layer correction for the toy Network N1 of the third section
of this article is illustrated in the following Figure 12 and Figure 13.
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Figure 12: Boundary layer correction applied to the toy Network N1. The boundary layer term
is only added to the approximations of the metabolites in QSS. Therefore, dynamics of the slow
reduced system (16) are the same as in Figure 5. Thick light line: original system (1); solid line:
approximation obtained after the approach proposed in this work (15); dashed line: approximation
with the boundary layer correction (34). The parameters considered are in Table 1.
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Figure 13: Zoom on the initial fast transient of the simulations in Figure 12. Notice that
the approximation without boundary layer correction (solid line) does not have the same initial
condition as the original system (thick light line), while the system with boundary layer correction
(dashed line) accurately approximates the original system in the first fast transient interval.

D Classical approach for the stoichiometric mod-

eling.

D.1 The DRUM methodology: recall and application

In this section we give the details for model reduction using DRUM, pre-
sented in the third section of this article, is obtained. In the DRUM ap-
proach, as in all the approaches targeting the full metabolic network, an
additional reaction for biomass synthesis is required. Here, our goal is to
illustrate the approach on a reduced system. To apply the Drum approach
in a simplified framework, we have therefore assumed that we were studying
a situation where Biomass was at a constant concentration, close to the ones
typical of photolimited photobioreactors.

The formulation for the stoichiometric analysis of a metabolic system
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with DRUM1 considers the original system (1) for Network N1 like

dX

dt
= I(t) +K · V (X) X(0) = x0, (35)

whereX is the column vector for intracellular metabolites with entriesX1,...,
X9, the initial condition x0 = (x01, . . . , x

0
9)

T , the input

I(t) = (k[cos(t · ω) + 1], 0, . . . , 0)T ,

K is the stoichiometric matrix and V (X) the vector of kinetics reactions.
To be more precise,

K =



























ν21 ν32 ν43 ν54 ν56 ν75 ν68 ν87 ν98

X1 −1 0 0 0 0 0 0 0 0
X2 1 −1 0 0 0 0 0 0 0
X3 0 1 −1 0 0 0 0 0 0
X4 0 0 1 −1 0 0 0 0 0
X5 0 0 0 1 1 −1 0 0 0
X6 0 0 0 0 −1 0 1 0 0
X7 0 0 0 0 0 1 0 −1 0
X8 0 0 0 0 0 0 −1 1 −1
X9 0 0 0 0 0 0 0 0 1



























,

V (X) =



























ν21
ν32
ν43
ν54
ν56
ν75
ν68
ν87
ν98



























=



































k21X1
k32
ε

X2 −
k23
ε

X3
k43
ε

X3

k54X4
k56
ε

X6
k75
ε

X5
k68
ε

X8
k87
ε

X7
k98
ε

X8



































.

Moreover, in this approach the factor µ is neglected. For the stoichio-
metric analysis it is then considered the following system

dX

dt
= K · V (X) X(0) = x0,

and the input vector I(t) is added later.
In line with the DRUM methodology,1 we consider that metabolites X2,

X3, X5, X6, X7 and X8 are in QSS, while metabolites X1, X4 and X9 can
accumulate and have dynamics. This leads to the division of the metabolism
in two subnetworks SN1 and SN2, as shown in Figure 14.
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Figure 14: Subnetworks SN1 (above) and SN2 (below) of N1. The internal metabolites
X2, X3, X5, X6, X7 and X8 are assumed to be in Quasi Steady State. Metabolites X1, X4 and X9

are supposed to be external to the subsystems in QSS.

The next step in the DRUM methodology is to summarize each subnet-
work using its EFM. We compute the EFM of subnetworks SN1 and SN2 by
Gauss elimination and corroborate the result with Copasi.29We have that
the only elementary flux mode of SN1 is

eT1 =
( k21

k32
ε

k43
ε

1 1 1
)
,

and its matrix of EFM is E1 := (e1). Analogously, the EFM of SN2 and its
matrix of EFM are, respectively

eT2 =
( k54

k56
ε

k75
ε

k68
ε

k87
ε

k98
ε

1 0 1 0 1 1
)
,

eT3 =
( k54

k56
ε

k75
ε

k68
ε

k87
ε

k98
ε

0 1 1 1 1 0
)
,

E2 := (e2).

Similar to e1, the mode e2 represents an elementary flux that begins and
finishes at the exterior of the system in QSS. In contrast, e3 is a cycle in
QSS, which can be omitted.

Under the QSSA, a simple algebraic computation from the EFM of the
two subnetworks leads to the dynamics of the main network:

K · V (X) =
(
K1 · E1 K2 · E2

)
· β, (36)
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where Ki is the sub matrix that consists in the column vectors of K corre-
sponding to the reactions in SNi, for i = 1, 2, and β = (β1 β2)

T is a vector
with entries satisfying

E1 · (β1) =
(

ν21
ν32
ν43

)
, E2 · (β2) =




ν54
ν56
ν75
ν68
ν87
ν98


 ,

where νij is the entry of V (X) corresponding to the reaction with rate kij
or kij/ε, respectively. Then, we compute

K1 · (e1) =



























ν21 ν32 ν43

X1 −1 0 0
X2 1 −1 0
X3 0 1 −1
X4 0 0 1
X5 0 0 0
X6 0 0 0
X7 0 0 0
X8 0 0 0
X9 0 0 0



























·





1
1
1



 =



























−1
0
0
1
0
0
0
0
0



























K2 · (e2) =



























ν54 ν56 ν75 ν68 ν87 ν98

X1 0 0 0 0 0 0
X2 0 0 0 0 0 0
X3 0 0 0 0 0 0
X4 −1 0 0 0 0 0
X5 1 1 −1 0 0 0
X6 0 −1 0 1 0 0
X7 0 0 1 0 −1 0
X8 0 0 0 −1 1 −1
X9 0 0 0 0 0 1



























·















1
0
1
0
1
1















=



























0
0
0
−1
0
0
0
0
1



























Hence, according to Equation (36),

K · V (X) =



























−1 0
0 0
0 0
1 −1
0 0
0 0
0 0
0 0
0 1



























·

(

β1
β2

)

=



























−β1
0
0

β1 − β2
0
0
0
0
β2



























Substituting in Equation (35), we obtain

dX

dt
= I(t) +




−β1
0
0

β1 − β2
0
0
0
0
β2


 X(0) = x0.

Then, the DRUM approach does not take into account the equations for
the metabolites in QSS and deduces the following reduced system for the
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accumulative metabolites

dX1

dt
= I(t)− β1 X1(0) = x01 (37)

dX4

dt
= β1 − β2 X4(0) = x04

dX9

dt
= β2 X9(0) = x09.

A crucial step in this method is to choose the entries β1 and β2. This
choice is arbitrary according to the DRUM method,1 but it determines the
accuracy of the reduced system. Indeed, we have that β1 has to satisfy

(
1
1
1

)
· (β1) =

(
β1
β1
β1

)
=
(

ν21
ν32
ν43

)
⇒

β1 = ν21 = k21X1

β1 = ν32 =
k32
ε X2 −

k23
ε X3

β1 = ν43 =
k43
ε X3.

Similarly, for β2 we have




1
0
1
0
1
1


 · (β2) =




β2
0
β2
0
β2
β2


 =




ν54
ν56
ν75
ν68
ν87
ν98


⇒

β2 = ν54 = k54X4

β2 = ν75 =
k75
ε X5

β2 = ν87 =
k87
ε X7

β2 = ν98 =
k98
ε X8

From the equations above, we have to choose only one definition for β1
and one for β2. The DRUM method1 does not establish any technique for
selecting these elements and it assumes that this choice is arbitrary.

However, in this small example, it is straightforward to make the right
choice for β1 and β2. As matter of fact, looking at the reduced model (16)
obtained in the third section of this article after Tikhonov’s Theorem, we
can deduce that choosing

β1 := ν21 = k21X1, (38)

β2 := ν54 = k54X4,

leads us to an accurate approximation. Besides, when the terms of the
metabolites in QSS appears in the reduced system after de DRUM approach,
these are considered (and calibrated) as constant parameters. Therefore, the
other options for β1 and β2 does not result in correct approximations.

Finally, substituting (38) in Equation (37), we obtain the reduced model
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after the DRUM approach:

dX1

dt
= I(t)− k21X1 X1(0) = x01

dX4

dt
= k21X1 − k54X4 X4(0) = x04

dX9

dt
= k54X4 X9(0) = x09.

D.2 Flux Balance Analysis

In this section, we applied Flux Balance Analysis to the toy model presented
in the third section of this article. Because of the periodic forcing and the
strong accumulation, this approach turns out to be very inaccurate.

The principal hypothesis of FBA is that all the internal metabolites
of a system reach a steady state, under any external conditions.5,23 For
our example, we consider all the metabolites X1, . . . , X9 as internal and we
suppose that there is an input from the exterior I(t).

For Flux Balance Analysis, the system of equations for the toy Network
N1 is

dX

dt
= N · V (X), (39)

where X is the vector of metabolite concentrations, N is the stoichiometric
matrix and V (X) is the vector of kinetics reactions.

We recall that FBA methods omit the dilution due to growth. Then, the
factor µ ·X does not appear on Equation (39) and we have

N =



























I(t) ν21 ν32 ν43 ν54 ν56 ν75 ν68 ν87 ν98

X1 1 −1 0 0 0 0 0 0 0 0
X2 0 1 −1 0 0 0 0 0 0 0
X3 0 0 1 −1 0 0 0 0 0 0
X4 0 0 0 1 −1 0 0 0 0 0
X5 0 0 0 0 1 1 −1 0 0 0
X6 0 0 0 0 0 −1 0 1 0 0
X7 0 0 0 0 0 0 1 0 −1 0
X8 0 0 0 0 0 0 0 −1 1 −1
X9 0 0 0 0 0 0 0 0 0 1



























,

V (X) =































I(t)
ν21
ν32
ν43
ν54
ν56
ν75
ν68
ν87
ν98































=







































k[cos(t · ω) + 1]
k21X1

k32
ε

X2 −
k23
ε

X3
k43
ε

X3

k54X4
k56
ε

X6
k75
ε

X5
k68
ε

X8
k87
ε

X7
k98
ε

X8







































.
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The purpose of FBA is to resolve the algebraic system

N · V (X) = 0

for the variables X1, . . . , X8. In our example, the algebraic system is linear
and we can compute the solution as follows:

X1(t) =
k[cos(t · ω) + 1]

k21
(40)

X2(t) = ε ·
k21 · (k23 + k43)

d′1
X1(t)

X3(t) = ε ·
k21 · k32

d′1
X1(t)

X4(t) =
k43
εk54

X3(t)

X5(t) = ε ·
k54 · k56 · k87 · (k68 + k98)

d′2
X4(t)

X6(t) = ε ·
k54 · k68 · k75 · k87

d′2
X4(t),

X7(t) = ε ·
k54 · k75 · k56 · (k78 + k98)

d′2
X4(t),

X8(t) = ε ·
k54 · k75 · k87 · k56

d′2
X4(t),

where d′1 = (k23 + k43) · k32 − k23 · k32 = k43 · k32 and
d′2 = k75 · k56 · k87 · (k68 + k98)− k56 · k68 · k75 · k87 = k75 · k56 · k87 · k98.

E Local Linearization for an Enzymatic System

In this section we take into consideration a network similar to N1 (Fig-
ure 3), but composed of nonlinear enzymatic reactions, whose substrates
and products are the metabolites X1, . . . , Xn. Then, we show how to locally
linearized its metabolic system around a functional point. The ODE sys-
tem of Michaelis-Menten enzymatic reactions for Network N2 (Figure 15) is

56



written as follows:

dX1

dt
= u(t)−

e021k21X1

X1 +K21

− µX1 X1(0) = x0
1 (41)

dX2

dt
=

e021k21X1

X1 +K21

+
k23
ε

e23X3

X3 +K23

−
k32
ε

e32X2

X2 +K32

− µX2 X2(0) = x0
2

dX3

dt
=

k32
ε

e32X2

X2 +K32

−
k23
ε

e23X3

X3 +K23

−
k43
ε

e43X3

X3 +K43

− µX3 X3(0) = x0
3

dX4

dt
=

k43
ε

e43X3

X3 +K43

−
e54k54X4

X4 +K54

− µX4 X4(0) = x0
4

dX5

dt
=

e54k54X4

X4 +K54

+
k56
ε

e56X6

X6 +K56

−
k75
ε

e75X5

X5 +K75

− µX5 X5(0) = x0
5

dX6

dt
=

k68
ε

e68X8

X8 +K68

−
k56
ε

e56X6

X6 +K56

− µX6 X6(0) = x0
6

dX7

dt
=

k75
ε

e75X5

X5 +K75

−
k87
ε

e87X7

X7 +K87

− µX7 X7(0) = x0
7

dX8

dt
=

k87
ε

e87X7

X7 +K87

−
k68
ε

e68X8

X8 +K68

−
k98
ε

e98X8

X8 +K98

− µX8 X8(0) = x0
8

dX9

dt
=

k98
ε

e98X8

X8 +K98

− µX9 X9(0) = x0
9,

where the input u(t) = I(t) := k[cos(t ·ω)+1], e0ji is the initial concentration
for the enzyme catalyzing the reaction with substrate Xi and product Xj ,
kji (or kji/ε for the fast reactions) is the product formation rate and Kji is
the Michaelis-Menten constant of the same enzymatic reaction.

Figure 15: Metabolic Network N2. Arrows between metabolites represent enzymatic reactions
catalyzed by an enzyme eji, with substrate Xi, product Xj and product formation rate kji or
kji/ε, respectively. The input I(t) = k[cos(t · ω) + 1] is a periodic continuous function.

To describe how we proceed to linearized the kinetics of N2, let us con-
sider a non linear system:

ẋ = f(x, u), (42)
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and a steady state x∗ associated to a constant input u∗. Therefore

f(x∗, u∗) = 0.

Now we define a linearized system associated to (42) around (x∗, u∗):

ẋ =
∂f

∂x

∣∣∣∣
x∗,u∗

(x− x∗) +
∂f

∂u

∣∣∣∣
x∗,u∗

(u− u∗) (43)

In our specific example, we take

u∗ := k ∼ mean(I(t)).

Then, we calculate the equilibrium point of Equation (41) when the input
is equal to this constant value. In other words, we obtain the equilibrium
points for the variables of Equation (41), when u(t) = u∗, as

X∗

i := lim
t→∞

Xi(t) ∈ R+ ∀i = 1, . . . , 9.

Hence, according to Equation (43), we obtain the following linearized
system associated to Equation (41):

dX1

dt
= k[cos(t · ω)]− (a21 + µ)(X1 −X∗

1 ) X1(0) = x0
1 (44)

dX2

dt
= a21(X1 −X∗

1 ) +
a23
ε

(X3 −X∗

3 )

−
(a32

ε
+ µ

)
(X2 −X∗

2 ) X2(0) = x0
2

dX3

dt
=

a32
ε

(X2 −X∗

2 )

−
(a23

ε
+

a43
ε

+ µ
)
(X3 −X∗

3 ) X3(0) = x0
3

dX4

dt
=

a43
ε

(X3 −X∗

3 )− (a54 + µ)(X4 −X∗

4 ) X4(0) = x0
4

dX5

dt
= a54(X4 −X∗

4 ) +
a56
ε

(X6 −X∗

6 )

−
(a75

ε
+ µ

)
(X5 −X∗

5 ) X5(0) = x0
5

dX6

dt
=

a68
ε

(X8 −X∗

8 )−
(a56

ε
+ µ

)
(X6 −X∗

6 ) X6(0) = x0
6

dX7

dt
=

a75
ε

(X5 −X∗

5 )−
(a87

ε
+ µ

)
(X7 −X∗

7 ) X7(0) = x0
7

dX8

dt
=

a87
ε

(X7 −X∗

7 )

−
(a68

ε
+

a98
ε

+ µ
)
(X8 −X∗

8 ) X8(0) = x0
8

dX9

dt
=

a98
ε

(X8 −X∗

8 )− µ(X9 −X∗

9 ) X9(0) = x0
9,
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where

aji :=
ejikjiKji

(X∗

i +Kji)2
∈ [0,∞) ∀i, j ∈ {1, . . . , 9}.

Numerical simulations (Figure 16 and Figure 17) show that the linearized
system (44) is a feasible representation of the nonlinear system (41).
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Figure 16: Dynamics of the network with enzymatic reactions N2 (Figure 15). Thick light
solid line: nonlinear system describing the Michaelis-Menten reactions of N2 (41); thin dark solid
line: linearized system (44); dashed line: value of the functional equilibrium points (X∗

i ). The
parameters considered for the simulation are stated in Table 5.
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Figure 17: Zoom on dynamics of the network with enzymatic reactions N2 (see also Figure 16).
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Parameter Value Units Parameter Value Units

ε 0.1× 10−2 - e23k23/ε 10 min−1

ω 0.4× 10−2 - e32k32/ε 20 min−1

µ 0.2× 10−2 min−1 e43k43/ε 20 min−1

k 0.2× 10−1 min−1 e56k56/ε 10 min−1

e21k21 0.1× 10−1 min−1 e68k68/ε 20 min−1

e54k54 0.1× 10−1 min−1 e75k75/ε 20 min−1

x0i 0.1× 10−1 µmol/m3 e98k98/ε 20 min−1

X∗

2 0.1× 10−2 µmol/m3 e87k87/ε 10 min−1

X∗

3 0.8× 10−3 µmol/m3 Kji 2 µmol/m3

X∗

5 0.9× 10−3 µmol/m3 X∗

1 7.24 µmol/m3

X∗

6 0.9× 10−3 µmol/m3 X∗

4 1.64 µmol/m3

X∗

7 0.2× 10−2 µmol/m3 X∗

9 2.15 µmol/m3

X∗

8 0.5× 10−3 µmol/m3

Table 5: Parameters considered for the numerical simulation of systems (41) and (44), depicted
in Figure 16 and Figure 17. The Michaelis-Menten constants Kji are considered to be all the
same, as well as the initial conditions x0

i for i = 1, . . . , 9.
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