
VENKATARAMAN ET AL.: DYNAMICAL REGULARITY FOR ACTION ANALYSIS 1

Dynamical Regularity for Action Analysis

Vinay Venkataraman1

http://www.public.asu.edu/~vvenka18/

Ioannis Vlachos2

ivlachos@latech.edu

Pavan Turaga1

http://www.public.asu.edu/~pturaga/

1 School of Arts, Media + Engineering,

School of Electrical, Computer and

Energy Engineering,

Arizona State University,

Arizona, USA
2 Center for Biomedical Engineering and

Rehabilitation Science,

Louisiana Tech University,

Louisiana, USA

Abstract

In this paper, we propose a new approach for quantification of ‘dynamical regularity’

as applied to modeling human actions. We use approximate entropy-based feature repre-

sentation to model the dynamics in human movement to achieve temporal segmentation

in untrimmed motion capture data and fine-grained quality assessment of diving actions

in videos. The principle herein is to quantify regularity (frequency of typical patterns) in

the dynamical space computed from trajectories of action data. We extend conventional

ideas for modeling dynamics in human movement by introducing multivariate and cross

approximate entropy features. Our experimental evaluation on theoretical models and

two publicly available databases show that the proposed features can achieve state-of-

the-art results on applications such as temporal segmentation and quality assessment of

actions.

1 Introduction

The computer vision community has been interested in modeling human activities for many

applications including video surveillance, automatic video annotation and health monitoring

[3]. Modeling the underlying dynamics in an activity forms the core idea in many systems.

An activity can be seen as a resultant of coordinated movement of body joints and their re-

spective interdependencies to achieve a goal-directed task. This idea is further supported

by Johansson’s demonstrations that visual perception of the entire human body motion can

be represented by a few bright spots which holistically describe the motion of important

joints [10]. Traditional dynamical modeling approaches usually operate on the level of in-

dividual joints of the human body, lacking any information about the interdependencies be-

tween joints [4]. Only recently, researchers have started exploring relationships between

body joints, using rotations and translations in 3D space [25], which lacks dynamical infor-

mation. In this paper, we propose a novel approach for dynamical modeling by extending

conventional ideas to quantify the interdependencies between body joints. Towards this end,

we propose a new approach – approximate entropy-based feature representation to model the

dynamics in human movement by quantifying dynamical regularity.
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WALKING JUMPING RUNNING

(a) Temporal segmentation of actions us-

ing motion capture data.

(b) Quality assessment of diving actions

using videos.

Figure 1: A visual representation of our applications of interest in this work. In (a), our aim is to achieve temporal

segmentation of actions from continuous untrimmed motion capture data in an unsupervised manner. In (b), we use

a supervised learning framework to assess the quality of diving actions from videos.

Our use of the term regularity represents the frequency of repetition of typical patterns

in the data. The main principle in our work is that different actions correspond to different

levels of regularity, and quantification of regularity can be used for human activity analy-

sis. For instance, walking is inherently periodic and hence corresponds to a higher level of

regularity when compared to dancing, which is more towards randomness due to multiple

movement strategies. From the system complexity perspective, walking can be represented

by simple dynamical systems, while more complex systems with a large number of vari-

ables may be required to represent dancing. Quantifying regularity and system complexity

is a well-studied problem in the field of signal processing. Correlation dimension [2] and

largest Lyapunov exponent [28] are examples of invariant measures proposed in the litera-

ture to quantify complexity of dynamical systems. It was found that robust estimation of

these invariant measures requires large number of data samples (of the order of 10d), where

d is related to the dimension of the dynamical system’s state space used in the estimation

procedure, with typical values of 3 and above. Later, a probabilistic measure called approx-

imate entropy was proposed to overcome the drawbacks of the above traditional measures

for quantification of system complexity [17]. Approximate entropy assigns lower values for

ordered time series and higher values for time series towards randomness. In this paper,

we utilize the algorithmic framework of [17] for estimating approximate entropy from time

series data and extend it to model the dynamics in human activities for applications such as

temporal segmentation and fine-grained quality assessment of actions.

Temporal Segmentation: Human motion recognition from untrimmed videos is a chal-

lenging problem due to large variations in the temporal scale of actions and extremely large

number of possible movement combinations [9, 22]. Traditionally, one assumes temporal

segmentation of videos is a step which has been done beforehand, resulting in pre-segmented

videos containing individual action sequences [3]. However, in a real world scenario, appli-

cations such as surveillance require automatic recognition of action sequences from contin-

uous untrimmed videos. In this work, as shown in Figure 1a, we develop a framework using

approximate entropy-based features for temporal segmentation of actions from untrimmed

motion capture data in an unsupervised manner.

Quality Assessment: With adequate success in recognizing actions from videos, researchers

in the computer vision community have shown growing interest in fine-grained analysis of

human activities by developing frameworks for quantification of movement quality [19, 26].

Quality assessment of human activities has recently been used in the field of sports [19],

healthcare and rehabilitation [26]. In this work, as shown in Figure 1b, we use an approx-

imate entropy-based feature representation and show its utility to assess action quality to

match human expert ratings on diving actions.
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2 Related Work

Our current work is focused on dynamical modeling of human actions for temporal segmen-

tation and fine-grained quality assessment of actions, and therefore we restrict our discussion

to related methods focused on our applications of interest.

Temporal Segmentation: Some of the early approaches for temporal segmentation of ac-

tions include learning representations for motion primitives using the theory of linear dy-

namical systems [12, 23, 24], thereby segmenting the human motion into its constituent ac-

tion sequences. Oh et al. [13] utilized switching linear dynamical system to learn and infer

motion patterns. Other approaches have been proposed in literature for temporal segmenta-

tion of human actions based on hidden Markov models (HMMs). Bregler et al. [6] utilized

HMMs to model complex human gestures as successive phases of simple movements. Brand

et al. [5] applied coupled HMMs demonstrating superiority to conventional HMMs towards

classifying two-handed human motion. Spriggs et al. [22] used HMMs for temporal seg-

mentation of activities in a kitchen using a wearable camera and inertial measurement units.

Recent work by Zhou et al. [30] proposed hierarchical aligned cluster analysis (HACA)

for temporal segmentation by extending standard kernel k-means clustering combined with

dynamic time warping for unsupervised temporal segmentation of human motion. HACA

was proposed as an extension to their previous work of aligned cluster analysis [29] by

reducing the computational complexity. We note here that the input to both these algorithms

is a frame kernel matrix (recurrence matrix), and it is apparent that the performance of these

clustering approaches depends on the quality of the recurrence matrix. In this paper, we show

the utility of the approximate entropy-based feature representation to estimate a recurrence

matrix which is better suited for clustering temporal actions as validated by our experiments.

Quality Assessment: Even though researchers have been working towards automatic recog-

nition of human actions for decades, the task of automatically quantifying the quality of a

given action has remained unexplored until recently. Such automated frameworks for quality

assessment of actions will find real-world applications in sports and healthcare. Hamed et al.

[19] used a regression model to predict the scores given by human expert judges on diving

actions using spatio-temporal pose features. A similar approach using a regression model

learned from shape-based dynamical features to quantify the quality of movement has been

proposed for stroke rehabilitation [26]. In [14], authors quantified team performance in a

multi-player basketball activity context using Bayesian networks. In this paper, we utilize

the approximate entropy-based feature to quantify the quality of diving actions and show

that using a dynamical measure performs better than the previously used frequency domain

representation using discrete cosine transform (DCT).

Contributions: Our work has the following contributions: (1) We propose a feature repre-

sentation to model human motion by quantification of regularity using approximate entropy.

The novelty in the proposed feature representation is that it encodes both the dynamics of

individual joints and cross-coupling information (interaction) between joints. (2) We show

the utility of the approximate entropy features to produce improved recurrence matrices for

temporal segmentation of actions. (3) We also show its usage in fine-grained quality as-

sessment. Our experimental evaluation on two publicly available databases show that the

proposed framework achieves state-of-the-art performance.
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3 Approximate Entropy (ApEn)

Approximate entropy is a statistical tool proposed by Pincus [17, 18] for quantification of

regularity of time series data and system complexity. It is a probabilistic measure based on

the log-likelihood of repetitions of patterns of length m being close within a defined tolerance

window that will exhibit similar characteristics as patterns of length (m+1) [16, 17]. It as-

signs a non-negative number to time series data, with lower values for predictable (ordered)

signals and higher values for signals with increased irregularity (or randomness). Ideally,

a pure sine wave should have a zero value of approximate entropy. It has an advantage

over Shannon’s entropy [20] in that it takes into account the temporal order, which makes

it more suitable to represent the dynamical evolution of time series data. The development

of approximate entropy was motivated to address the drawbacks of traditional measures to

quantify system complexity, thereby having a measure to successfully handle noise and ad-

dress the limitations of data length requirements and other model constraints [18].

It is defined using three parameters: embedding dimension (m), radius (r), and time delay

(τ). Here, m represents the length of pattern (also called as embedding vector) in the data

which is checked for repeatability, τ is selected so that the components of the embedding

vector are sufficiently independent, and r is used for the estimation of local probabilities.

Given N data samples {x1,x2,x3, . . . ,xN}, we can define embedding vector x(i) as,

x(i) = [xi,xi+τ ,xi+2τ , . . . ,xi+(m−1)τ ]
T ; f or 1 ≤ i ≤ N − (m−1)τ. (1a)

The frequency of repeatable patterns of the embedding vector within a tolerance r is given

by Cm
i (r) as

Cm
i (r) =

1

N − (m−1)τ ∑
< j>

Θ(r−d(x(i),x( j))). (1b)

where:

Θ(a) =

{

1, if a ≥ 0

0, otherwise.

d(x(i),x( j)) = max
k=1,2,..,m

(|x(i+(k−1)τ)− x( j+(k−1)τ)|).

Approximate Entropy is given by

ApEn(m,r,τ) = Φm(r)−Φm+1(r). (1c)

where:

Φm(r) =
1

N − (m−1)τ

N−(m−1)τ

∑
i=1

lnCm
i (r). (1d)

In the above equations, Cm
i (r) represents the frequency of repeatable patterns (local probabil-

ities) in the embedding vector x(i), Θ(a) is the Heaviside step function, and Φm(r) represents

the conditional frequency estimates. Evident from the above algorithm, the estimation pro-

cedure requires parameters m, τ , and r to be specified. In an ideal case, where one has access

to an infinite amount of data of infinite accuracy, any set of parameters which can result in

smooth embedding would give similar results ([2], chap. 3). With real world data, the choice

of these parameters should ensure smooth embedding with components of the embedding

vectors being sufficiently independent.
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Multivariate Approximate Entropy: Motion capture sensing allows us to observe 3-

dimensional time series data per body joint. A trivial solution to model the dynamics would

be to consider each dimension of a body joint independently to create the embedding vec-

tor (eq. 1a) as in [4, 26]. Recent theoretical and empirical findings have demonstrated that

multivariate embedding of time series data by simple concatenation of individual univariate

embedding vectors achieves good state space reconstruction as evaluated by the shape and

dynamics distortion measures [27]. In this work, we propose to use the multivariate embed-

ding procedure as described by Cao et al. [8] per body joint and estimate the approximate

entropy feature representation.

Natural human movement involves multiple body joints interacting with each other to

together accomplish a particular action task. Hence, it would be beneficial to utilize the

cross-coupling information between these joint trajectories. Research carried out by Ka-

vanagh et al. [11] using cross approximate entropy to model trunk motion during walking

supports our hypothesis that adding information about cross-coupling offers better feature

representation to model human motion and will be validated by our experiments.

Cross Approximate Entropy (XApEn): Cross approximate entropy is defined as the amount

of asynchrony between two time series data [15, 16]. Let u = [u1,u2, . . . ,uN ]
T and v =

[v1,v2, . . . ,vN ]
T denote two time series data of length N. The embedding vectors for given

parameters m,τ, and r are defined as

x1(i) = [ui,ui+τ , . . . ,ui+(m−1)τ ]
T ; x2(i) = [vi,vi+τ , . . . ,vi+(m−1)τ ]

T
. (2a)

The frequency of repeatable patterns within the embedding vectors x1(i) and x2(i) for a

tolerance r is given by Cm
i (r)(v||u) as

Cm
i (r)(v||u) =

1

N − (m−1)τ ∑
< j>

Θ(r−d(x1(i),x2( j))). (2b)

The cross approximate entropy is then given by

XApEn(m,r,τ) = Φm(r)(v||u)−Φm+1(r)(v||u). (2c)

where:

Φm(r) =
1

N − (m−1)τ

N−(m−1)τ

∑
i=1

lnCm
i (r)(v||u). (2d)

We estimate the XApEn feature across all pairs of body joints (after performing multivariate

embedding using data available from each body joint). It is evident from the above equations

that XApEn is an asymmetric measure. We note here that our initial analysis on exemplar hu-

man action data did not show a significant difference in the values of XApEn for forward and

backward directions. Hence, we use only one of these values in our feature representation.

We then concatenate ApEn and XApEn values to form our final approximate entropy-based

feature vector to model actions denoted by ApEnFT.

3.1 Choice of Parameters

Data Length (N): The suggested value for N was typically between 50 and 5000. This

constraint was imposed by Pincus in [18] to ensure a homogeneous segment of data under

certain experimental conditions, and this range for N was not an algorithmic limitation. Our

choice of N depends on the dataset used, and typically ranges between 30 and 50.
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Embedding Dimension (m): Through theoretical analysis and extensive experimental val-

idation, it has been shown that both m = 1 and m = 2 can distinguish data on the basis of

regularity [18].

Delay Time (τ): The purpose of delay time τ is to ensure that the components in the em-

bedding vectors are sufficiently independent. A low value of delay time will make adjacent

components in the embedding vector to be correlated and hence cannot be considered as in-

dependent. On the other hand, a high value of delay time will make adjacent components to

become uncorrelated (almost independent). Suggested methods in the literature to estimate

an optimum delay time has been first minimum of the lagged auto-mutual information, and

the time lag when the autocorrelation drops to 1/e of its initial value or the first zero of the

autocorrelation function [2].

Radius (r): The value of r could range anywhere between 0.1 to 0.25 times the standard

deviation of the data . A good choice of r should ensure that the conditional frequencies

defined in Eq. 1c are reasonably estimated. Smaller values of r may result in poor condi-

tional frequency estimates (not enough data samples), while large values of r cannot capture

enough local information of the system (the patterns are not similar).

Baselines: The main contribution of our work is to propose a better way to encode dynam-

ics compared to traditional dynamical modeling approaches. To evaluate the effectiveness

of our framework, we provide comparative results in each experiment with univariate ap-

proximate entropy estimated on individual dimensions of action data denoted by UniAp. We

also compare our performance with a feature vector of traditional chaotic invariants obtained

by concatenating largest Lyapunov exponent, correlation dimension and correlation integral

(for 8 values of radius) resulting in a 10-dimensional feature vector denoted as Dynamics,

which has been recently used in action recognition [4] and natural scene recognition [21].

4 Experimental Evaluation

In this section, we evaluate the performance of our feature representation on (1) synthetic

data generated from coupled Rossler oscillators, (2) temporal segmentation on motion cap-

ture dataset, and (3) quality assessment of diving actions.

4.1 Coupled Rossler Model

In order to demonstrate the utility of the proposed feature representation for quantifying reg-

ularity and cross-coupling in time series data, we use two coupled Rossler oscillators given

by the equations shown below. The main motive behind this experiment is to provide an anal-

ogy to human actions as coupled systems with changing coupling strengths to accomplish

different actions.

ẋ1 =−w1y1 − z1

ẏ1 = w1x1 +αy1

ż1 = β + z1(x1 − γ)

(3a)

ẋ2 =−w2y2 − z2 + e(x1 − x2)

ẏ2 = w2x2 +αy2

ż2 = β + z2(x2 − γ)

(3b)
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Figure 2: Illustration of utility of approximate entropy feature representation for quantifying regularity and cross-

coupling on coupled Rossler model. (a) shows exemplar time series data synthesized from the coupled Rossler

model for three different coupling strength e = 0.1,0.3,1.0. (b) and (c) respectively show the distribution of ApEn

values of x2(t) and the distribution of XApEn values of x1(t) and x2(t) for 20 trials each for different values of e.

Here, the Rossler system in Eq. 3a drives the Rossler system in Eq. 3b. ‘e’ is the

coupling strength between the two Rossler oscillators. As the coupling strength is increased,

the two oscillators become synchronized. For this configuration of Rossler oscillators, the

parameters were chosen as α = 0.2, β = 0.2, γ = 5.7, w1 = 1, and w2 = 0.2. We choose

three values of coupling strength, e = 0.1,0.3, and 1.0 to demonstrate the sensitivity of cross

approximate entropy measure to coupling strength. For each value of e, we generate 20 data

segments from the coupled Rossler system, with each segment having 2000 samples. Figure

2 shows exemplar time series of x1 and x2 for different coupling strengths. From Figure

2a, we see that as e approaches 1.0, x2 becomes more synchronized with x1. In a coupled

Rossler system where one oscillator drives the other, the dynamics of the receiver oscillator

depend on the coupling strength and the receiver becomes more synchronized with the driver

as coupling strength increases. From Figure 2b, we see the changes in distribution of ApEn

values for different e, showing that univariate ApEn can capture the change in dynamics

(or regularity). Similarly, Figure 2c shows the changes in distribution of XApEn values

for different e, indicating that as the two oscillators become more synchronized, the cross

approximate entropy value decreases, thereby capturing the amount of asynchrony between

two time series data. The dynamics in human actions can be considered as analogous to the

dynamics of such coupled systems in that different coupling strength between body joints

corresponds to different actions, and we believe that the proposed feature can be used to

model dynamics.

4.2 Temporal Segmentation

In this experiment, we use the publicly available Carnegie Mellon University motion cap-

ture database [1]. As in [30], we use the data collected from subject 86 with 14 markers

placed on the most informative body joints with the motion capture system recording at 120

Hz. The dataset is a collection of 14 action sequences, each sequence containing multiple

natural actions such as walking, punching, drinking, running. The main idea in [29, 30] is

that such natural actions are inherently periodic, and this periodicity can be observed in the

recurrence matrix showing block structures. Clustering methods such as spectral clustering

can be used to cluster (segment) these blocks to achieve temporal segmentation of actions,

and hence the clustering accuracy will greatly depend on the quality of the recurrence ma-

trix. In this work, we demonstrate that quantifying regularity in actions using approximate

entropy-based features can be used to improve the quality of recurrence matrix. We calcu-

late the approximate entropy features as explained in section 3 over a sliding window and

the estimated feature values are indexed to the center of the sliding window. The recurrence
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Figure 3: Illustration of utility of approximate entropy feature for quantifying regularity and improving quality of

recurrence matrix. (a) shows exemplar time series data collected from hip joint of a subject performing DANCE,

JUMP and RUN actions, (c) shows the corresponding ApEn feature values, (b) and (d) respectively show the

recurrence matrix estimated on raw time series data in (a) and ApEn feature values in (c).

Human
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(a)

Human
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ApEnFT
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(b)
Figure 4: Comparison of temporal clustering methods on the CMU motion capture dataset. Different colors indicate

different actions. Ground truth motion segmentation was provided by human observers.

matrix is now calculated on the approximate entropy feature values instead of the time series

data collected from the mo-cap system. Figure 3 shows an illustration of our proposed idea

using one-dimensional time series data, where we clearly see that the recurrence matrix in

(d) calculated from approximate entropy feature values looks more suitable to segment the

three actions than recurrence matrix in (b) calculated directly from mo-cap raw time series

data. We follow the evaluation protocol as in [30] using the Hungarian algorithm to find the

optimum cluster correspondence and to compute clustering accuracy [7]. We compute the

confusion matrix between the segmentation provided by the algorithm and the ground truth

such that each entry Cc1,c2
in the confusion matrix represents the total number of frames that

belong to the cluster segment c1 that are shared by the cluster segment c2 in the ground truth.

The accuracy is then given by the equation

accuracy = max
tr(CP)

tr(C1k×k)
(4)

where P ∈ {0,1}k×k
is a permutation matrix.

Figure 4 shows exemplar segmentation results obtained using the approximate entropy-

based features along with Spectral Clustering (SC) and HACA on two action sequences.

Different colors mark different actions and the ground truth segmentation was obtained from

human observers. In both these examples we see that using approximate entropy features

provides better segmentation than just using SC or HACA on mo-cap time series data. Due

to space constraints, we only show the segmentation results on two sequences. We report

the average segmentation accuracy using various features in Table 1, which further supports

our claim that using the proposed approximate entropy-based features along with a clustering

approach will provide better segmentation accuracy compared to using a clustering approach

on mo-cap time series data.



VENKATARAMAN ET AL.: DYNAMICAL REGULARITY FOR ACTION ANALYSIS 9

Method Avg. Accuracy

ApEnFT+HACA 0.93

HACA 0.91

ApEnFT+SC 0.86

SC 0.75

Baseline Avg. Accuracy

UniAp+HACA 0.67

UniAp+SC 0.56

Dynamics+HACA 0.65

Dynamics+SC 0.63

Table 1: Comparison of average temporal segmentation accuracy for various methods.

Method STIP Hierarchical Pose+DFT Pose+DCT UniAp Dynamics Proposed

SVR 0.07 0.19 0.27 0.41 0.05 0.17 0.45

Table 2: Mean rank correlation for various methods. Our proposed feature achieves 10% improvement in the

correlation coefficient compared to the state-of-the-art. [19] reported correlation coefficient using STIP, hierarchical

and pose+DCT features.

4.3 Action Quality Assessment

In the next experiment, we show that the proposed feature can also be used to quantify

the quality of diving actions. For this experiment, we use the diving dataset released by

Pirsiavash et al. [19] which is a collection of videos downloaded from YouTube. The diving

dataset consists of 159 videos of diving actions performed by multiple subjects with their

respective quality scores given by expert judges. The dataset also provides estimated pose for

each frame of the video which is used as input to our framework. The problem of quantifying

the quality of diving actions on this dataset is shown to be challenging by the experimental

analysis done by Pirsiavash et al. in [19], where the best performance achieved was of mean

rank correlation of 0.41 between predicted scores and ground truth scores given by judges.

We use the same evaluation protocol of generating random training and testing example splits

200 times as introduced in [19] with 100 instances as training examples and the rest as testing

examples. Using the estimated pose for each frame, we calculate the approximate entropy

features as explained in section 3 for different values of radius (r = 0.1,0.12,0.14,0.18) and

concatenate to get a high-dimensional feature vector. Using PCA to achieve dimensionality

reduction and an SVM regressor to generate real-valued scores indicative of the quality of

diving actions, we show that our approximate entropy-based feature performs better than

the traditional DCT-based feature. We believe that this is achieved due to the fact that our

feature encodes the dynamical information in the time series of poses while DCT does not.

In addition, traditional approaches consider each joint independently, while the proposed

framework incorporates the interdependency between the joints. The results are tabulated in

Table 2 and we achieve a rank correlation of 0.45 in comparison with 0.41 reported in [19].

5 Conclusion

In this paper, we propose the use of an approximate entropy-based feature representation

to quantify dynamical regularity in time series of action data for applications in (a) tempo-

ral segmentation of actions and (b) quantification of quality of diving actions. The novelty

in the proposed feature is in the use of the multivariate embedding approach for approxi-

mate entropy to model dynamics in individual body joints and cross approximate entropy

to model interaction between body joints. Using nonlinear dynamical models such as the

coupled Rossler system, we showed that the proposed feature is sensitive to changes in cou-

pling factor, analogous to interactions between body joints in different actions. Extensive
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experimental evaluation was presented on two publicly available databases showing better

results than the state-of-the-art and the traditional approaches used as baseline measures.

6 Acknowledgments

This work was supported in part by National Science Foundation (NSF) CAREER grant

1452163 and NSF 1320267.

References

[1] Carnegie mellon university motion capture database. http://mocap.cs.cmu.

edu. 2012.

[2] Henry Abarbanel. Analysis of observed chaotic data. springer-verlag. 1996.

[3] JK Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM Comput-

ing Surveys (CSUR), 43(3):16, 2011.

[4] Saad Ali, Arslan Basharat, and Mubarak Shah. Chaotic invariants for human action

recognition. In International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[5] Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden markov models for

complex action recognition. In Conference on Computer Vision and Pattern Recogni-

tion, pages 994–999. IEEE, 1997.

[6] Christoph Bregler. Learning and recognizing human dynamics in video sequences. In

Conference on Computer Vision and Pattern Recognition, pages 568–574. IEEE, 1997.

[7] Rainer E Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment Problems,

Revised Reprint. Siam, 2009.

[8] Liangyue Cao, Alistair Mees, and Kevin Judd. Dynamics from multivariate time series.

Physica D: Nonlinear Phenomena, 121(1):75–88, 1998.

[9] Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre. Joint segmentation and clas-

sification of human actions in video. In Conference on Computer Vision and Pattern

Recognition, pages 3265–3272. IEEE, 2011.

[10] Gunnar Johansson. Visual perception of biological motion and a model for its analysis.

Perception & psychophysics, 14(2):201–211, 1973.

[11] Justin J Kavanagh. Lower trunk motion and speed-dependence during walking. Journal

of neuroengineering and rehabilitation, 6(1):9, 2009.

[12] ChunMei Lu and Nicola J Ferrier. Repetitive motion analysis: segmentation and event

classification. Transactions on Pattern Analysis and Machine Intelligence, 26(2):258–

263, 2004.

[13] Sang Min Oh, James M Rehg, Tucker Balch, and Frank Dellaert. Learning and in-

ferring motion patterns using parametric segmental switching linear dynamic systems.

International Journal of Computer Vision, 77(1-3):103–124, 2008.

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu


VENKATARAMAN ET AL.: DYNAMICAL REGULARITY FOR ACTION ANALYSIS 11

[14] Matej Perše, Matej Kristan, Janez Perš, and Stanislav Kovačič. Automatic Evaluation
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