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Abstract. Let si be a C*-algebra and r:G -»Autj^ a compact abelian action such

that the fixed point algebra sdJ is simple. Denote by siF the *-subalgebra of G-finite

elements. Let H: s£F -* si be a *-operator commuting with T such that H\^ = 0 and

the matrix inequality

holds for all finite sequences Xu ..., Xn in s£F. Then H is closable, and the closure

H is the generator of a strongly continuous semigroup {exp (-tH): t >0} of com-

pletely positive contractions. Furthermore, there exists a convolution semigroup

{n,: t > 0} of probability measures on G such that

exp (-tH)(X) = f dfi,(g)T(g)(X), f>0,

This result has various extensions and refinements.

1. Introduction

In [1, appendix C] a theorem called Robert's version of Tannaka duality is proved.

A special case of this, which could be called Roberts's version of Pontryagin duality,

reads as follows:

Let G be a compact abelian group and r an automorphic action of G on a von

Neumann algebra M, such that the fixed point algebra MT is a factor. Let a be an

automorphism of M such that

(1.1) or(g) = T(g)a for all g in G;

(1.2) a(X)=X forallXinM\

Then there exists a g e G such that a =r(g).

In this paper we replace the automorphism a with a general completely positive

map S satisfying (1.1) and (1.2). It turns out that the extremal such maps are just

the automorphisms r(G), and in general S has the decomposition

S=\ dfjL(g)r(g),
JG

where fi is a probability measure on G. This result remains true if M is replaced

https://doi.org/10.1017/S0143385700001929 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001929
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by a C*-algebra si such that siT is simple. With somewhat less restrictive assump-

tions on T, the measure /tx is replaced by a measure taking values in the centre of

the multiplier algebra of siT. These results are contained in § 4.

In § 5 we study generators of dynamical semigroups of completely positive maps.

This paper was in part inspired by [9] where it was proved that if G is a compact

abelian group acting ergodically on a simple C*-algebra si, and 8 is a derivation

defined on the C°°-vectors, then 8 has a unique decomposition

8 = <5o + 5,

where <50 is the generator of a one-parameter subgroup of G, and 8 is approximately

inner. The derivation <50 is nothing but the invariant part of 5,

5o = J dgT{g)Sr(-g).

That 80 generates a one-parameter subgroup of r is then closely related to Roberts's

version of Pontryagin duality. In order to establish analogous decompositions for

generators of completely positive semigroups, we first need to characterize those

generators commuting with the ergodic actions, and this is done in corollary 5.8.

It is a remarkable consequerlce of complete positivity that such a generator has

the same form whether the C*-algebra si is abelian or not. If G = Jd, it is a sum

of three terms: the first is a linear combination of the elements in a basis

d
— , i- ,2, ...,d,

for the action of the Lie algebra of G on si; the second, the negative of an elliptic

operator in d/df,, / = 1, 2,. . . ; and the third a bounded superposition of operators

of the form

d

-expfHO-
given by the Levy-Khinchin formula.

Ideally, one would like to characterize generators of actions

{5, = exp(-tf/):f>0}

on a C*-algebra si with the properties

(1.3) 5, is (completely) positive for all f >0 ;

(1.4) Str(g) = T(g)St, for all r s=0, g in G.

(1.5) S,(X)=X, for all X in the fixed point algebra si\

It has recently been proved that a closed derivation 8 satisfying

8T(g) = r(g)8, and «U* = 0,

is automatically the generator of a one parameter group of *-automorphisms [6];

see [17], [18], [20], [22], [27], [28] for related results. However there does not

seem to be a simple algebraic condition replacing the derivation property which

characterizes the generators of completely positive semigroups, since the domain
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Dynamical semigroups 189

D{H) of such an operator is not necessarily an algebra [8]. One can replace algebraic
properties with analytic ones, and the following result is true for rather trivial
reasons.

Let T be an action of a compact (abelian) group G on a C*-algebra si. Suppose
H is an operator on si such that D(H) = siF, the G-finite elements of si, satisfying:

(1.6) His dissipative, i.e. ifXes£F, there exists a non-zero 17 esi*, such that

and

ReTj(//(Af))>0;

(U) Hr(g) = r(g)H for all g in G;

(1.8) H(X) = 0 for all X in sf'.

Then H is closable, and the closure generates a semi-group of positive maps.

The proof follows in part an argument from [17]. As H is dissipative it is closable,
and its closure H is dissipative [7, lemma 3.1.14]. Condition (1.7) ensures that H
maps the spectral subspace

slr(y) ={Xe si: r(g)X = (y, g)X, for all geG}

into itself, for any y e G. The closed graph theorem shows that the restriction of
H to siT(y) is bounded, and so the elements of siT(y) are analytic vectors for H.

By [7, lemma 3.1.15, theorem 3.1.19], H generates a semigroup of contractions

{S, = exp (-?//), ?>0}.

The semigroup 5 acts trivially on s£T and by the first lemma of § 4, any approximate
identity for s£T is also an approximate identity for si. Since this approximate identity
converges to 1 in the universal enveloping algebra si**, it follows that

S** 1 = 1, for each r>0.

But each Sf* is a contraction, and so is positive [7, corollary 3.2.6], and hence
each 5, is positive.

In § 5 we prove versions of this result where (1.6) is replaced by the algebraic
condition:

[HiXtXj)] < [H(X,)*Xi +XfH(X,)]

for all finite sequences X\, X2,..., in the linear span of the spectral subspaces. We
have to impose some restrictions on the action T in order to make our proofs work,
but these situations include the ergodic actions. Other results have been obtained
in [21] when the algebra is abelian.

If si is a C*-algebra on a Hilbert space dtC, it is known [11] that the bounded
generator H of a norm-continuous semigroup of completely positive maps can be
expressed as

H(X) = -K(X)+LX +XL*,

where L e si", and K is completely positive. In the last remark in § 5, we establish
an analogous decomposition for the semigroups we consider, but K{X) may be
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unbounded for all X ^ 0 in D{H). Finally § 6 contains some examples; in particular
the ergodic action of Z2 x Z2 on M2 is analysed in detail.

2. Preliminaries

If G is a compact abelian group, an action r of G on a C*-algebra si will be a
homomorphism T from G into Aut(j^), the group of all *-automorphisms of si,
which is strongly continuous in the sense that

is norm continuous for each X in si. If y e G, the dual group of G, Py denotes the
norm one projection

j dg(y, g)r(g)

on si so that

/ y y =0 if y # y',

and

The ranges are denoted by

^T(y)

the spectral subspace corresponding to y, and we often write P for Po and

for the fixed point algebra. Then

siT(y) = {Xesi: r(g)(X) = (y, g)X, Vg 6 G},

and

An element Xesi lies in the linear span {siT(y): yeG} if and only if the linear
span {r(g)(X): g e G) is finite dimensional. Such elements are called G-finite, and
the G-finite elements

sfF=dF

form a dense *-subalgebra of si.

For a von Neumann algebra si =M, the functions g -*r(g)(X) are only required
to be cr-weakly continuous. The set of XeM such that g->r(g)(AT) is strongly
continuous form a cr-weakly dense norm-closed *-subalgebra Mo of M which is
called the strong continuity subspace of T. MO is the norm closure of MF, [7], [26].

If si is a C*-algebra, M(si) will denote its multiplier algebra, and K(st) the
Pedersen or minimal dense ideal [26, 3.12, 5.6].

If si is a C*-algebra, 5if a Hilbert space and

a completely positive linear map, then the Stinespring decomposition of Q consists
of a triple (IT, 36, V) where IT is a representation of si on a Hilbert space $f,
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V: 3£ -> 3K is a bounded linear operator such that

Q(X)= V*IT(X)V Xesi,

and V3C is cyclic for v, [3], [16].

3. Centre-valued measures
In order to formulate our main theorems, we need some results on vector valued
measures, which are straightforward, but do not seem easily available in the
literature. We must make sense of expressions like

f dlM(g)X(g),

when G is a compact Hausdorff space, X is a continuous function from G into a
C*-algebra si, and /A is a measure on G taking values in an abelian C*-algebra
9? which is a subalgebra of the centre of the multiplier algebra M(si) of si, such
that <# contains the identity of M{si).

We define a "^-valued probability measure /A on G to be a positive, unital, linear
map from C(G) into (&. Such a measure is completely positive and

[16, § 4]. Let C(G, si), (= C(G) ® si), denote the C*-algebra of continuous func-
tions from G into si, containing the algebraic tensor product C{G)Qsi as a
dense *-subalgebra. The linear map

=\ dui(g)X(g)esi
Jo

is defined as follows. By [32, prop. 4.7] and nuclearity of <€, there is a unique
*-homomorphism e of <€ ® si onto si such that

e(c®a) = ca, ce^

Define jl:C(G,sf)->st by

Then /x is completely positive, and

for / e C(G) and a e ^ . W e write J d/*(g)AT(g) for £(X) if AT e C(G, ^ ) .
We need the following version of Bochner's theorem:

L E M M A 3.1 . Let G be a compact abelian group and % a unital abelian C*-algebra,

and Z a function from G into 'S which is positive definite in the sense that the nxn

matrix

is positive for all yu ..., yn e G, n > 1, and Z(0) = 1. Then there exists a ^-valued
probability measure /x on G such that

y , -»=f dm(g)(y,g),
G

for all y in G.
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Proof. If K is the spectrum of <€ and weK, than y-»w(Z(y)) is a positive definite
function in the usual sense, and by Bochner's theorem there is a probability measure
/uw on G with

Z(y)(a>) = J rfjUgXy.g). See [5]

If heC(G), define

A(«») =[
Since /i can be approximated uniformly by linear combinations of characters on
G, it follows that h is continuous on /£", and so can be identified with an element
n{h), say, in c€. Clearly /u.(l) = 1, and n is a positive linear map from C(G) into
c€, and so is a "^-valued probability measure on G. Since

we have

Remark 3.2. If /x is a <#-valued probability measure on G, and a e ^ = Spectrum
of <£, then an ordinary probabiity measure ju,,, on C? is determined by

Jo

for all h e C(G). Thus fi determines a bundle fi^, of ordinary probability measures
over K, and conversely the bundle (/LO determines n. Since we will use ^-valued
probability measures only to formulate results, and not as a technical tool in the
arguments, this bundle structure will not be emphasised except in the trivial case

4. Completely positive maps

In this section we consider the case of a single completely positive map commuting
with a compact action. The following lemma is needed to make one of the hypotheses
in theorem 4.2 meaningful (see [23, lemma 4.2] for a related result):

LEMMA 4.1. Let G be a compact abelian group and T an action of G on a C*-algebra

si. Any approximate identity for the fixed point algebra siT is also an approximate

identity for si, and the multiplier algebra M(siT) is contained in M{si).

Proof. Let Ea be an approximate identity for sir. UXe sir(y), then XX* e sl\ and

(EaX -X){EaX -AT)* = EaXX*Ea -EaXX*-XX*Ea +XX*

-+XX*-XX*-XX* + XX* = O
as a ->oo. Thus

EJC^X,

for all X in siF, and hence for all X in si. Let Y eM(sir) and X e si, then

YX = lim Y(EaX) = lim ((YEa)X) esi.
a a

The second remark is now clear. •
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THEOREM 4.2. Let G be a compact abelian group and r an action of G on a
C*-algebra si. Assume that the ideals siT(y)siT(y)* in siT are either dense or zero
for each y in G, and that the centre of M(siT) is contained in the centre of M(si).
If S: si-> si is a linear map, then the following two conditions are equivalent:

(4.1) (a) S is completely positive;
(b) Sr(g) = T(g)5, for all g in G,

(c) S(X) = X, for all X in si1'.

(4.2) There exists a centre M(siT))-valued probability measure fi on G such that

forallXinsi.

Proof. That (4.2) implies (4.1) is trivial. Suppose that (4.1) holds. Let X denote
the Pedersen ideal of siT. If yi and y2 are contained in the Arveson spectrum Sp (T)
then

y.fi 'fyi) for/= 1,2

since X is the minimal dense ideal in siT [26, theorem 5.6.1]. Thus

and so

^T(Yi)^T(y2)*^{0} and Y l -y 2 eSp(T) .

Thus Sp (T) is a subgroup of G. By going to the quotient G/(Sp {r))\ we may assume
that the action T is faithful, and $£T{y)s£T(y)* is dense in sV for all y in G.

LEMMA 4.3. / / S.si^sd is a linear map satisfying (4.1)(c), and the Kadison
-Schwarz inequality S(X*X)>S(X)*S(X) holds for all X in si, then

S{XY)=XS(Y) S(YX) = S(Y)X

for all X insiT and Y in si.

Proof. Following [14], put

D(X, Y) = <f>(S(X*Y)-S(X)*S(Y)),

for X and Y in si, where <t> is a state on si. Then D is a non-negative sesqui-linear
form. If XesiT, then X* and XX* e sf, and (4.1)(c) implies that D(X*, X*) = 0.
Hence the Cauchy-Schwarz inequality, applied to D, gives

D(X*, Y) = 0

for all X in siT and Y in si. Since S(X) = X, for X in siT, this implies S(XY) =
XS(Y). •

LEMMA 4.4. Assume that siT(y)siT(y)* is dense in sdT for all y in G, and assume

that S:si ->si is a linear map satisfying (4.1). Then for each y in G, there exists an

element Z(y) in the centre of M(siT) such that

S(X)=Z(y)X

forallXinsiT(y).
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Proof. As siT (y)siT (y)* is a dense ideal in siT, it follows from [10] and lemma 4.1,
or from [23, lemma 4.3], that si has an approximate identity of the form

where A? esiT(y) and each sum is finite. Define

If X esir(y), we have by lemma 4.3

S(EaX) = I S(A7A?*X) = I S(AT)A?*X = ZaX.
i

Hence
= limZaX.

a

Next we derive a uniform estimate on \\Za\\. As S is positive we have by (4.1)(c) that

If /„ is the identity map on Mn =Mn(C), then it follows from complete positivity
that \\S®In | |=1 .
Let

A" . . . A

0 . . . 0

Then

Ea 0 . . . 0

0
(S®In)(A

a)Aa* =

.0 0 . . . 0_

In particular, ||Aa||<||.Ea||
2< 1, and so

za o
0

.. 0'

0

0 0 . . . 0

This is the desired uniform estimate. We now show that Za converges in the strict
topology on M(siT) to an element Z{y) in M(siT) (i.e. ZaX^Z{y)X and XZa -»
XZ(y) in norm for each X esir). First, we have

ZaE0=lZaAfAf*^S(Af)Af*, as a

Since E& forms an approximate identity for si, and \\Za || < 1, it follows that lima Za Y

exists for all Y in si, and the limit has norm not greater than || V||. Thus Za converges
strongly to an element Z(y) in the universal representation of si. Hence Z(y)esi**,

the bidual of si, and

= \imZaYest, for all Y in si;

i.e. Z(y) is a left multiplier of si. Also

S(X) = \imZaX=Z(y)X, for all X in siT(y).
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UXestT(y) and Yes4T then YXes£T(y), and so S(YX)=Z(y)YX. But lemma
4.3 shows that

and hence

But then

S(YX) = YS(X) = YZ(y)X,

Z(y)YX=YZ(y)X.

Z(y)YEa=Z(Z(y)YA7)A7*

= Z(YZ(y)Af)A?*
i

= YZ(y)Ea,

and as Ea converges strongly to 1 in the universal representation we get

Z(y)Y=YZ(y),

for all Y in siT. This shows Z(y)€s4r>, and since Z(y) is a left multiplier,

O

for all a. But then

ATZ(y) = lim Ar£aZ(y) € si,
at

and so Z(y) is also a right multiplier.

LEMMA 4.5. Adopt the assumptions of lemma 4.4, and also assume that the centre
of M(s4T) is contained in the centre of M{s&). Then

yeG^Z(y)ecentre M(vlT)

is positive definite.

Proof. Take Afe.stfT(yi) for/ = 1 , . . . ,n. Then the n xn matrix [S(X*Xj)] is positive
since S is completely positive. But

and so

and hence

But then

fXj) = Z(yy -

x,
0

0

0 . . .

x2 ...
0
0

x

[XfZiyj-ydX,]

Xi

0

0

0 .

xt .
.. 0
.. 0

X

i.e.
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We next show that if X\

matrix

T(y,), for i = 1 , . . . , n, and k = 1 , . . . , m, then the n x n

is positive. Let

s£=si®Mm, S=S®Im, Z(y)=Z(y)®lm,

Then one easily verifies that

and hence that S(X) = Z(y)X for all Xe.stfT(y). Furthermore Z(y) is contained

in the centre of M(s0l)=M(s4)®Mm, and 5 is completely positive. The above

reasoning applied to 5 then implies that for Xt e $£T{yi) = s&T(yi) ® Mm, i = \,...,n

we have

J t f f ^ O , mMmn{si).
Now make the special selection

[X] X]
0 0

-0 °
Then

0
, where ATf

0

0

0 ... Oj

and going to a submatrix, this implies

As in the proof of lemma 4.4, we can find an approximate identity for si consisting
of elements of the form £fcXfxf *, where X? €siT(yi), which converge strongly to
1 in the universal representation. Hence we get from the above relation that

[Z(yy-y,-)]2=0. •

End of proof of theorem 4.2. By lemmas 4.4 and 4.5, there exists a positive definite
map y eG->Z(y)e centre M(siT) such that S(X) = Z{y)X, for X in sir(y). By
lemma 3.1, there exists a centre (A/(.s/T))-valued probability measure /i onG such
that

If \dfi(g) is the associated positive map from C{G,si) into si, we have for

= Z(y)X = S(X).
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Hence by linearity S(X) = \Gdfi(g)T(g)(X), for all X in siF, and hence for all X

in si by continuity. •

COROLLARY 4.6. Let G be a compact abelian group and T an action of G on a

C*-algebra si such that siT is simple. If S: si-* si is a linear map, then the following

two conditions are equivalent:

(4.3) (a) S is completely positive;

(b) ST(g) = T(g)S, for all g in G;

(c) S(X) = X, forallXinsiT.

(4.4) There exists a probability measure n on G such that

5(A-) = j dn(g)r{g)X, for all X in si.

Proof. When siT is simple, the ideals siT(y)siT(y)* are either zero or dense. The

Dauns Hofmann theorem states that the centre of M(siT) is isomorphic to the

C*-algebra Cfc(Prim siT) of all continuous bounded functions on the primitive ideal

space of siT, and hence the centre of M(siT) is trivial, when siT is simple [26]. Thus

theorem 4.2 applies and /x is an ordinary probability measure on G in this case. •

We next consider a single completely positive map commuting with a compact

action on a von Neumann algebra.

PROPOSITION 4.7. Let G be a compact abelian group and T an action of G on a

von Neumann algebra M. Let S:M -*M be a linear map such that

(a) S is completely positive;

(b) Sr(g) = r(g)S, for all gin G;

(c) S(X) = X, forallXinM\

Then S is normal.

Proof. The linear space Jtr(y)Jlr(y)* is an ideal in MT, and hence there exists a

projection E(y) in MTnJ(r' such that MT(y)MT(y)* =MTE{y), where the bar

denotes <r-weak closure. By minor modifications to the proof of lemma 4.4 we can

produce an element

such that S(X) = Z(y)X for all X in M\y).

The expression on the right makes sense since the range of X is contained in

E(y), and we may extend Z(y) to an operator in MT nJtTI by requiring

The identity S{X) = Z(y)X is then still valid. If X eJt, we let

{X(y)}yeo,

denote its Fourier components relative to T, i.e.
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Let T* be the dual action of r on M*. The convex set of G-finite elements

for the action is weakly dense, hence norm dense in M*. If 17 eM]*(y) then

r,(X) = r,(X(y)) for all X in M.

Since 5 commutes with T one deduces further that

V(S(X)) = V(S(X(y))) = r,(Z(y)X(y)) =

where z(y)V is the left translate of 17 by Z(y), and the last identity follows from

the fact that Z{y)eMT. Hence

and as z<-y)i7 G ^ * it follows that

But J^^F is norm dense in M*, so

and hence S is normal. •

We are now ready to state a von Neumann version of theorem 4.2.

COROLLARY 4.8. Let G be a compact abelian group and r an action of G on a von

Neumann algebra M such that the ideals M1(y)Jt1(y)* in J/C are either zero or

o--weakly dense, and MTr\MTI is contained in MnJC. Then there is a bijection

between:

(4.5) Linear maps S:Ji-*J( such that

(a) 5 is completely positive;

(b) 5r(g) = T(g)S for all gin G;

(c) S(X)=X for allXin AC';

and

(4.6) (MT r\Mr')-valued measures /A on G.

The correspondence is given by

S(X)=\ dn(g)T(g)(X)
Ja

for all X in the strong continuity subspace MQ for T.

Remark 4.9. The two conditions

(a) MT(y)JC{y)* is either dense in MT or zero for each y e G,

(b) MTr^MTI cMnM',

are equivalent to the single condition

(ab) r(r) = Sp(T),

where F(T) denotes the f-spectrum of r and Sp (r) is the spectrum of r (at least

when M* is separable). We give a crude outline of the argument.

Assume first that T is centrally ergodic, i.e.
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This is equivalent to the fact that M has no non-trivial cr-weakly closed r-invariant
ideals. In this situation one has that MT is a factor if and only if F(T) = Sp (T), [26,
Proof of theorem 8.10.4.], i.e.

if andonly if T(T) = SP(T).

In the general case, decompose M over the abelian von Neumann sub-algebra

JlTn(JtnJt'). As

ACr,MTI ^MnM'

if and only if

AC n i " c l ' n(M nM'),

it follows from the above that this condition holds if and only if F = Sp on each of
the minimal components of the decomposition. But condition (a) ensures that the
spectrum is constant on almost all components, and hence (a) and (b) imply (ab).
Conversely (ab) implies that

r = Sp = Sp(r)

on almost all components, and hence (b) holds. But if F(T) = Sp (T) and y e Sp (r),
and E sAC is a projection, then y e F(T) and hence EAC{y)E 9* {0}, thus

and thus AiT (y)MT (y)* is dense in AC, i.e. (a) holds. This shows (a) & (b)O(ab).

Proof of corollary 4.8. If S satisfies (4.5), then it is normal by proposition 4.7. By
(4.5)(b), S maps the C*-algebra Jt0, the strong continuity subalgebra, into itself,
and theorem 4.2 applies to show that S\M0 is given by

where fi is an ^TnJ^T '-valued probability measure. (Actually the ideals
Mr{y )MT(y)* are only tr-weakly dense in MT, but by modifying the proof of theorem
4.2 as indicated in the proof of proposition 4.7, one can produce the elements
Z(y) as before and use lemma 3.1 to construct the measure /u..) Since S is normal,
it is uniquely determined by its restriction to the cr-weakly dense subalgebra Mo-

Conversely, if fi is given, it defines a completely positive map S on Mo by

= Z{y)X,

where

Z(y) = /x«y, -))eJlTnMT'.

Using this, as in the proof of proposition 4.7, it follows that S extends by cr-weak
continuity to M. •

The hypothesis of the following corollary is often satisfied when MT is not simple
but prime.
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COROLLARY 4.10. Let G be a compact abelian group and T an action of G on a

C*-algebra si. Let

be the canonical projection of si on siT. Assume that there exists a faithful representa -

tion TTO of siT such that ir(sir)" is a factor, where tt is the Stinespring representation

associated to the completely positive map TTQ°P. If S: si -> si is a linear map, then the

following two conditions are equivalent:

(4.7) (a) S is completely positive;

(b) 5r(g) = T(g)S for all g in G;

(c) S(X) = X for all X in si''.

(4.8) There exists a probability measure fi on G such that

S(X) = ̂ dn (g)r(g)(X) for all X in si.

Remark 4.11. The assumptions on the dynamics in this corollary imply that siT is

prime. Conversely, if siT is prime, are the assumptions fulfilled? If si is G-prime,

then siT being prime is equivalent to F(T) = Sp (T), ([26, theorem 8.10.4]), and the

problem would have a positive solution if si has a faithful G-invariant factor

representation with F(f) = F(T), where f is the extension of T to the weak closure

in this representation.

Proof. Suppose (4.7) holds, and assume that si is realised in the Stinespring

representation. Since the completely positive map vo°P is G-invariant, there is a

canonical strongly continuous unitary representation U of G such that

T(g)(X)=U(g)XU(g)*

for all X in si. Then T extends to an action of G on the von Neumann algebra

M = si". Moreover,

P(X)=\ dgr(g)(X)
JO

defines a o--weakly continuous projection from M onto the minimal spectral sub-

space MT, and using this projection, it follows that s4r is o--weakly dense in JC, or

MT = (AT)". In particular MT is a factor. The map S extends by o--weak continuity

to a completely positive map of M. This follows from the proof of proposition 4.7,

or more directly as follows: as the projection P:M-*J(T is faithful, the subspace

3fC of the representation Hilbert space $f of M corresponding to v0 ° P is separating

for M and hence cyclic for JC. Thus any positive normal linear functional on M

can be approximated in norm by linear combinations of functionals of the form

where £ e X, X' e M'. But if Y > 0 we have

(£, X'*S( Y)X'£) < ||X"||2(£ S(Y)&

= \\Xf(i,PS(Y)£)
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and hence F->•(£,X'*S(Y)X'£) is normal. It follows that the transpose of S maps
7r-normal states into 7r-normal states and hence 5 extends to M by <r-weak
continuity. Applying corollary 4.8 on this extended 5, corollary 4.10 is immediate,
because the ideals JiT (y)MT (y)* in MT are either zero or cr-weakly dense 2&MT is
a factor. The factoriality of MT also implies that the measure /x is an ordinary
probability measure.

The converse is trivial. •

The prototype for the following can be found in [15] and [1], [29], [33].

PROPOSITION 4.12. Let M be a von Neumann algebra and N a von Neumann
subalgebra of M with the same identities. LetP.M^Nbe a normal faithful projection
of M onto Jf, and T.M^M a completely positive normal map such that

PT = P.

Assume that Jf is realised on a Hilbert space 3K, and (v, 3€, V) the Stinespring

decomposition of

Then there exists an unique bounded operator W on %€ such that

Wir{X)V = ir(T(X))V forallXeM,

and the map

from M into B ffl) is completely positive.

Proof. W is well defined as a contraction on 9V because

HI ir(nX,))V6f = I (V£h ir(T(Xf )TVC,)m,)

i.i

for any Xi in M, £, in 5T. Next, to any Y' in tr(M)' we shall associate an element
T'(Y') in v(Ji)' with the property that

for all X in M, £ and TJ in X. Assume first that Y' > 0.
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If £ 1 , . . . , £, € 3fC, Xu ..., Xn e M we have

0 s I (r* V& ir(T{XtXi)) Y^
i.i

i.i

as before. If <f>, ip are linear maps between C*-algebras, we write

(f>«ip

if 4> ~<f> is completely positive. Then the above shows that

0« V*7r(r(-))i r 'V«||y'| |P(-) = l|V"l|Vr*7r(-)V.

By [3, theorem 1.4.2], there exists a T'(Y') in v(M)' such that

V*ir(T(-))Y'V=V*ir(-)T'{Y')V.

In fact, T'(Y') is the operator on $f such that

I (V& 7r(ATfZy) Y" Vij,) = ( l ir(Ai) V£h T'( Y') I ir(Zy) Vr,y) ,

and existence and uniqueness follows from Riesz's representation theorem.
By linearity, there exists for all Y' in ir(M)' an unique operator T'(Y') in n(Jt)'

such that

for all AT in M, £ and TJ in J{. T' is clearly positive, and by a matrix argument, it
is completely positive. The subspace V3C is separating for ir(M) since P is faithful,
and so it is cyclic (and separating) for v(M)'. Thus as in the first part of the proof,
a contraction W on 5ff is uniquely defined by the requirement

W'Y'V = T'(Y')V for all Y' in ir(M)'.

Then

(Wir(X)Vl Y'Vri) = (ir{TVC))Ve, Y'Vr,)

for all X in ̂ , Y' in -n-(^)' and f, TJ in 5T. Hence V *̂ = W. This shows finally that

I (Y'uV&j, 7r(T(X*Xk))Y'klV{kl)
ijkl

= I
aid

= I
ijkl

2 I (V&h w(XtXk)T'(Y*)T'{Y'u)V€u)
ijkl
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= I <7"(n W . ir(X*Xk)T'(Y'kl)Vikl)
ijkl

= I {WY'nVfaviXtXJW'Y'uVSu)
ijkl

= I (Y'vVfa Wir(XtX,)W*Y'uVikI)
uki

for all Xi eM, Y'y e ir(M)', ^ , e f . Hence the map

XeM->ir(T(X))-WTr(X)W*

is completely positive. •

Remark 4.13. Adopt the hypothesis of corollary 4.10 and let S:s£-+s£ be a
completely positive map commuting with T and which is the identity on siT. Then
there exists a probability measure ( i o n G such that

S(*) = f <fr (g)r(g)(X), for all AT in M.
JG

Let C/(g) be the canonical unitary representation of G implementing T in TT, i.e.

for all AT in si. The action T extends to a cr-weakly continuous action of M = ir{sl)",

and

= jdgU(g)XU(g)*

is a o--weakly continuous faithful projection from M onto MT = ir{siT)". The proof
of corollary 4.10 shows that S extends by normality to a completely positive normal
map T:M -*M such that

TAd(U(g)) = Ad(U(g))T, T(X) = X

for all g in G, X in MT =P(M). This entails PT = T and hence proposition 4.12
applies, to give

X->TT{S{X))-WTT{X)W*

is completely positive with

^ ) V

1C' W = J dn(g)U(g).

See also [13, § 5]. •

5. Dynamical semigroups
In this section we analyse dynamical semigroups which commute with a compact
action.

THEOREM 5.1. Let G be a compact abelian group and r an action of G on a

C*-algebra si, such that the ideals s4T(y)stfT(y)* in sdr are either dense or zero, for
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each y in G, and such that the centre of M(siT) is contained in the centre of M{s£).

Let H: sdF ->si be a * -linear map satisfying

(5.1) [H{XfXi)]^[H(Xi)*Xi + X*H(Xi)]

for all finite sequences Xu . . . , Xn.in MF-

(5.2) Hr(g) = r(g)H for all g in G.

(5.3) H(X) = 0 for all X in si\

Then H is closable, the closure H generates a C0-semigroup of completely positive

maps, and for each t >0, there is a centre (M{siT))-valued probability measure fi,

on G such that

exp(-tH)(X)=\

for all X in M.

Remark 5.2. Conversely, if H is the generator of a Co-semigroup of completely

positive maps which commute with T and restrict to the identity map on sir, then

H trivially satisfies (5.2) and (5.3). But s£F is not necessarily contained in the

domain D(H) of H ([6, example 6.2]). The generator H will satisfy the inequality

in (5.1) for all finite sequences Xu...,Xn in D(H) such that XfX, eD(H), for all

i,j = \,...,n, but the domain D(H) is not a *-algebra in general.

Proof. We follow closely the proof of theorem 4.2, and, as there, we may assume

that T is faithful, and MT{y)MT{y)* is dense in siT for all y in G.

LEMMA 5.3. Adopt the hypothesis of theorem 5.1. Then

H(XY) = XH(Y), H(YX) = H(Y)X

for all Xins4T and Y in si.

Proof. Condition (5.1) implies that

D(X, Y) = <(>(H(X)*Y+X*H(Y)-H(X*Y))

is a non-negative sesquilinear form on MF for each state 4> on sdF. If X e$4T, then

X*, XX* s sf and (5.3) implies that

D(X*,X*) = 0.

As in lemma 4.3, we deduce

H(X) Y + XH{ Y) -H(XY) = 0,

for all X in siT, Y in s£F, and hence

H(XY)=XH(Y). a

LEMMA 5.4. Adopt the hypothesis of theorem 5.1, and let si be faithfully and

non-degenerately represented on a Hilbert space $f. Then there exists a closed, possibly

unbounded operator L(y) on Xsuch that

(5.5) siT(y)%czD(L(y)),andH(X)=L(y)X, for all X in siT{y).

(5.6) L(y) is dissipative, i.e. Re(£ L(y)& 2 0, for all f 6 D(L(y)).

(5.7) L(y) is affiliated with the abelian von Neumann algebra (s4r)"n(sir)'.
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Proof. As in the proof of lemma 4.4, let Ea be an approximate identity for si of
the form

A

where A" esiT(y), and each sum is finite. Define

La=ZH(A?)A?*.

If X esir(y), then by lemma 5.3:

LaX = I H(Af)A?*X = I H(AtAt*X)

and so lima LaX=H{X) for Xesir(y). Define L0(y) on £)(Lo(y))=^T(y)5T by

where the limit exists by the above reasoning. Then Z-o(y) is densely defined because
siT(yW(y)* contains an approximate identity for si. If AT, e.s/T(y), 17, e$/ and
£ = 1^17;, then

2 Re (i, L0(y)€) = (€, U{y)$) + (L0(y)& O

'.Tj,, L0{y)XjT]j) + (L0(y)Xir}i, X/rj,-)}

J,, {XfH{X,) +H(Xi)*Xi}rh)

where we have used (5.1) and (5.3). Thus L0(y) is dissipative, hence closable, and
its closure L(y) is dissipative [7, lemma 3.1.14].

Next we show that L(y) is affiliated with (stT)". Let

UX, YesiT(y),-neW, then

This last expression and the fact that j^T(y)*^T(y) contains an approximate identity
for si shows that 3) is a core for L0(y), and so for L(y). As siT(y)siT(y)* QsiT, it
follows that 2) is invariant under (siT)'. If £6® and AT'e (.sT)', then

as LQ e J^T. Since A"^ G 2, we may deduce

and so L(y)X'sX'L{y) since L(y) is closed with core 2. Thus L(y) is affiliated
with (sir)".

Finally we show that L(y) is affiliated with (siT)' (and hence with sir"nsiT'). If
X<=stT, YesiT(y), r\&^€, then VTJ and X(rT))e£>(L0(y)) and

Lo(y)X(yT,) = H(ATr)T, =A7/(r)r, =AX0(y)(rrj),

and by taking closures, L(y)X 3XL(y), for all X in ^T . D
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Remark 5.5. Multiplication on the left with L (y) determines a (possibly unbounded)
multiplier on s£T and also on centre (siT), (but this does not seem useful unless
centre {s4T) contains an approximate identity of sir). To see this, note that the ideal
siT (y)sir (y)* must contain the minimal dense ideal K(sir) of s4\ [26, 5.6]. If

/:[0,oo)-»[0,oo)

is continuous with f(x) = 0 for small x, and X = X*esiT then

f(X)sir(y)siT(y)*f(X)eK(siT)

and as L(y) commutes with f{X) it follows that K(dT) is a core for the operation
of left multiplication by L (y), on siT (y)s£T (y )*. As L (y) commutes with all elements
in siT it follows that

XL(y) Y = L(y)XY for all X and Y eK(sir).

As

L(y)f(X)siT(y)siT(y)*f(X)=f(X)L(y)siT(y)siT(y)*f(X)

when /, X are as above, it follows easily that

L(y)K(siT)zK(siT).

By [4, 2.5], L(y) is an unbounded multiplier of siT. Now it follows immediately
from [26, 5.6.1] that

K (centre^)) £ centre(K(siT))

Then as centre K(siT) is contained in the domain of the multiplier defined by L(y),

and L{y) commutes with s£r, it follows that

L{y)K (centre (j^T))

and hence L(y) defines an unbounded multiplier on /(T(centre(.sO).

LEMMA 5.6. Adopt the hypothesis of theorem 5.1. In any faithful non-degenerate
representation of si on a Hilbert space %€, the operator L(y) of lemma 5.4 has the
properties:

(5.8a) L(y) is the generator of a Co-semigroup exp (-fL(y)) on X.
(5.8b) exp (-tL(y)) is contained in centre M(s$T) for all t > 0.

Proof. By lemma 5.4, L(y) is dissipative, and L(y) is affiliated with the abelian von
Neumann algebra siT" n siT', and so L (y) is the generator of a contraction semigroup
in stT" n siT\ [30], [31]. To show that exp (-tL(y)) sic si, and exp (-tL(-y)) siT Q si\
we will produce a dense set of analytic elements for the unbounded multiplier
defined by L(y) on si. Let Au ..., An esiT(y), and / : [0, oo)-• [0, oo) a bounded
continuous function such that for some e > 0, f(x) = 0 if x < e. We show that

A=f(t AAf) i

is analytic for the left multiplier defined by L(y). Let Ee be the spectral projection
of Z"=i AAf corresponding to [e, oo). As

l AAt)= I H(A()Af
i = 1 ' i = 1
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is a bounded operator and

I
i = l

it follows that L(y)Ee is bounded, i.e.

Now Ee e^ 7" , and so L(y) and EF commute and hence

||£(y)mEE||<.K:m, for all m.

But

and so

iiL(rrA|i<||L(Yr/(i A At
II \i = l

I

Thus A is entire analytic for the multiplier defined by L(y).

Now slT, (and hence jtf), has an approximate identity consisting of elements of

the form

where A" esdT{y), and /„ is a continuous positive function which is zero on an

interval [0, ea), one on an interval [2ea, oo), for some ea > 0. Each Ea is then entire

analytic for both the left and right multiplier defined by L(y). Thus if X e.$£T, one

has:

I j^EAX e^T (A)

and as exp (-tL(y)) is bounded and Ea is an approximate identity, one deduces

Similarly

X exp (-fL(-y)) = lim XEa exp (-tL(y)) e MT

i.e. exp (-tL{y)) is a multiplier of s4r. Finally as L(y) is affiliated with s4TI, we

have exp {-tL{y)) e sf and as siT is dense in M(sdT) in the strict topology, it follows

that

exp (-rL(y)) € centre(Af (^T)). D

LEMMA 5.7. Adopt the hypothesis of theorem 5.1. For each t S: 0, the function

y e G -> exp (-fL(y)) € centre(M(^T))

w positive definite.
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Proof. As all the L(y)'s are affiliated with s4T"nsi'", the L(y) can be thought of
as functions in a common spectral representation. We first show that L is negative
definite in the sense that the n x n matrix

[L(y,-y,)-L(y,)-L(y,)*]

is negative for all y,- • • • yn e G, and all n > 1, [5, definition 7.1].
If XiBs^iyi) for / = 1,. . . , w, then by (5.1)

i.e.
[L(y, -ttJA-fX} -X?L{yi)*X, -XfHy,)Xi\ =£ 0.

By lemma 5.6, exp (-fL(y)) £ centre M(s4T), and so exp (-fL(y)) e centre M{si) by
the hypotheses of theorem 5.1. Thus exp(-fL(y)) commutes with X? for / =
1 , . . . , n, and so L(y) commutes strongly with Xf for all y, i.e.

Thus

[A?L(y,- - y,-)*} -**L(y,)*X, - A?L(yy)A}] < 0.

Using the same matrix tricks as in the proof of lemma 4.5, we now deduce

for all finite sequences X? e^T(y,), and the matrix operator has finite norm if

YsXixt* €K{siT) for all i.
k

Letting £fc X*Xi * run through an approximate identity we deduce

[L(yy-y,)-L(y,)*-L(y,-)]<0,

i.e. L is negative definite. As L(0) = 0, it follows from Schoenberg's Theorem that
exp (-tL{-)) is positive definite for all t >0, [5, theorem 7.8].

End of proof of theorem 5.1. By lemmas 5.7 and 3.1, there exists for each t >0, a
centre(A/(^T))-valued probability measure /u,, on G such that

exp(-/L(y)) = M («y,-»= f d^(g)(y, g).
Jo

By § 3, there exists a family {S,: t > 0} of completely positive maps on si defined by

For X e siT{y), we have

) J rf()< >A- = exp (~= J
Thus ? -»S, is a semigroup on ̂ /F, and since each S, is a contraction it follows by
continuity that t -* S, is a semigroup on .s/. That S is strongly continuous follows
from eq. (A).
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Furthermore, if X esiT(y), £e 26, then X{€D(L(y)) and hence

= - \ ds exp (-sL(y))Uy)Xl
Jo

But L{y)X=H(X)esiT(y), and s-*exp(-sL{y))H(X) is continuous. Hence X
lies in the domain D(H) of the generator of S, and

//(A-) = lim -(St(X) - X) = //(AT).
r-o t

Thus H cH, and / / is closable. Since .S/F is invariant under S, it forms a core for

/ / [7, corollary 3.17], and so H is the closure of H. This completes the proof of

theorem 5.1. •

COROLLARY 5.8. Let G be a compact abelian group and T a faithful action of G

on a C*-algebra si. Assume either

(5.9) sir is simple

or

(5.10) There exists a faithful representation TT0 of siT such that w(siT)" is a factor,

if n is the Stinespring representation of TT0 ° P-

Let H: D (H) ^si^sd be a densely defined closed *-linear map. Then the following

four conditions (5.11)-(5.14) are equivalent:

(5.11) (a) dF ^D{H), siF is a core for H, and

[H(X?Xi)] < [HVC,)*X, +Xf (AT,)]

for all finite sequences X\,..., Xn in sip;

(b) Hr(g) = r(g)H for all g in G;

(c) H(X) = 0 for all X in si"'.

(5.12) s4F ̂ D(H), sip is a core for H, and there exists a negative definite function

A from G into C such that A (0) = 0 and H(X) = A (y)X for all X in si\y), y in G.

(5.13) His the generator of a strongly continuous semigroup on si such that

(a) exp (-///) is completely positive for each t > 0;

(b) r(g) exp {-tH) = exp (-tH)r(g), for all ( > 0 , g m G ;

(c) exp(-tH)(X)=X, forallt>0,XinsiT.

(5.14) There exists a convolution semigroup {/x,: f >0} of probability measures on

G such that H is the generator of the strongly continuous semigroup S given by

S,(X)=\ dn,{g)T(g)(X)

for t > 0, X in si.

Furthermore, if G is the d-dimensional torus Jd and {d/df,}?=i are the generators of

the actions of the canonical one-parameter subgroups of Jd on si, then conditions

(5.11)-(5.14) are also equivalent to:

(5.15) siFzD{H), sip is a core for H, and there is a triple (b,a,n.) where

b = {b\,... ,bd) is a d-tuple of real numbers, a = [a,,] is a real positive dxd matrix,
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and n is a non-negative bounded measure on

Td\{0} = {x = (x,): -77 <Xi < ir, x * 0},

such that

* e x p ( Z *
dtk \ dt

where ||x||2 = ZI = i x\.

The triple in condition (5.15) is arbitrary within the constraints given there and is

uniquely determined by H.

Proof. Assume first that $£T is simple so that as in corollary 4.6, sir{y)siT{y)* is

dense for each y e G, and the centre of M{siT) is trivial. Thus theorem 5.1 applies,

the function Z of lemmas 4.4 and 4.5 must be scalar-valued as well as the measures

/A,. This establishes (5.11)<=>(5.12)=>(5.14). The equivalence of (5.14) with (5.13)

is a consequence of corollary 4.6. To show (5.14) =>(5.12), suppose the convolution

semigroup n, is given, so that by [5, theorem 8.3] there is an unique negative

definite function A on G such that

exp(-fA (y)) = j dfi,(g)(y, g).

Then

S,(X) = | diL,(g)(y, g)X = exp (-tk (y))X for X es4T{y).

If H is the generator of S it follows that XeD(H), and H(X) = k(y)X. Hence

siF<=:D{H) and as s£F is 5-invariant, it is a core for H, and so (5.12) holds.

To prove (5.12)<=>(5.15), we use the Levy-Khinchin representation of a negative

definite function [5], [25]. If G is a compact abelian group, and A is a negative

definite function from G into C, then A has a unique representation

where

(5.16) c > 0 is a constant.

(5.17) /is an additive linear functional from G into

(5.18) q is a non-negative quadratic form on G, i.e.

0, yeG.

(5.19) tp is a fixed (independent of /x) function on GxG with the properties:

g-*ip(y,g) is continuous, y-*t(/{y, g) is an additive character on G for each fixed

g e G, and

4>(y, -g) = -«My> g)-

If C is a finite subset of G, there is a neighbourhood iVc around 0 in G such that

(y, g> = exp(i(/f(y, g)),

for all y € C, g e JVC.
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(5.20) (i is a positive measure on G\{0} such that for all y in G,

\
JG

\

JG

and /u. is finite outside every neighbourhood of 0.

In the case G = ld, one has G = Zd, and if G is identified with Ud/(2vZ)d one has

when —n-< Xk < 7T. (i/f is then not continuous nor antisymmetric in g but these

properties are not essential for the Levy-Khinchin representation, only the

asymptotic properties of i// for g near 0, and the fact that </»(•> g) is an additive

character are essential.) Thus an arbitrary negative definitive function on Jd = 7Ld

has the form

A ( / i i , . . . , n d )

d d

= c + i X bknk+ I a an (n /
k

dix(x) 1+i £ nfcxfc-exp|i £ nkxk\\,
hd\to\ L fc = i I , = i JJ

where c & 0, b = (b\,..., bd) e Ud, a = [a,,] is a positive matrix in Md(U), and fi is a

positive measure on G\{0} such that fi is finite outside every neighbourhood of 0,

and

f f Ti/ \ 2 1
oo> <i/u.(jc)[l-Re (y, g)]= dyi.(x) dZn ,* , ) ) + higher order terms .

JG JG L \ / J

Thus replacing dfi(x) by ^ (x ) / | | x | | 2 we may write

d d

A(y) = c + i I 6fcnk+ I «„•«,«,

,f |,2 1+i t nicXk-exp i I nkXfe|
JT d \ {O} |PC|| L fc = l I )c = l JJ

where the condition on n is now that it is a finite positive measure.

If X €siT(y) =s£T(nu . . . , nd) we have:

dtk

Thus

J j . v A
 5 v

Ll+tIi^^--exp^XiJCfe—JJjr(g)(X).

Finally, the condition H\s£T = 0 means A (0) = 0, and this is equivalent to c = 0 in

the Levy-Khinchin representation for A. This establishes the equivalence of (5.12)

with (5.15).
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In the case that there exists a faithful representation n0 of siT such that w(siT)"
is a factor, where v is the Stinespring representation associated to TT0 ° P, corollary
5.8 is proved from a von Neumann Version of theorem 5.1, using the same techniques
as in proving corollary 4.10 from corollary 4.8. This von Neumann version is:

Remark 5.9. Let G be a compact abelian group, and r an action of G on a von
Neumann algebra M such that MT is a factor. Let

be a a--weakly densely defined, cr-weakly-cr-weakly closed operator. Then the
conditions (5.11)—(5.15) of corollary 5.8, with the obvious modifications, are again
equivalent.
The modifications in the proof are the same as in the proof of corollary 4.8. D

By using the concepts introduced prior to theorem 5.1 in [9] and the general
Levy-Khinchin formula one can formulate an analogue of condition 5 for a general
compact abelian group G. We omit the details.

REMARK 5.10. Let si be a C*-algebra on a Hilbert space $f. It is known [11] that
if H is the bounded generator of a norm continuous semigroup of completely
positive maps on si, then

where K is completely positive from si into si", and L esi". Equivalently, there
exists L G si", such that

X -> exp (-tH)(X) -exp (-tL)(X) exp (-«L*)

is completely positive from si into si", for all t > 0.
Now suppose T is an action of a compact (abelian) group G on a C*-algebra si,

and let 5, be a C0-semigroup on si such that
(5.21) S, is completely positive for each t > 0;
(5.22) S,r{g) = T(g)S, for all g in G, t > 0;
(5.23) SAX) = X for all AT in si\ t > 0.

Let 7r0 be a faithful representation of .^T on a Hilbert space 3f, and (TT, ?P, V) the
Stinespring decomposition of TTO°P, where P: si-*siT is the canonical projection.
By the proof of proposition 4.12, there is a contraction W, on $T given by

W,Tr(X)V = Tr(SAX))V, Xesi,t>0,

and there is a unitary representation U of G on SV given by

such that (IT, U) is r-covariant. Then r extends to an action f of G on M = IT {si)",

and the projection P extends to M through the formula

This formula shows that P is a faithful positive map with range MT = ir{sir)". The
representation n0 of sf is unitarily equivalent to the restriction of IT to siT on VX,
using the isometry V between 3fC and V<3£". It follows that the identity representation
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of M on $f identifies with the Stinespring representation associated to no ° P, where
•fro is the extension of no to MT, defined by the above unitary equivalence. But P
is faithful and so VJC is separating for M, and hence cyclic for M'. Then

nS,(X)V = W,n{X)V

implies that Sf maps the normal states in the representation n into normal states,
and so S, extends by cr-weak continuity to 5, on M, such that

(5.24) 5, is completely positive for each t >0;
(5.25) f(g)S, = S,r(g) fora l lg inG,?>0;
(5.26) PS, =P forallf>0.

Moreover

W,XV = St(X)V,

and by proposition 4.12 it follows that

is completely positive. In particular the map

X 6si •* n{S,(X)) - W,n(X) Wf

is completely positive. Let L denote the generator of the C0-semigroup, W,, so
that L* is the generator of the Co-semigroup W*,. If x eD(H), we may define a
bilinear form K(X) on D(L*)xD(L*) by

So, suppressing the symbol -rr,

H(X) = -K(X)+LX +XL*

as bilinear forms, and K is a completely positive map from D{H) into unbounded
bilinear forms in an obvious manner.

In many cases, the above form identity makes sense as an operator identity on
a dense subspace of $f. Assume for example that si is unital,

for each y in G, and siF^D(H). Then since s£T is unital, the multipliers L(y) in
the proof of theorem 5.1 must be bounded. If X 6 s£T(y), then

exp (tL)ir(X) V = ir exp (tL(y))X)V,

and so

and
Ln(X)V = -rr(L{y)X)V.

Hence L,L* map $fo into itself and

H(X) = -K(X)+LX

makes sense as an operator identity on $f0 when X

That K(X) really can be unbounded is illustrated by the following example: let
G = T, si = C(T), T be translation, and H = -d2/dxz the generator of the diffusion
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semigroup. Then s£T = C, and si has a unique G -invariant state given by Haar
measure on T. If ir0 is the one-dimensional representation of siT, then $f = L2(T),
and if fteL2,

If /eC2(T), feD(H) and/// = -/". If (£eC2(T) then ^eD(L*),/^D(L) and

Thus

which shows that K(f) is unbounded for any / # 0. That Kf is positive for positive
/, follows from the general theory outlined above, and also from:

<<A, * ( / ¥ > = 2 f f(x)\<{,'(X)\
2
 dx.

6. Examples

Example 6.1. If G = T, si is the CAR algebra and T is the gauge action, then if
w is a Powers' state, Trlo(sir)" is a factor and corollary 5.8 applies.

Example 6.2. If G =T,si = €„, and T is the gauge action, then siT is UHF, hence
simple [12], and so corollary 5.8 applies.

Example 6.3. If G = J", si = On and T is the gauge action, then siT is isomorphic
to the fixed point algebra of ® Mn under the canonical action of T""1 (c.f. example
6.1 for n =2). Then by the natural extension of 'Powers' states' (indexed by the
interior of the n -simplex instead of (0,1)), from ®Mn to €n, we can easily find a
state W of Gn such that TriO(siT)" is a factor. Thus corollary 5.8 applies.
Example 6.4. We analyze in detail ergodic actions of G = Z2 x Z2 on a simple
C*-algebra si. This example will show that one-parameter semigroups of positive
maps, commuting with an ergodic compact abelian action, are not necessarily
completely positive.

Up to isomorphism, there is only one action of the stated type: si=M2, and if
gi, g2 are the canonical generators of G, define

/

The dual group G is isomorphic to G, and generated by the two characters yi, 72,
given by

<Y«.g/> =(-l)'~y.

Put yo = 0, 73 = 71 + 72- The spectral subspaces siT(y) are one dimensional, and
spanned by the unitaries U(y) given by

™-[; a-

https://doi.org/10.1017/S0143385700001929 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001929


Dynamical semigroups 215

If exp (-tH) is a semigroup commuting with r, the generator H must map the
spectral subspaces into themselves, i.e., there exist constants \n such that

HU(yn)=\nU(yn), for n= 0,1,2,3.

The action of exp (-tH) is then given by

*]

1 L 0 exp(-fA0)J L 0 -exp(-Aif)

0 exp(-A2m I" 0 exp(-A3rn

(-A2f) 0 J+(*-c)L-exp(-A,r) 0 J
To check when exp (-tH) is positivity preserving, it is enough to check when
exp {—tH)E>0 for one-dimensional projections E, i.e. it is enough to verify that

Tr (exp (-,//)[* ^ 0 , Det (exp (-,//)[* ^ 0

for all y € C, t > 0. This gives the result that exp (—tH) is positivity preserving if
and only if A, € R, for / = 0,1, 2, 3 and

A,>A0, / = 1,2,3.

Next we determine when exp (-tH) is completely positive. By [19], [24] this is the
case if and only if H has the form

-H(A) = K(A)-LA-AL*, AeM2,

where K is completely positive, LeA/2. If H is r-invariant, we may, by applying
a mean, assume that K and L are r-invariant, and so L is a scalar. If we normalize
H so that H(\) = 0, we have

-H(A) = K(A)-K(\)A, where A"(l)eRl.

As K is completely positive, it has the form
3

K(A)= X aijCTiAa-j,
«,y=o

where cr0 = 1, cxi, a2, <r3 are the Dirac matrices, and [a,,] is a positive matrix. As /C
commutes with G, it actually has the form

i.e.

-ii a)A.

Now H((Ti) = Ajcr, for i = 1, 2, 3. This leads to the relations

2ay= £ Af-Ay for y = l, 2, 3,

and the summation index / runs through 1, 2, 3. As exp (-tH) is completely positive
if and only if a ,>0 for / = 1,2, 3, this leads to the result that exp (-tH) is a
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completely positive semigroup if and only if

I A, a A/f for/ = 1,2, 3.

(Here Ao = 0 as / /(I) = 0). Thus the set of completely positive semigroups commuting
with G is a proper subset of the positive semigroups commuting with G in this
case. See [19] for a related result.

7. Final remarks

We expect that results similar to those in this paper should be true also for

non-abelian compact groups G, but in this setting the requirement

Sr(g) = r(g)S

is too strong. It has been suggested to us by M. Takesaki that the two conditions

ST(g) = r(g)S and S | ^ = id

could possibly be replaced by the single condition that each G -invariant closed
subspace of si is S-invariant, see [1, appendix C]. However, the results do not
extend to non-compact G because the action of such groups does not in general
have the correct smoothness properties. One simple example is G = U acting as an
ergodic Kronecker flow on C(T2), where T2 is the 2-torus. Then any element in
T2 defines a completely positive map S by transposition of the corresponding left
translation on T2, and this map S satisfies the requirements (4.1) in theorem 4.2.
However, 5 will only satisfy (4.2) if the element in T2 lies in the R-orbit through
0. Thus non-compact G would require more hypotheses on 5.

We are indebted to George A. Elliott for several enlightening remarks.
O. Bratteli was a Science and Engineering Research Council Senior Visiting

Fellow during this research.
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