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We demonstrate a few unique dynamical properties of point-gap Weyl semimetal, an intrinsic
non-Hermitian topological phase in three dimensions. We consider a concrete model where a pair
of Weyl points reside on the imaginary axis of the complex energy plane, opening up a point gap
characterized by a topological invariant, the three-winding number W3. This gives rise to surface
spectra and dynamical responses that differ fundamentally from those in Hermitian Weyl semimetals.
First, we predict a time-dependent current flow along the magnetic field in the absence of an electric
field, in sharp contrast to the current driven by the chiral anomaly, which requires both electric and
magnetic fields. Second, we reveal a novel type of boundary-skin mode in the wire geometry which
becomes localized at two corners of the wire cross section. We explain its origin and show its
experimental signatures in wave-packet dynamics.

I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional (3D)
crystals with pairs of isolated band degeneracy points
known as the Weyl points (WPs) [1–9]. When the chem-
ical potential lies near the degeneracy points, the low en-
ergy quasiparticles are Weyl fermions, i.e., massless chi-
ral fermions obeying the Weyl equation. In the simplest
case, a Weyl semimetal has two Weyl points with oppo-
site chirality ±1 located at ±b in momentum space with
effective Hamiltonian H± = ±v(k ∓ b) · s ± b0. Here s
refers to the (pseudo-)spin and v plays the role of the
speed of light. The two Weyl points, as the source and
drain of Berry flux in momentum space, carry integer
topological charge ±1. This gives rise to a host of fas-
cinating phenomena, including the emergence of gapless
excitations in the form of Fermi arcs on surfaces and
anomalous Hall effect. Remarkably, WSMs realize the
so-called chiral anomaly in quantum field theory [10–16].
For example, in the presence of both E and B fields, an
effective chiral chemical potential b0 ∝ E ·B is estab-
lished, leading to an electrical current j ∝ B(E ·B).

Weyl points have been realized and probed in a wide
range of physical systems [8, 9, 17–21]. In solids, Weyl
quasiparticles are often coupled to other degrees of free-
dom such as phonons, magnons, or external fields or bath
to acquire finite lifetime [22–24]. In recent years, non-
Hermitian (NH) Hamiltonians [25–28] have been fruit-
fully applied to model electronic materials [29–32] and
photonic systems with gain and loss [33–40], fueled by the
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state of the art experimental capability for NH engineer-
ing. This motivates us to examine generalized models of
WSM as open quantum systems described by NH effec-
tive Hamiltonians. The rich, unique topological proper-
ties of NH systems can not be captured by the classifica-
tion framework developed for Hermitian topological band
insulators [41–46]. Since the energy eigenvalues live on
the complex plane, the bands can have point gaps [47–
49]: the spectrum encloses a simply connected area that
contains the reference energy and cannot be smoothly
deformed into a gap along the real or imaginary axis.
Point gap lies at the heart of a few spectacular proper-
ties [27, 28] such as the NH skin effect [50–64], where
an extensive number of eigenmodes are localized at the
boundary.

Recent work has begun to reveal some novel features
of NH semimetals [65–79]. Ref. [69] analyzed a model
with 8 WPs on the complex energy plane to predict the
appearance of skin modes at surfaces perpendicular to
an applied magnetic field. Ref. [70] considered WPs
with different lifetimes as a limit of exceptional topolog-
ical insulators and related the emergence of Fermi arcs
to a point-gap invariant. Experimentally, a novel kind
of Weyl exceptional ring [72] has bee realized both in
optical waveguides [78] and phononic crystals [79]. De-
spite the progress and extensive studies which focus on
the static properties of NH topological systems, their dy-
namical properties remain poorly understood. What are
the new and unique effects in dynamics and electromag-
netic response dictated by the NH band topology?

In this paper, we investigate a minimal model of NH
WSM, with a pair of WPs located on the imaginary axis,
E = iγ±, see Fig. 1. The point gap on the complex en-
ergy plane dictates the bulk topology and dynamical re-
sponse. We predict a new effect–time-dependent current
induced by magnetic field, j(t) ∝ B, that saturates at

ar
X

iv
:2

10
7.

02
13

5v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
9 

Se
p 

20
22

mailto:hhu@iphy.ac.cn
mailto:ezhao2@gmu.edu
mailto:wvliu@pitt.edu


2

FIG. 1. Schematics of point-gap WSM. (a) A pair of WPs are
split along the kz axis, leading to surface Fermi arcs. The two
WPs carry opposite charges (±) and have different imaginary
energies iγ±, i.e., different dissipation rates. (b) The energy
spectra of the lattice model Eq. (2) on the complex plane.
The two WPs are located on the imaginary energy axis. The
point gap surrounded by the bulk bands is characterized by
invariant W3(Ep) = 1 for reference energy Ep inside the point
gap. The parameters are b = 0.9, δ = 0.2, γ = −0.5, m = 3.1.

long time. This dynamical chiral magnetic effect here dif-
fers fundamentally from that in Hermitian WSM because
it does not require an E field, is time-dependent and is
driven by the different dissipation rates of the WPs. Fur-
thermore, we showcase the existence of a novel type of
boundary-skin modes using the Chern number and the
spectral winding number, and propose their observation
through wave-packet dynamics.

This paper is organized as follows. In Sec. II, we in-
troduce a minimal model of NH WSM with a pair of
EPs of different imaginary energies and demonstrate the
existence of point gap and the relevant bulk topological
invariants. In Sec. III, we study the dynamical charge
pumping effect in the presence of electromagnetic field.
We solve the Landau levels and calculate the pumped
charge during time evolution. In Sec. IV, we discuss the
boundary-skin modes in wire geometry due to the point-
gap topology. In Sec. V, we turn to the wave-packet dy-
namics as an alternative signature of the point-gap WSM.
We conclude in Sec. VI and discuss possible experimen-
tal realizations of the point-gap WSM in photonic and
condensed matter system. We leave detailed derivations
and calculations in the Appendices. Appendix A provides
details on our lattice model’s spectral windings and sym-
metries. In Appendix B and Appendix C, we explicitly
derive the Landau levels under an orbital magnetic field,
and dynamical charge pumping with imaginary Landau
levels, respectively. We investigate the surface Fermi arcs
as the bulk-edge correspondence of point-gap WSM in
Appendix D and the energy spectra and wave-packet dy-
namics along z-wire in Appendix E. In Appendix F, we
propose the possible realizations of the lattice Hamil-
tonian in coupled micro-ring resonators and condensed
matter systems. In Appendix G, we discuss the observa-
tion of the dynamical effects.

II. MODEL HAMILTONIANS AND
TOPOLOGICAL INVARIANTS

Consider a pair of WPs, labeled by subscripts ± and
located at k = (0, 0,∓bz) with imaginary energies E =
iγ±. They are described by the effective Hamiltonian

H± = kxsx + kysy ± (kz ± bz)sz + iγ±s0. (1)

Here the Pauli matrices sj with j = x, y, z denote the
(pseudo-)spin degrees of freedom and s0 is the identity
matrix. The two WPs are separated in momentum space
by 2b = (0, 0, 2bz). Note they have opposite chirality
±1 and different dissipation rates, i.e., inverse lifetimes.
For simplicity, we assume the group velocity of the Weyl
fermions is isotropic and set v = 1. We also assume the
system overall is dissipative and γ± < 0.

As a concrete example, we consider a four-band lattice
model. Its Hamiltonian in momentum space reads

Hk = τxak · σ +mkτzσ0 + bτ0σz + iδτxσ0 + iγτ0σ0.(2)

Here the Pauli matrices τj (σj) denote the orbital (spin)
degrees of freedom, τ0 and σ0 are identity matrices. The
first term with ak = (sin kx, sin ky, sin kz) describes spin-
orbit coupling, and mk = cos kx + cos ky + cos kz − m.
Without the last two NH terms, the model furnishes a
prototype of WSM [3] with a pair of zero-energy WPs
separated along the kz axis. Upon the introduction of
γ and δ, the two WPs split along the imaginary axis,
accompanied by the opening of a point gap inside the
bulk bands as depicted in Fig. 1(b). Near the WPs, Hk

reduces to the continuum model Eq. (1), with bz and γ±
functions of b, m, and δ, after we rescale the momentum
so the group velocity along x, y, z become the same v. A
more general lattice model was previously introduced in
Ref. [70]. The key features of point-gap WSM do not
depend on the specific lattice model chosen.

The band topology of Hk is characterized by a point-
gap invariant, the three-winding number [41, 42]

W3(Ep) = − 1

24π2

∫
BZ

d3k εijkTr[QiQjQk], (3)

where Ep is a chosen reference energy inside the point
gap, Qi = (Hk−Ep)−1∂ki(Hk−Ep), and εijk is the Levi-
Civita symbol. This is possible owing to the existence of
a point gap, so that Hk for each momentum k within the
Brillouin zone (BZ) can be continuously deformed into a
unitary matrix [41, 42, 69–71]. It can be checked that for
our model W3(Ep) = 1. To understand the boundary and
skin modes in point-gap WSM, two kinds of topological
indices of lower dimensions are also needed. Consider a
general direction l̂, let us label the momentum along l̂ as

kl and define transverse momentum k⊥ = k − kl l̂. For
fixed values of k⊥, Hk defines a 1D Hamiltonian h1D(kl)
where the parametric dependence on k⊥ is suppressed for
brevity. The spectral winding number for h1D(kl),

wl(Ep) =
1

2πi

∫
dkl∂kl [log det(h1D(kl)− Ep)], (4)
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is an integer when Ep lies within the point gap of h1D.
In particular, we find wx = wy = 0, due to the NH
time-reversal symmetry [42, 80]: TxH(kx, ky, kz)T

−1
x =

H(−kx, ky, kz) and TyH(kx, ky, kz)T
−1
y = H(kx,−ky, kz)

where Tx = τ0σzT , Ty = T and T stands for transposi-
tion. Note the difference from the Hermitian systems,
here time-reversal symmetry Tx, Ty include the trans-
pose operation. For fixed value of kl, Hk reduces to a 2D
Hamiltonian h2D(k⊥). Provided that the bands of h2D

at ReE < 0 and ReE > 0 are separated, we can define
a total Chern number C(kl) for all the ReE < 0 bands.
For example, we find C(kz) = 1 for kz ∈ [−bz, bz] and
zero otherwise.

III. DYNAMICAL CHARGE PUMPING BY
MAGNETIC FIELD

The electromagnetic response of point-gap WSM de-
viates drastically from Hermitian WSMs. To illustrate
this, we first provide an intuitive picture for the chiral
magnetic response using the low-energy Hamiltonian Eq.
(1). Without loss of generality, suppose the magnetic
field is along the y direction with magnitude B [81]. In
Landau gauge A = (0, 0,−Bx), solving for the eigenval-
ues of Eq. (1) with minimal coupling yields the Landau
levels [See detailed derivations in Appendix B]:

E±n=0 = ±ky + iγ±; (5)

E±n 6=0 = sign(n)
√
k2
y + 2eB|n|+ iγ±. (6)

Here the superscripts ± denote the two Weyl nodes, while
the subscript n labels the Landau levels. The two zero-th
Landau levels E±0 are chiral: they have opposite group
velocity and different dissipation rate γ+ 6= γ−. Thus as
time goes on, the difference in dissipation rate sets up a
density imbalance of fermions moving in the y and −y
direction, resulting in a net charge current j(t) along the
magnetic field, see the inset of Fig. 2(a). (The n 6= 0
levels are particle-hole symmetric and do not contribute
to the net current.) More specifically, let us assume at
t = 0, the system is Hermitian (γ± = 0), all the Landau
levels at negative energies are filled. After the NH terms
are turned on, the net current at t > 0 is [See detailed
derivations in Appendix C]

j(t) =
ΛD

2π
(e2tγ+ − e2tγ−), (7)

where Λ is a high-energy cutoff, and D = BLxLz/2π
with Lx,z the system length along the x, z direction is
the degeneracy of each chiral Landau level. The total
charge “pumped” by magnetic field over time lapse T is

QΛ(T ) =

∫ T

0

dtj(t) =
ΛD

4π

[
e2γ+T − 1

γ+
− e2γ−T − 1

γ−

]
.(8)

After a long time, it saturates to a finite value

QΛ(∞) =
ΛD(γ+ − γ−)

4πγ+γ−
∝ B|γ+ − γ−| (9)

FIG. 2. Dynamical charge pumping by magnetic field B along
y. (a) The complex energy spectra for B = 2π/Lx. The color
indicates the biorthogonal expectation value 〈ψL|τxσy|ψR〉 for
each eigenstate. The two chiral Landau levels in Eq. (5) carry
opposite pseudo-spin sy = τxσy [? ]. The inset schematic:
a net current j(t) arises due to the imbalance of the current
carried by the two chiral Landau levels. (b) The total pumped
charge Q(T ) with respect to time T for B = 2pπ/Lx, with
p = −4,−3, ..., 4 from bottom to top. The parameters are
b = 0.9, δ = 0.2, γ = −0.5, m = 3.1, and Lx = 50.

where in the last step |γ+− γ−| � |γ+ + γ−| is assumed.
We stress that the current is time-dependent and flows
in the absence of electric field. In contrast, in Hermitian
WSM the current is zero if no electric field is applied
[13]. The accumulation of charge leads to a finite electric
polarization P ∝ B in finite-size samples, which can be
taken as a defining signature of point-gap WSM.

More generally, if an electric field of magnitude E is
applied in parallel to B, chiral anomaly also contributes
to the current. In this case, the density of left- and right-
moving fermions, N±, can be found to take the form [See
detailed derivations in Appendix C]:

N±(t) = (
ΛD

2π
± e2EB

8π2γ±
)e2γ±t ∓ e2EB

8π2γ±
. (10)

In the limit E = 0, it reduces to Eq. (7) above by iden-
tifying j(t) = N+ − N− (recall the velocity is set to 1).
After a long time, a steady current is achieved,

jE(t→∞) = −e
2EB
8π2

(
1

γ+
+

1

γ−
). (11)

Alternatively, we can numerically compute the current
induced by magnetic field based on the lattice Hamil-
tonian Eq. (2). Panel 2(a) shows the energy spectra.
In the presence of B = Bŷ, the original WPs are re-
placed by a pair of highly degenerate chiral modes that
fill the Landau gap of size ∼

√
B to connect the bulk

bands with ReE < 0 and ReE > 0. Assume the initial
state |Ψ0〉 is a half-filled trivial insulator with dispersion
ετσ(k) = −(cos kx + cos ky + cos kz) for each spin and or-
bital component. The time evolution is governed by the
density matrix ρ(t) = |Ψ(t)〉〈Ψ(t)| with the time-evolved
state |Ψ(t)〉 = e−iHt|Ψ0〉. The total charge pumped by
magnetic field after time lapse T is

Q(T ) =
1

Lz

∑
kx,kz

∫ T

0

dt

∫
dky Tr[ρ(t)∂kyH]. (12)
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FIG. 3. Boundary-skin modes and wave-packet dynamics for
a wire along m̂ = [101]. (a) Energy spectra with open (in
blue) versus periodic (in purple) boundary conditions in the
ŷ and n̂ = [101̄] direction, showing the emergence of in-gap
modes for open boundaries. The in-gap modes in green are ob-
tained under open y and periodic n̂ boundary. The inset illus-
trates the wire with cross-section boundaries (red lines). (b)
Total probability distribution ρin of the corner-localized in-
gap modes. (Middle inset) Total probability distribution of all
other modes, which exhibit skin effect along n̂. (c) The time
evolution of a wave-packet initially localized at site (1, 13) (left
panel) and (13, 25) (right panel) of the cross section that mea-
sures 25× 25. The wave-packet has width W 2

1 = 1, W 2
2 = 6.

The spinor wave function is |ξ0〉 = (1, 1, 0, 0)T . The lattice
momentum along the wire is chosen as km = −0.25. Other
parameters are the same as Fig. 1.

Here ∂kyH is the velocity operator along y. Fig. 2(b)
plots the function Q(T ) for different magnetic fields. The
saturation value Q(∞) is proportional to the magnetic
field and vanishes for B = 0, in agreement with the ana-
lytical results above. Flipping the magnetic field results
in charge pumped to the opposite direction.

The electromagnetic response of Hermitian WSM
can be described by a field theory with action S =
(e/2π)2

∫
dtd3r θ(r, t)E ·B [12–16]. Here the axion field

θ(r, t) = 2(b · r− b0t) is linear in the separation of WPs
in energy and momentum bµ = (b0,b) with natural units
c = ~ = 1. It predicts the chiral magnetic effect, i.e., a
current j = −(e2/2π2)b0B which vanishes in equilibrium
with b0 = 0. Attempt to generalize the field theory to
point-gap WSM is hampered by an obstacle: the diver-
gence of the Fujikawa integral even for small NH per-
turbations such as γ±. Thus the dynamical chiral mag-
netic response found here cannot be explained by analyt-
ically continuing j = −(e2/2π2)b0B via 2b0 = i(γ+−γ−).
The failure of this formula illustrates that we are dealing
with a genuinely novel effect [82]. The theory developed
in Ref. [71] cannot be applied here either, because the
charge U(1) symmetry assumed in Ref. [71] is broken by
the NH terms in Eq. (1).

IV. BOUNDARY-SKIN MODES IN WIRE
GEOMETRY

The nontrivial bulk topology leads to the appearance
of Fermi-arc surface states that fill the entire point gap
[70]. In Appendix D, we studied the in-gap Fermi arcs
for different surface terminations. It also manifests in
the emergence of a novel type of boundary-skin modes
when the semimetal is cleaved to have intersecting sur-
face planes. Consider for example a wire with a rectan-
gular cross section and extending in the [101] direction
m̂ = x̂+ ẑ (red arrow, insets of Fig. 3). For convenience,
we label the [101̄] directions as n̂ = x̂− ẑ, so (ŷ, m̂, n̂) are
orthogonal to each other. The spectra of the wire for dif-
ferent boundary conditions are compared in Fig. 3(a) for
a particular value of km = k · m̂. Shown in color purple
is the spectrum for periodic boundary conditions along
ŷ and n̂, and color blue is for open ŷ and n̂ boundaries
where the in-gap modes are visible. It turns out that
these in-gap modes are concentrated around two corners
of the cross section, according to their total probability
distribution ρin(i, j) =

∑
q |ψq(i, j)|2 shown in Fig. 3(b).

Here (i, j) labels the sites, q labels the in-gap modes,
and ρin is rescaled to have maximum 1. As km is var-
ied, the spatial distribution of these corner modes evolves
smoothly, e.g. it is extended for km = 0 and localizes at
two other corners as km switches sign. Clearly, they are
distinct from the chiral edge modes in Chern insulators
and cannot be described by the Chern number C(km)
[defined below Eq. (4)] alone. For open boundaries,
the continuum modes with energies overlapping with the
bulk spectrum are pushed to localized at the left and
right edge, as shown by their total probability distri-
bution ρcont(i, j) in the middle inset of Fig. 3(b). An
extensive number of continuum modes residing near the
boundary is known as the NH skin effect. Here the skin
effect depends on the orientation/geometry of the sur-
faces. For example, the skin effect is absent for a z-wire
with open x, y boundaries [See Appendix E for details].
This is due to the vanishing of the 1D spectral winding
wx = wy = 0 protected by the NH symmetries Tx and
Ty. For a given kz, the 2D Hamiltonian H2D(kx, ky) de-
scribes a non-Hermitian Chern insulator, with the chiral
edge modes revealed from the Chern number C(kz).

We now show that these “corner modes” can be un-
derstood as chiral edge states under the spell of 1D skin
effect. Let us start from a point-gap WSM with two
open surfaces at y = 1, L and periodic in the two other
directions m̂ and n̂. This realizes a 2D slab described by
Hamiltonian h2D(km, kn). Its spectrum, shown in green
in Fig. 3(a) for a given km, features two chiral edge
modes at y = 1, L respectively that cross the bulk gap
and disperse with kn. Note that for given km, h2D can
be regarded as a 1D effective Hamiltonian h1D(kn). h1D

has point gaps on the complex energy plane, and the
corresponding 1D spectral winding number wn along the
direction n̂ is finite, giving rise to 1D skin effect. Thus,
upon opening up two additional boundaries normal to m̂,
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the skin effect leads to further localization of the surface
modes to the left/right corner. These “corner modes”
[in blue, Fig. 3(a)] indeed reside within the point gap of
h1D(kn). We call them “boundary-skin modes” because
they derive from the chiral edge modes of NH Chern in-
sulators due to the 1D skin effect. Since the finite Chern
number is in turn derived from W3, the emergence of
boundary-skin modes observed in Fig. 3(a) and (b) can
serve as signatures of point-gap WSM. We note the num-
ber of boundary-skin modes, bulk skin modes and chiral
edges state scale with system size as L, L2, and L, re-
spectively.

V. WAVE-PACKET DYNAMICS

Besides dynamical charge pumping, we propose an al-
ternative route to extract the topological signatures of
point-gap WSM from wave-packet dynamics which can
be performed in photonics experiments [63]. Let (x1, x2)
be the coordinates within the cross-section area in the
wire geometry. At time t = 0, we prepare a Gaussian
wave packet localized at (a1, a2) of zero velocity in the
plane

|ψ0〉 = N0e
−(x1−a1)2/W 2

1−(x2−a2)2/W 2
2 eiklxl |ξ0〉, (13)

where W1,2 are the width of the packet, N0 is the normal-
ization factor, |ξ0〉 denotes the spinor part of the wave
function, and kl is the momentum along the wire at a
fixed value. Fig. 3(c) depicts the time evolution of a
wave packet in the cross section of a [101]-wire. The left
panel shows that the wave packet initially residing near
the middle point of the y-edge travels directly through
the bulk to reach the opposite edge. This occurs because
the wave packet has large overlap with the skin modes
that reside on the y-edge [see Fig. 3(b)], but negligible
overlap with the in-gap states which are more concen-
trated around the corners. The skin modes are not com-
pletely localized, giving the wave packet the chance to
permeate into the bulk. While for a wave packet initially
on the [101̄]-edge (right panel), it first moves counter-
clockwise along the edges and starts to permeate into
the bulk more significantly once it arrives at the y-edge.
The evolution dynamics is distinct from that of a z-wire,
where the wave-packet moves chirally along the edges of
the cross section and does not go into the bulk, see nu-
merical simulations in Appendix E]. Thus, the existence
of boundary-skin modes can be inferred from the wave-
packet dynamics.

VI. CONCLUSION AND DISCUSSION

To conclude, we predict dynamical charge pumping
and boundary skin modes as unique features of NH WSM
and attribute them to the point-gap topology and non-
Hermicity. These phenomena have no analogs in Hermi-
tian semimetals and cannot be described by the previ-

ous field theory framework. Our work lays a foundation
for future experiments to explore the dynamics of NH
semimetals. The dynamical effects do not rely on fine-
tuning to a specific energy window and are more feasible
to identify for simulations in photonic and cold atomic
platforms. It is straightforward to extend the analysis to
other types of topological semimetals [3, 83]. For exam-
ple, by setting ak = (sin kx sin ky, cos ky − cos kx, sin kz),
we obtain a double-charged NH WSM with point-gap in-
variant W3(Ep) = 2. The lattice Hamiltonian can, in
principle, be implemented in photonic lattices and elec-
trical metamaterials [84–86]. As detailed in Appendix
F and G, we propose a realization of the lattice Hamil-
tonian Eq. (2) using micro-ring resonator arrays with
losses, where the couplings (both phase and amplitude)
between neighboring resonators can be controlled inde-
pendently through intermediate waveguides [87–90]. In
condensed matter systems, the non-Hermitian dissipa-
tion terms can be implemented either through a tailored
orbital-dependent coupling with a lossy mode or electron-
phonon scattering [70].
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Appendix A: Spectral windings and non-Hermitian
symmetry

The lattice Hamiltonian Hk (see model (2) in the
main text) contains both Hermitian and non-Hermitian
terms. The Hermitian part describes a prototype Weyl
semimetal (WSM) with a pair of Weyl points (WPs) in-
side the kz axis. The non-Hermitian terms further splits
the two WPs along the imaginary axis. Such WP con-
figuration breaks time-reversal symmetry; however if we
consider the one-dimensional (1D) Hamiltonian h1D(kx)
with fixed (ky, kz) momentum or h1D(ky) with fixed
(ky, kz) momentum, the lattice Hamiltonian respects the
following non-Hermitian time-reversal symmetry [42, 80]

TxH(kx, ky, kz)T
−1
x = H(−kx, ky, kz), (A1)

TyH(kx, ky, kz)T
−1
y = H(kx,−ky, kz), (A2)

where Tx = τ0σzT , Ty = T and T represents for transpo-
sition. The symmetry Tx (or Ty) relates the (100)/(1̄00)
(or (010)/(01̄0)) surfaces to each other and rules out the
skin effect along x (or y) direction. To visualize this, we
plot the energy spectra along each momentum direction,
while keep the other two momenta fixed. As depicted be-
low in Fig. 4(a)(b), the spectra by varying kx or ky trace
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open arcs on the complex plane, indicating the absence
of skin modes once open boundary along x or y direc-
tion is taken. The spectra by varying kz form closed
loops. For an open z-boundary, the extended modes un-
der periodic boundary condition would collapse into skin
mode [47–49]. Further, the presence or absence of skin
modes under open boundary can be verified from the 1D
winding number along the corresponding momentum di-
rection. Due to the above non-Hermitian time-reversal
symmetry, W1x(Ep) = W1y(Ep) = 0. While W1z(Ep)
can be nonzero when the reference energy Ep is suitably
chosen [see Fig. 4(c)].
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FIG. 4. Energy spectra of the lattice Hamiltonian Hk (model
(2) in the main text) on the complex plane. (a) Open-arc
spectra by varying kx with fixed ky = 0.5, kz = 0.5. (b)
Open-arc spectra by varying ky with fixed kx = 0.9, kz = 0.5.
(c) Closed-loop spectra by varying kz with fixed kx = 0.9,
ky = 0.5. The 1D winding number W1z(Ep) is labeled when
the reference energy Ep is chosen inside the corresponding
spectral region.

Appendix B: Chiral Landau levels with an applied
magnetic field

In the presence of a background magnetic field (For
neutral atoms, the magnetic field can be mimicked utiliz-
ing the synthetic gauge field technique), the Weyl Hamil-
tonian coupled to a gauge field is obtained through re-
placing k→ k − eA. For a magnetic field along y direc-
tion, we take the gauge potential A = (0, 0,−Bx). The
low-energy Hamiltonian near the two WPs with opposite
charge ±1 (or chirality) reads (~ = c = 1)

H±(B) = kxsx + kysy ± (kz + eBx± bz)sz + iγ±s0.

(B1)

We take the +1 Weyl node with imaginary energy γ+ as
an example. Squaring the Hamiltonian yields

[H+(B)− iγ+s0]2 = k2
y + k2

x + (kz + eBx+ bz)
2 − eBsy.

(B2)

Note the motion in the xz plane (perpendicular to B)
is exactly described by the quantum harmonic oscillator,
except with the minimum of the potential shifted in co-
ordinate space. The Landau quantization in the xz-plane
leads to the familiar levels

(E+ − iγ+)2 = eB(2n+ 1) + k2
y − eBsy (n = 0, 1, 2, ...),

(B3)

each with degeneracy D = eBLxLz
2π . The last term (Zee-

mann splitting) depends on the spin polarization along
the magnetic-field direction. When sy = +1 and n = 0,
we get the zero-th Landau level in the main text with
linear dispersion

E0+ = ky + iγ+. (B4)

While for n ≥ 1, The n-th states of sy = −1 are de-
generate with the (n + 1)-th states of sy = +1. They
together constitute the higher Landau levels in the main
text, with dispersion

En+ = ±
√
k2
y + 2eBn+ iγ+ (n ≥ 1). (B5)

It is worth to mention, only the zero-th Landau level
has definite spin polarization along the magnetic field;
while the higher Landau levels are constituted of both
polarization components, with degeneracy 2D. Similarly,
for the −1 Weyl node with imaginary energy γ−, the
zero-th Landau level has spin polarization sy = −1 and
dispersion

E0− = −ky + iγ−. (B6)

Appendix C: Dynamical charge pumping with
imaginary Landau levels

We start from the zero-th Landau levels, which are
chiral and possess different dissipation rates as depicted
in Fig. 5. The chiral Landau levels emerged under a
magnetic field produce a time-dependent parallel current.
To see this, we calculate the amount of charge pumped

𝑘y

ReE

𝑖𝛾+𝑖𝛾−

Λ−Λ

FIG. 5. Schematics of the zero-th Landau levels with linear
dispersions along ky. The right-moving (red) and left-moving
(blue) fermions have imaginary energy iγ+ and iγ−, respec-
tively. Λ is the momentum cutoff. At time t = 0, all the ReE
levels are filled (solid dots).
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over time lapse T . We suppose the system at t = 0 fill all
the Landau levels (i.e., Dirac sea) of ReE < 0 and denote
the initial state as |Ψ0〉. The subsequent time-evolution
|Ψ(t)〉 = e−iHt|Ψ0〉 is non-unitary and governed by the
density matrix

ρ(t) = |Ψ(t)〉〈Ψ(t)|
=
∑
m,n

e−i(En−E
∗
m)t|φn〉〈φn|Ψ0〉〈Ψ0|φm〉〈φm|,(C1)

where |φn〉 denotes the eigenfunction of the correspond-
ing Landau level. We set the momentum cutoff as Λ.
The time-dependent current along the magnetic field is
then

j(t) =

∫ Λ

−Λ

dky
2π

Tr[ρ(t)∂kyH]. (C2)

Here ∂kyH is the particle velocity along the magnetic

field. The 1
2π factor is the density of state. As the higher

Landau levels are symmetric with respect to the ky axis,
only the chiral Landau levels contribute to the current.
The time-dependent current is simply given by

j(t) =
ΛD

2π
[e2γ+t − e2γ−t]. (C3)

We can clearly see j(t) is the net current coming from
both the left- and right-movers. The total pumped charge
during time T is

QΛ(T ) =

∫ T

0

dt j(t) =
ΛD

4π
[
e2γ+T − 1

γ+
− e2γ−T − 1

γ−
].

(C4)

In the following, we provide a field-theory perspective
of the dynamical current. The dynamical charge pump-
ing is due to interplay of non-Hermiticity and the chiral
Landau levels. We restrict to the zero-th Landau lev-
els with opposite chirality and denote the corresponding
field operator describing the chiral fermions as χ(t, y). In
this notation, we have incorporate the (x, z)-dependence
into χ(t, y). The effective (1+1)D action describing the
two chiral landau levels is

S =

∫
dtdy iχ̄(t, y)[ /∂ − γ+ − γ−

2
γ1 − γ+ + γ−

2
γ0]χ(t, y).

(C5)

Here we have utilized the notation of gamma matrices as
γ0 = σx, γ1 = −iσy and γ5 = γ0γ1 = σz, which obey the
Clifford algebra {γµ, γν} = 2gµν in signature (1,−1).

The field χ(t, y) can be decomposed into two chiral
components χ±(t, y) = 1

2 (1 ± γ5)χ(t, y), corresponding

to different eigenvalues of γ5. In terms of χ±(t, y), the
action reads

S =

∫
dtdy i[χ†+(t, y)(∂t + ∂y − γ+)χ+(t, y) + χ†−(t, y)(∂t − ∂y − γ−)χ−(t, y)]. (C6)

Without the dissipation terms, the action (C5) has both
the charge and chiral U(1) symmetry, indicating the con-
servation of gauge current jµ = χ̄γµχ and chiral current
jµ5 = χ̄γµγ5χ in classical level. In terms of the two chiral

components, j0 = χ†+χ+ + χ†−χ− ≡ N+ + N− measures
the total density of right- and left-moving fermions; and

j1 = χ†+χ+ − χ†−χ− ≡ N+ −N− measures their density
difference (or current). Vice versa for jµ5 , j0

5 = N+ −N−
and j0

5 = N+ + N− respectively measures their density
difference and total density. The existence of the dis-
sipation terms breaks both symmetries, leading to the
non-conservation for both the left- and right-movers.

The equation of motion extracted from action (C5) is

/∂χ− [
γ+ + γ−

2
γ0 +

γ+ − γ−
2

γ1]χ = 0. (C7)

The solutions are given by

χ+(t, y) = (t− y)eγ+t; χ−(t, y) = (t+ y)eγ−t.(C8)

We can clearly see their physical meaning: χ± represents
for the right/left-moving fermions with damping rate γ±,
respectively. The fermion density operator satisfies the

following damping relation:

∂tN+ = 2γ+N+; ∂tN− = 2γ−N−. (C9)

The fermion density of the right- and left-movers are then
N+(t) ∝ e2γ+t and N−(t) ∝ e2γ−t. As the two chiral
components move in opposite directions (y and −y), their
density difference j1(t) = j0

5(t) = N+(t)−N−(t) induces
a net current proportional to (e2γ+t − e2γ−t) along the
magnetic field, which coincides with the previous density-
matrix calculations.

It is worth to mention the case when an additional elec-
tric field E parallel to the magnetic field B is applied. As
is well known in quantum field theory, the electric field
would induce the chiral anomaly, which breaks the chi-
ral symmetry in the quantum level. The chiral anomaly
shifts the density of right- and left-movers by ± eE2π , re-
spectively. Taking into account this effect, we arrive at
the following relation:

∂tN± = ±e
2EB
4π2

+ 2γ±N±. (C10)
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The solutions are given by

N±(t) = (N0± ±
e2EB
8π2γ±

)e2γ±t ∓ e2EB
8π2γ±

. (C11)

Here N0,± is the initial fermion density for the right (+)
and left (-) movers, respectively. For the initial config-
uration depicted in Fig. 5 with momentum cutoff Λ,
N0± = ΛD

2π . It is easy to see:
Case (i): When γ+ = γ− = 0, i.e., no dissipation for both

the left- and right-movers, ∂tj
0 = 0, ∂tj

1 = e2EB
2π2 , which

returns to the well-known chiral anomaly. The total par-
ticle density is conserved, however, the chiral density is
not conserved.
Case (ii): When γ+ = γ− 6= 0, i.e., the left- and

right-movers have the same dissipation rate, j1(t) =
e2EB
4π2γ+

(e2γ+t − 1). When the electric field E = 0, the

net current is zero.
Case (iii): When γ+ 6= γ− 6= 0 and E = 0, i.e., with-

out the electric field, j1(t) = ΛD
2π (e2γ+t− e2γ−t), which is

consistent with the previous density-matrix discussions.
Even without electric field, a time-dependent current is
induced due to the dynamical imbalance between left-
and right-movers.
Case (iv): When t is very large, the competition between
the non-Hermitian dissipation and electric-field driving
is balanced. And we arrive at the steady-state solution:

N±(t→∞) = ∓ e2EB
8π2γ±

.

Appendix D: Anisotropic surface Fermi arcs

The bulk-boundary correspondence in point-gap WSM
is more complicated than the Hermitian case. This is
partly due to the appearance of skin modes which de-
pends on the orientation of the surfaces. We first focus
on one of the key signatures of WSM, Fermi arcs on open
surfaces. Fig. 6(a) shows the spectra for open boundaries
at x = 1, L (the pink surface parallel to the Weyl node
separation in the inset) obtained from numerical solution
of the lattice model. Owing to the point-gap invariant
W3(Ep) = 1, surface modes emerge inside the point gap.
Here, for clarity, only the spectra of a few dozen discrete
values of transverse momenta k‖ = (ky, kz) are shown.
The surface modes become close-packed to fill the entire
point gap region if all k‖ are included. Consider for ex-
ample the zero-energy surface states at ky,z = 0, whose
wave functions can be found analytically. (The solution
is provided at the end of this section.) The complex en-
ergy spectrum for small values of ky,z is given by

Es(k‖) ∝ ±ky + iαkz, (D1)

where ± is for the surface at x = 1 and L respectively
and α depends on system parameters. At zero chemical
potential, µ =ReEs = 0, the surface modes disperses as
Es ∝ ikz and form a continuum with varying ImEs for
kz ∈ [−bz, bz] to connect the two WPs, i.e., a complex

Fermi arc. Fermi arcs for other values of µ are obtained
similarly by solving ReEs(k‖) = µ. The in-gap modes
can be viewed as a collection of Fermi arcs. Remarkably,
together they form a single-sheet “handkerchief” on the
complex E plane, covering the “hole” of the point gap
area exactly once (recall W3 = 1 in our model). More
generally, one can prove that the complex Fermi arcs
cover the point-gap area W3(Ep) times [70].

FIG. 6. Complex Fermi arcs and skin effect at open sur-
faces. (a) Energy spectra for a point-gap WSM with two
open surfaces (see the pink surface in inset) normal to the
x direction, separated by distance Lx = 25. The colors in-
dicate the Inverse Participation Ratio (IPR) that measures
the localization of eigenstates. The in-gap modes consist of
Fermi arcs to fill the entire point gap. (b) Same as (a) but for
open surfaces normal to the [101̄] direction with L[101̄] = 25.
The IPR shows skin effect, i.e., an extensive number of con-
tinuum modes (outside the point gap) become localized near
the surfaces. The parameters are b = 0.9, δ = 0.2, γ = −0.5,
m = 3.1.

In comparison, Fig. 6(b) depicts the spectra for the
(101̄)/(1̄01) open surfaces perpendicular to the diagonal
x̂− ẑ. The false color represents the inverse participation
ratio (IPR) that measures the wave function localization

IPR[|ψ〉] =
∑
j

|〈j|ψ〉|4. (D2)

Here j labels the lattice layers along x̂ − ẑ, and a high
IPR value indicates the localization of wave function
|ψ〉 near the two open surfaces. While the complex
Fermi arcs fill the point gap, certain states with energies
belonging to the continuum bulk bands have appreciable
IPR, i.e., they are pushed from the bulk to localize near
the surfaces. This is an example of non-Hermitian skin
effect and it can be understood by analyzing h1D(kl)

with l̂ = x̂− ẑ. Skin effect occurs whenever the spectral

windings along l̂, as defined in Eq. (4), is nonzero. We
can check that wl(Ep) is indeed finite for certain Ep
outside the point gap region, in agreement with Fig.
6(b). Note the skin effect depends on the orientation of
the open surface. For the x-open boundary shown in Fig.
6(a), all the continuum states remain extended. Skin
effect is absent in this case because spectral windings
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along the x and y direction vanish, wx = wy = 0.

Solution of the surface states Eq. (D1):
For the lattice Hamiltonian Hk (see Eq. (2) in the main
text), when the x direction is open, ky and kz are good

quantum numbers and surface states emerge inside the
point gap. We first consider the special case with ky =
kz = 0. The surface states can be either on the (100) or
(1̄00) surfaces. To proceed, we rewrite the tight-binding
form of Hamiltonian Hk along x direction (the constant
non-Hermitian term iγτ0σ0 is dropped off):

Hx−open =
∑

c†x+1

τzσ0 + iτxσx
2

cx + c†x−1

τzσ0 − iτxσx
2

cx + c†x[(2−m)τzσ0 + bτ0σz + iδτxσ0]cx. (D3)

Here cx denotes the annihilation operator for the x-th
lattice site. Suppose there are L unit cells along x di-
rection. We take the trial wave function for the (1̄00)
surface state (i.e., localized at x = 1) as

|χ1̄00〉 =
∑
x

βx1 |x〉|φ1〉 (D4)

where |φ1〉 is the spinor part and |β1| < 1. At site x, the
Harper equation is (Γ0 = τzσ0)

Γ0[
1− τyσx

2
β−1

1 +
1 + τyσx

2
β1 + (2−m+ bτzσz − δτyσ0)]|φ1〉 = 0, (D5)

In the above equation, we have assumed the surface-
state energy to be zero, which will be validated at the
end of the discussion. The b term and δ term in the
parentheses commute with τyσx. The eigenstates of τyσx
with eigenvalue +1 are

|+ 1〉 =
(−i, 0, 0, 1)T√

2
; |+ 2〉 =

(0,−i, 1, 0)T√
2

. (D6)

The eigenstates of τyσx with eigenvalue −1 are

| − 1〉 =
(i, 0, 0, 1)T√

2
; | − 2〉 =

(0, i, 1, 0)T√
2

. (D7)

It is easy to see from Eq. (D5) that | + 1〉 and | + 2〉
can be taken as the basis of the (1̄00) surface states. We
assume the spinor part of the solution to be

|φ1〉 = p1|+ 1〉+ p2|+ 2〉. (D8)

Combing the normalization condition |p1|2 + |p2|2 = 1,
we set p1 = cos θ, p2 = sin θeiφ, the Harper equation
reduces to following complex equations

(β1 −m+ 2 + b) cos θ − δ sin θeiφ = 0;

−δ cos θ + (β1 −m+ 2− b) sin θeiφ = 0. (D9)

The solutions are given by β1 = −
√
δ2 + b2 + m − 2

(note |β1| < 1 is required for the (1̄00) surface), θ =

arctan β1−m+2+b
δ , and φ = 0. For the (100) surface, we

take the trial wave function as

|χ100〉 =
∑
x

βL−x2 |x〉|φ2〉, (D10)

where |φ2〉 denotes the spinor part. | − 1〉 and | − 2〉 can
be taken as the basis of the (100) surface states. Similar
procedure yields the solution of the Harper equation. To
summarize, we have the following surface states solutions
(neglecting the total normalization factor)

|χ1̄00〉 ∼
∑
x

βx|x〉[cos θ|+ 1〉+ sin θ|+ 2〉]; (D11)

|χ100〉 ∼
∑
x

βL−x|x〉[cos θ| − 1〉 − sin θ| − 2〉].(D12)

Now we are ready to work out the surface states of
a finite-size system along x direction. For a finite x-
layer, the top and bottom surface states couple together.
The surface modes should be the superposition of both
|χ1̄00〉 and |χ100〉 and simultaneously localized on both
x = 1 and x = L. It is easy to calculate the finite-layer
coupling:

〈χ100|Hx−open|χ100〉 = 〈|χ1̄00|Hx−open|χ1̄00〉 = 0;

〈χ100|Hx−open|χ1̄00〉 = 〈|χ1̄00|Hx−open|χ100〉
∼ βL[−b− (2−m)]. (D13)

The small off-diagonal term (scale as βL) will pin the
surface state to be the superposition of |χ100〉 and |χ1̄00〉
as

|χ±〉 =
|χ100〉 ± |χ1̄00〉√

2
. (D14)

In the following, we consider the effect of nonzero but
small ky, kz terms. To be concise, we only consider the
spinor part and neglect the total normalization factor
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of |χ1̄00〉 and |χ100〉. For the ky term, we have the fol-
lowing relations: 〈+1|τxσy| + 1〉 = −〈+2|τxσy| + 2〉 =
−〈−1|τxσy| − 1〉 = 〈−2|τxσy| − 2〉 = 1 and other terms
are zero. Hence 〈χ1̄00|τxσy|χ1̄00〉 = −〈χ100|τxσy|χ100〉 =
cos 2θ, and 〈χ1̄00|τxσy|χ100〉 = 〈χ100|τxσy|χ1̄00〉 = 0. In
the surface-state subspace spanned by |χ1̄00〉 and |χ100〉,
the ky term yields an energy splitting proportional to
± cos 2θky, which would pin the surface states to be lo-
calized at one single surface.

For the kz term, 〈+1|τxσz| + 2〉 = −〈+2|τxσz| + 1〉 =
−〈−1|τxσz|−2〉 = 〈−2|τxσz|−1〉 = i and all other terms
are zero. Unlike the ky term which is diagonal in the ba-
sis, the kz term is non-diagonal. |χ1̄00〉 and |χ100〉 are not
the eigenvectors of the new Hamiltonian when a nonzero
kz term is included. To extract the effect of kz term, we

first solve the following Harper equation without non-
Hermitian δ term:

Γ0[
1− τyσx

2
β−1

1 +
1 + τyσx

2
β1

+(1 + cos kz −m+ bτzσz + i sin kzτyσz)]|φ1〉 = 0.

(D15)

Following the same procedure before, we solve the zero-
energy surface states of this Hermitian topological insula-
tor. As {τyσz, τyσx} = 0, the τyσz term would mix the ±
subspace of τyσx: τyσz|+1〉 = |−2〉; τyσz|+2〉 = −|−1〉;
τyσz|−1〉 = −|+2〉; τyσz|−2〉 = |+1〉. We set the trivial
spinor wave function for the (1̄00) surface to be

|φH1〉 = cos θH |+ 1〉+ sin θHe
iφH | − 2〉. (D16)

Solving the Harper equation yields (m′ = 1 + cos kz−m)

βH1 =
−1 + b2 − sin2 kz −m′2 −

√
4(b2 −m′2) + (1− b2 + sin2 kz +m′2)2

2(m′ − b)
,

θH = − arctan
sin kz

β−1
H1 +m′ + b

,

φH = −π
2
. (D17)

Similarly we can solve the spinor wave function for the
(100) surface. The solutions are list as below:

|φH1〉 = cos θH |+ 1〉 − i sin θH | − 2〉; (D18)

|φH2〉 = cos θH | − 1〉+ i sin θH |+ 2〉. (D19)

Now let us consider the effect of non-Hermitian
δ term on the basis |φH1,2〉: 〈φH1|iτxσ0|φH1〉 =
〈φH2|iτxσ0|φH2〉 = i sin 2θH and 〈φH1|iτxσ0|φH2〉 =
〈φH2|iτxσ0|φH1〉 = 0. These relations mean that the
non-Hermitian δ term induces an equal energy shift for
both the surface states. When kz is nonzero but small,
θH ∝ kz, and the energy shift for the surface states is
∝ ikz. In Eq. (D5), we have implicitly taken the surface-
state energy to be zero for a finite non-Hermitian δ term.
Note that when kz = 0, θH = 0, hence the non-Hermitian
term does not change the surface-state energy for kz = 0.

Appendix E: Energy spectra and wave-packet
dynamics along z-wire

In the main text, we have considered the energy spec-
tra under [101]-wire and the corresponding wave-packet
dynamics. Here, as a comparison, we investigate energy
spectra and wave-packet motion along the z-wire and
show the anisotropic nature of non-Hermitian WSM. The
spectrum of a z-wire with open x, y boundaries is shown
in Fig. 7(a) in color blue for a particular kz. Boundary

modes with energies inside the point gap are revealed by
comparing to the continuum spectrum (in purple, over-
laid by blue) obtained by assuming periodic boundary
conditions in both the x- and y-direction. The spatial dis-
tribution ρ of the in-gap modes in Fig. 7(b) clearly shows
that they reside along the four edges. Here ρ is the prob-
ability at each site (i, j), ρ(i, j) =

∑
n |ψn(i, j)|2/ρmax,

with ρmax the maximum value of ρ(i, j) and n labelling
the in-gap modes shown in 7(a). For a given kz, the
2D Hamiltonian H2D(kx, ky) describes a non-Hermitian
Chern insulator. The appearance of edge modes can be
predicted from the Chern number C(kz). Skin effect
is absent in this geometry: the total probability distri-
bution of the continuum (as opposed to in-gap) modes
shown in the middle inset of Fig. 7(b) is almost a con-
stant, in accordance with wx = wy = 0. Here ρ(i, j)
is defined similarly, with n summed over all continuum
modes. Recently it was argued that non-Hermitian skin
effect is universal: it occurs whenever the energy spectra
of a 2D or 3D system take up a finite area on the com-
plex energy plane [60]. In point-gap WSM, the bulk spec-
tra unavoidably occupy a finite area due to the splitting
of WPs along the imaginary axis. One can check that
skin modes do appear for other (e.g. diamond-shaped,
not shown) geometries of the z-wire cross section. Such
geometry-dependent skin effect is typical of many 2D and
3D non-Hermitian systems.

Fig. 7(c) depicts the time evolution of a wave packet
initially localized at the left edge of a z-wire. It moves



11

FIG. 7. Energy spectra and wave-packet dynamics along z-wire. (a) Energy spectra for a wire extending along z with open
(in blue) versus periodic (in purple) boundary conditions in the x, y directions, showing the emergence of in-gap edge modes
for open boundaries. The inset illustrates the the z-wire with its cross-section boundaries indicated by red lines. The lattice
momentum along the wire (red arrow) is chosen as kz = −0.5. (b) Total probability distribution ρ of the in-gap modes, which
confirms that they are localized at the edge of the cross section. The middle inset show the total probability distribution of
all other modes, and there is no sign of skin effect. (c) The time evolution of a wave-packet initially localized at site (1, 13)
with momentum kz = −0.5. It undergoes chiral motion along the edges of the cross section that measures 25 × 25 [91]. The
wave-packet has width W 2

1 = 2, W 2
2 = 6. The spinor wave function is set as |ξ0〉 = (1, i, 0, 0)T . Other parameters are the same

as Fig. 1.

counter-clockwise along the edges [See animation in Ref.
[91]]. This unambiguously demonstrates the edge modes
[see Fig. 7(b)] are chiral. This is because the cross section
of the z-wire, as a 2D system for fixed kz, can be regarded
as a Chern insulator.

Appendix F: Possible realization in micro-ring
resonators and condensed matter materials

The lattice model (see Eq. (2) in the main text) can
be realized using coupled micro-ring resonators. Let us
rewrite the Hamiltonian Eq. (2) in a new basis: τx → τz,
τz → −τx; σx → σz, σz → −σx, which corresponds to a
unitary transformation U = ei

π
4 τyσ0ei

π
4 τ0σy . In the new

basis, the imaginary terms are onsite lossy terms, and
the lattice model reads

Hk = sin kxτzσz + sin kyτzσy − sin kzτzσx − (cos kx + cos ky + cos kz −m)τxσ0 − bτ0σx + iδτzσ0 + iγτ0σ0. (F1)

We consider a 3D cubic lattice formed by ring res-
onators, as depicted in Fig. 8(a). Each unit cell consists
of four ring resonators (denoted by different colors and
numbered 1, 2, 3, 4), to mimic the 2 × 2 orbital and spin
degrees of freedom. In our notation, the τz = 1 sub-
space corresponds to {1, 2} sites; τz = −1 subspace cor-
responds to {3, 4} sites. σz = +1 subspace corresponds
to {1, 3} sites; σz = −1 subspace corresponds to {2, 4}
sites. The resonators have the same resonant frequency
and different loss rates, denoted as γ1,2,3,4, respectively.
For our case, we set γ1 = γ2 6= γ3 = γ4. The Hamiltonian
Eq. (F1) contains both inter-cell and intra-cell couplings.
The key ingredient implementing the couplings between
two resonators is the intermediate connecting ring [87, 88]
as depicted in Fig. 8(b). The corresponding Hamiltonian
describing the couplings of the two resonators (labeled by
L and R) takes the following form:

−κa†RaLe
i2πϕ − κa†LaRe

−i2πϕ, (F2)

where aL/R represents the annihilation operator of op-
tical modes in the left/right resonator. κ is the cou-
pling rate and can be tuned by the overlapping between
waveguide modes. 4πϕ is the propagating phase differ-
ence inside the connecting ring, coming from the different

lengths of the upper and lower branches. The phase ϕ
can be adjusted through, e.g., changing the length (or the
refraction index) of the connecting waveguides [87, 88].

1 2

34x

yz
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FIG. 8. Experimental implementation of the lattice Hamilto-
nian using coupled arrays of micro-ring resonators. (a) Cubic
lattice formed by the micro-ring resonators. Each unit cell
contains four sites, denoted by 1 (green), 2 (blue), 3 (pur-
ple), 4 (red), with loss rate γ1,2,3,4, respectively. For each
resonator, only the counter-clockwise (or clock-wise) propa-
gating modes are considered. (b) Schematics of the coupling
between two resonators (denoted as L and R) through an in-
termediate waveguide (gray). Due to the different lengths of
the upper and lower branch, a phase difference 4πϕ is induced.

Through the intermediate waveguide, all terms in
Hamiltonian (F1) can be realized. For the inter-cell cou-
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plings, we take sin kxτzσz term as an example. Similar discussions apply to the other terms. We rewrite this
term in real space:

∑
r

− i
2

[a†1(x+ 1, y, z)a1(x, y, z)− a†1(x, y, z)a1(x+ 1, y, z)] +
i

2
[a†2(x+ 1, y, z)a2(x, y, z)− a†2(x, y, z)a2(x+ 1, y, z)]

+
i

2
[a†3(x+ 1, y, z)a3(x, y, z)− a†3(x, y, z)a3(x+ 1, y, z)]− i

2
[a†4(x+ 1, y, z)a4(x, y, z)− a†4(x, y, z)a4(x+ 1, y, z)].

(F3)

Here the summation is over the unit cells r = (x, y, z).
The subscript labels the lattice site inside each unit cell.
For example, the first term represents the coupling be-
tween site-1 (green color in Fig 8(a)) at nearest unit cells
along x direction. It is easy to see from Eq. (F2) that,

this term can be reproduced by setting ϕ = 1
4 . Similarly,

we can reproduce the other three terms by simply adjust-
ing the phase difference of the intermediate waveguides
as ϕ = − 1

4 , − 1
4 , and 1

4 , respectively. For the intra-cell
coupling term, we take −bτ0σx term as an example. In
real space, this term is expanded as:

∑
r

−b[a†1(x, y, z)a2(x, y, z) + a†2(x, y, z)a1(x, y, z)]− b[a†3(x, y, z)a4(x, y, z) + a†4(x, y, z)a3(x, y, z)]. (F4)

To realize this term, we can set the phase difference of
the intermediate waveguide (connecting 1, 2 or 3, 4 inside
the same unit cell) as ϕ = 0.

In practice, the 3D configuration does not require ar-
ranging the resonators on the cubic lattice. All one needs
is to establish the connectivity (coordinate number) of
the resonators. Also, it is worth mentioning that instead
of coupling together multiple resonators to form a gen-
uine 3D lattice, one can utilize the so-called synthetic
dimension [92–96], e.g., the equally-spaced resonant fre-
quency, to effectively realize the 3D lattice model on a 2D
resonator array. The couplings between the multiple res-
onances are implemented through external modulation
[97] and applying the external perturbation corresponds
to choosing the lattice coupling scheme and the gauge
fields.

Besides micro-ring resonators, the lattice model can
also be mimicked using electric circuits, where the NH
Hamiltonians can be simulated by the admittance ma-
trix. In condensed matter materials, the non-Hermitian
dissipation terms can be implemented either through a
tailored orbital-dependent coupling with a lossy mode or
electron-phonon scattering [70]. For the case of coupling
to an additional f -orbital, when the f -electron has no
dispersion and sits close to the chemical potential, an ef-
fective non-Hermitian term of the form as in Eq. (2) dom-
inates. In a recent work on Kondo-Weyl semimetal [24]
(candidate material Ce3Bi4Pd3) which contains strongly
correlated localized f electrons and itinerant conduc-
tion electrons in a zincblende lattice, DMFT studies re-
vealed that due to the breaking of inversion symmetry,
the quasiparticle lifetimes at different sublattices are dis-

tinct. For the case of electron-phonon couplings, at low
energies (on the scale of the point gap, measured from
the energy of the WPs), the imaginary part of the elec-
tron self-energy is approximately a constant but depends
on momentum and hence differs at the two WPs. Since
Weyl materials typically have strong spin-orbit coupling,
the anisotropy (or momentum dependence) of the lifetime
is natural when there is a spin imbalance in the bath to
which the electrons are coupled, such as in magnetic Weyl
semimetals [98].

Appendix G: Observation of the dynamical effects

As discussed in the main text, the dynamical charge
pumping effect comes from the two chiral Landau lev-
els with mismatched dissipation rates. The effective
magnetic field for photons is equivalent to the complex,
position-dependent coupling. For example, we can take
the magnetic field B = Bŷ along y direction and its as-
sociated gauge potential A = (0, 0, Bx). Through Peierls
substitution k→ k − eA, the coupling along z direction
is replaced by a x-dependent phase. In coupled-resonator
settings, the effective magnetic field can be fine-tuned as
in Fig. 8(b) by adjusting the length (or refraction in-
dex) of the connecting waveguides or by dynamical mod-
ulating [97] the refraction index through an electro-optic
modulation on the ring resonator. To observe the com-
plex chiral Landau levels, a continuous-wave laser light is
injected into the resonator, with a tunable detuning δω.
The complex band structures can be extracted from the
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momentum- and detuning-dependent transmission signal
s(k, δω) from the output port [96, 99, 100].

Taking the advantage that the system parameters, in
particular the dissipative terms, as well as their time-
dependence (e.g., sudden quench of model parameters)
can be easily and precisely controlled in photonic sys-
tems, it is promising to implement quantum dynamics
and experimentally observe the dynamical effects induced
by the non-Hermitian band topology. In contrast, in con-
densed matter materials, it is challenging to implement
quantum quench or wave-packet motion detection. The
topological features, including the surface Fermi arcs, the
chiral Landau levels, and the boundary-skin modes, may
be directly observed from the momentum-resolved spec-
trum measurement. In micro-ring resonators, the ampli-
tude probability c(t) = (cnx,ny,nz (t)) serves as the wave
function. Here n = (nx, ny, nz) is the index of lattice
site. Its time evolution explicitly reads

i
dc(t)

dt
= Hc(t). (G1)

In the main text, we have discussed the wave-packet dy-
namics for different system parameters and boundary
conditions [see Fig. 3(c) and Fig. 7(c)]. As the wave-
packet motion depends on the overlapping of the initial
wave-packet with the eigenstates of the Hamiltonian, it
can reveal the existence of surface Fermi arcs and bound-
ary skin modes. These dynamical effects do not depend
on the fine-tuning of the system parameter to some spe-
cific energies. For the dynamical charge pumping effect,
we can prepare a sequence of initial wave packets (with
each one localized mainly at one lattice site to mimic
the trivial ground state) and measure the time-dependent
amplitude distributions.
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