
The VLDB Journal (2018) 27:79–104

https://doi.org/10.1007/s00778-017-0488-z

REGULAR PAPER

Dynamical SimRank search on time-varying networks

Weiren Yu1 · Xuemin Lin2 · Wenjie Zhang2 · Julie A. McCann3

Received: 22 November 2016 / Revised: 5 August 2017 / Accepted: 6 October 2017 / Published online: 22 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract SimRank is an appealing pair-wise similarity

measure based on graph structure. It iteratively follows the

intuition that two nodes are assessed as similar if they are

pointed to by similar nodes. Many real graphs are large, and

links are constantly subject to minor changes. In this article,

we study the efficient dynamical computation of all-pairs

SimRanks on time-varying graphs. Existing methods for the

dynamical SimRank computation [e.g., LTSF (Shao et al. in

PVLDB 8(8):838–849, 2015) and READS (Zhang et al. in

PVLDB 10(5):601–612, 2017)] mainly focus on top-k search

with respect to a given query. For all-pairs dynamical Sim-

Rank search, Li et al.’s approach (Li et al. in EDBT, 2010)

was proposed for this problem. It first factorizes the graph

via a singular value decomposition (SVD) and then incre-

mentally maintains such a factorization in response to link

updates at the expense of exactness. As a result, all pairs of

SimRanks are updated approximately, yielding O(r4n2) time

and O(r2n2) memory in a graph with n nodes, where r is the

B Weiren Yu

w.yu3@aston.ac.uk

Xuemin Lin

lxue@cse.unsw.edu.au

Wenjie Zhang

zhangw@cse.unsw.edu.au

Julie A. McCann

j.mccann@imperial.ac.uk

1 School of Engineering and Applied Science, Aston

University, Birmingham, UK

2 School of Computer Science and Engineering, University of

New South Wales, Sydney, Australia

3 Department of Computing, Imperial College London,

London, UK

target rank of the low-rank SVD. Our solution to the dynam-

ical computation of SimRank comprises of five ingredients:

(1) We first consider edge update that does not accompany

new node insertions. We show that the SimRank update �S

in response to every link update is expressible as a rank-

one Sylvester matrix equation. This provides an incremental

method requiring O(K n2) time and O(n2) memory in the

worst case to update n2 pairs of similarities for K iterations.

(2) To speed up the computation further, we propose a loss-

less pruning strategy that captures the “affected areas” of �S

to eliminate unnecessary retrieval. This reduces the time of

the incremental SimRank to O(K (m + |AFF|)), where m is

the number of edges in the old graph, and |AFF| (≤ n2) is the

size of “affected areas” in �S, and in practice, |AFF| ≪ n2.

(3) We also consider edge updates that accompany node

insertions, and categorize them into three cases, according to

which end of the inserted edge is a new node. For each case,

we devise an efficient incremental algorithm that can sup-

port new node insertions and accurately update the affected

SimRanks. (4) We next study batch updates for dynam-

ical SimRank computation, and design an efficient batch

incremental method that handles “similar sink edges” simul-

taneously and eliminates redundant edge updates. (5) To

achieve linear memory, we devise a memory-efficient strat-

egy that dynamically updates all pairs of SimRanks column

by column in just O(K n + m) memory, without the need

to store all (n2) pairs of old SimRank scores. Experimen-

tal studies on various datasets demonstrate that our solution

substantially outperforms the existing incremental SimRank

methods and is faster and more memory-efficient than its

competitors on million-scale graphs.

Keywords Similarity search · SimRank computation ·

Dynamical networks · optimization

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0488-z&domain=pdf

80 W. Yu et al.

1 Introduction

Recent rapid advances in Web data management reveal that

link analysis is becoming an important tool for similarity

assessment. Due to the growing number of applications in

e.g., social networks, recommender systems, citation analy-

sis, and link prediction [9], a surge of graph-based similarity

measures have surfaced over the past decade. For instance,

Brin and Page [2] proposed a very successful relevance mea-

sure, called Google PageRank, to rank Web pages. Jeh and

Widom [9] devised SimRank, an appealing pair-wise sim-

ilarity measure that quantifies the structural equivalence of

two nodes based on link structure. Recently, Sun et al. [21]

invented PathSim to retrieve nodes proximities in a hetero-

geneous graph. Among these emerging link based measures,

SimRank has stood out as an attractive one in recent years,

due to its simple and iterative philosophy that “two nodes

are similar if they are pointed to by similar nodes,” coupled

with the base case that “every node is most similar to itself.”

This recursion not only allows SimRank to capture the global

structure of a graph, but also equips SimRank with mathe-

matical insights that attract many researchers. For example,

Fogaras and Rácz [5] interpreted SimRank as the meeting

time of the coalescing pair-wise random walks. Li et al. [13]

harnessed an elegant matrix equation to formulate the closed

form of SimRank.

Nevertheless, the batch computation of SimRank is costly:

O(K d ′n2) time for all node pairs [24], where K is the total

number of iterations, and d ′ ≤ d (d is the average in-degree

of a graph). Generally, many real graphs are large, with links

constantly evolving with minor changes. This is especially

apparent in e.g., co-citation networks, Web graphs, and social

networks. As a statistical example [17,31], there are 5–10%

links updated every week in a Web graph. It is rather expen-

sive to recompute similarities for all pairs of nodes from

scratch when a graph is updated. Fortunately, we observe that

when link updates are small, the affected areas for SimRank

updates are often small as well. With this comes the need for

incremental algorithms that compute changes to SimRank in

response to link updates, to discard unnecessary recompu-

tations. In this article, we investigate the following problem

for SimRank evaluation:

Problem (Incremental SimRank Computation)

Given an old digraph G, old similarities in G, link

changes �G1 to G, and a damping factor C ∈

(0, 1).

Retrieve the changes to the old similarities.

Our research for the above SimRank problem is motivated

by the following real application:

1 �G consists of a sequence of edges to be inserted/deleted.

Example 1 (Decentralize large-scale SimRank retrieval)

Consider the Web graph G in Fig. 1. There are n = 14 nodes

(web pages) in G, and each edge is a hyperlink. To evalu-

ate the SimRank scores of all (n × n) pairs of Web pages

in G, existing all-pairs SimRank algorithms need iteratively

compute the SimRank matrix S of size (n × n) in a cen-

tralized way (by using a single machine). In contrast, our

incremental approach can significantly improve the compu-

tational efficiency of all pairs of SimRanks by retrieving S in

a decentralized way as follows:

We first employ a graph partitioning algorithm (e.g.,

METIS2) that can decompose the large graph G into sev-

eral small blocks such that the number of the edges with

endpoints in different blocks is minimized. In this example,

we partition G into 3 blocks, G1 ∪ G2 ∪ G3, along with 2

edges {(f, c), (f, k)} across the blocks, as depicted in the

first row of Fig. 1.

Let Gold := G1 ∪ G2 ∪ G3 and �G := {(f, c), (f, k)}.

Then, G can be viewed as “Gold perturbed by �G edge inser-

tions.” That is,

G =

:=Gold
︷ ︸︸ ︷

(G1 ∪ G2 ∪ G3)∪

:=�G
︷ ︸︸ ︷

{(f, c), (f, k)} = Gold ∪ �G.

Based on this decomposition, we can efficiently compute

S over G by dividing S into two parts:

S = Sold + �S

where Sold is obtained by using a batch SimRank algorithm

over Gold, and �S is derived from our proposed incremental

method which takes Sold and �G as input.

It is worth mentioning that this way of retrieving S is far

more efficient than directly computing S over G via a batch

algorithm. There are two reasons:

Firstly, Sold can be efficiently computed in a decentralized

way. It is a block diagonal matrix with no need of n × n

space to store Sold. This is because Gold is only comprised of

several connected components (G1, G2, G3), and there are

no edges across distinct components. Thus, Sold exhibits a

block diagonal structure:

Sold := diag(SG1 , SG2 , SG3) :=

⎡

⎣

SG1 0 0

0 SG2 0

0 0 SG3

⎤

⎦

To obtain Sold, instead of applying the batch SimRank algo-

rithm over the entire Gold, we can apply the batch SimRank

algorithm over each component Gi (i = 1, 2, 3) indepen-

dently to obtain the i th diagonal block of Sold, SGi
. Indeed,

each SGi
is computable in parallel. Even if Sold is computed

2 http://glaros.dtc.umn.edu/gkhome/views/metis.

123

http://glaros.dtc.umn.edu/gkhome/views/metis

Dynamical SimRank search on time-varying networks 81

a
b

c

d e

f

g
h

i

j

k

m
l

n

a
b

c

d e

f

g
h

i

j

k

m
l

n

G1 G2

G3

a
b

c

d e

f

g
h

i

j

k

m
l

n

G1 G2

G3

(f, c) and (f, k)

two new edges

.36 .16 0 .16 .16

.16 .36 0 .16 .16
0 0 .20 0 0

.16 .16 0 .36 .16

.16 .16 0 .16 .36

.36 0 .16 .16 .05
0 .20 0 0 0

.16 0 .36 .16 .05

.16 0 .16 .36 .05

.05 0 .05 .05 .31

.20 0 0 0
0 .31 .08 .14
0 .08 .36 0
0 .14 0 .49

Sold :=
SG1

0 0

0 SG2
0

0 0 SG3

0 0

0

0 0

0

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

(a)
(b)
(c)
(d)
(e)

(f)
(g)
(h)
(i)
(j)

(k)
(l)
(m)
(n)

S
im

R
a
n
k
s

o
n

b
lo

c
k

G
1

S
im

R
a
n
k
s

o
n

b
lo

c
k

G
3

S
im

R
a
n
k
s

o
n

b
lo

c
k

G
2

Gold := G1 G2 G3G

+=

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

(a) .23 .23 0 .23 .23 0 .12 .23 0
(b) .23 .23 0 .23 .23 0 .12 .23 0
(c) 0 0 .29 0 0 .14 .29 0 0 0
(d) .23 .23 0 .23 .23 0 .12 .23 0
(e) .23 .23 0 .23 .23 0 .12 .23 0

(f)
(g)
(h)
(i)
(j) .14 .14

(k) 0 0 .29 0 0 .14 .29 0 0 0
(l) .12 .12 0 .12 .12 0 .11 .12 .09
(m) .23 .23 0 .23 .23 0 .12 .23 0
(n 000000) .09 0 .18

0

0

0

00

∆S (obtained from ∆G and Sold

via our incremental method)

+

are regarded as

inserted into Gold

∆G := {(f, c), (f, k)}

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

(a) .59 .39 0 .39 . 093 .12 .23 0
(b) .39 .59 0 .39 . 093 .12 .23 0
(c) 0 0 .49 0 0 .14 .29 0 0 0
(d) .39 .39 0 .59 . 093 .12 .23 0
(e) .39 .39 0 .39 . 095 .12 .23 0

(f) .36 0 .16 .16 .05
(g 0) .20 0 0 0
(h) .16 0 .36 .16 .05
(i) .16 0 .16 .36 .05
(j) .14 .05 0 .05 .05 .31 .14

(k) 0 0 .29 0 0 .14 .49 0 0 0
(l) .12 .12 0 .12 . 021 .42 .20 .24
(m) .23 .23 0 .23 . 032 .20 .59 0
(n 000000) .24 0 .67

0

0

00

S := Sold + ∆S

=

Fig. 1 Incremental SimRank problem can decentralize large-scale SimRank retrieval over G

using a single machine, only O(n2
1+n2

2+n2
3) space is required

to store its diagonal blocks, where ni is the number of nodes

in each Gi , rather than O(n2) space to store the entire Sold

(see Fig. 1).

Secondly, after graph partitioning, there are not many

edges across components. Small size of �G often leads to

sparseness of �S in general. Hence, �S is stored in a sparse

format. In addition, our incremental SimRank method will

greatly accelerate the computation of �S.

Hence, along with graph partitioning, our incremental

SimRank research will significantly enhance the compu-

tational efficiency of SimRank on large graphs, using a

decentralized fashion. ⊓⊔

Despite its usefulness, existing work on incremental Sim-

Rank computation is rather limited. To the best of our

knowledge, there is a relative paucity of work [10,13,20,25]

on incremental SimRank problems. Shao et al. [20] proposed

a novel two-stage random-walk sampling scheme, named

TSF, which can support top-k SimRank search over dynamic

graphs. In the preprocessing stage, TSF samples Rg one-

way graphs that serve as an index for querying process.

At query stage, for each one-way graph, Rq new random

walks of node u are sampled. However, the dynamic Sim-

Rank problems studied in [20] and this work are different:

This work focuses on all (n2) pairs of SimRank retrieval,

which requires O(K (m +|AFF|)) time to compute the entire

matrix S in a deterministic style. In Sect. 7, we have pro-

posed a memory-efficient version of our incremental method

that updates all pairs of similarities in a column-by-column

fashion within only O(K n + m) memory. In comparison,

Shao et al. [20] focuses on top-k SimRank dynamic search

w.r.t. a given query u. It incrementally retrieves only k (≤ n)

nodes with highest SimRank scores in a single column S⋆,u ,

which requires O(K 2 Rq Rg) average query time3 to retrieve

S⋆,u along with O(n log k) time to return top-k results from

S⋆,u . Recently, Jiang et al. [10] pointed out that the prob-

abilistic error guarantee of Shao et al.’s method is based

on the assumption that no cycle in the given graph has a

length shorter than K , and they proposed READS, a new effi-

cient indexing scheme that improves precision and indexing

space for dynamic SimRank search. The querying time of

READS is O(rn) to retrieve one column S⋆,u , where r is the

number of sets of random walks. Hence, TSF and READS

are highly efficient for top-k single-source SimRank search.

Moreover, optimization methods in this work are based on a

rank-one Sylvester matrix equation characterizing changes to

the entire SimRank matrix S for all-pairs dynamical search,

which is fundamentally different from [10,20]’s methods

that maintain one-way graphs (or SA forests) updating. It

is important to note that, for large-scale graphs, our incre-

3 Recently, Jiang et al. [10] has argued that, to retrieve S⋆,u , the querying

time of Shao et al.’s TSF [20] is O(K n Rq Rg). The n factor is due to

the time to traverse the reversed one-way graph; in the worst case, all n

nodes are visited.

123

82 W. Yu et al.

mental methods do not need to memorize all (n2) pairs of

old SimRank scores. Instead, S can be dynamically updated

column-wisely in O(K n + m) memory. For updating each

column of S, our experiments in Sect. 8 verify that our

memory-efficient incremental method is scalable on large

real graphs while running 4–7x faster than the dynamical

TSF [20] per edge update, due to the high cost of [20] merg-

ing one-way graph’s log buffers for TSF indexing.

Among the existing studies [10,13,20] on dynamical Sim-

Rank retrieval, the problem setting of Li et al.’s [13] on

all-pairs dynamic search is exactly the same as ours: the goal

is to retrieve changes �S to all-pairs SimRank scores S, given

old graph G, link changes �G to G. To address this problem,

the central idea of [13] is to factorize the backward transition

matrix Q of the original graph into U · � · VT via a singu-

lar value decomposition (SVD) first, and then incrementally

estimate the updated matrices of U, �, VT for link changes

at the expense of exactness. Consequently, updating all pairs

of similarities entails O(r4n2) time and O(r2n2) memory

yet without guaranteed accuracy, where r (≤ n) is the tar-

get rank of the low-rank SVD approximation.4 This method

is efficient to graphs when r is extremely small, e.g., a star

graph (r = 1). However, in general, r is not always negligi-

bly small.

(Please refer to “Appendix A” [32] for a discussion in

detail, and “Appendix C” [32] for an example.)

1.1 Main contributions

Motivated by this, we propose an efficient and accurate

scheme for incrementally computing all-pairs SimRanks on

link-evolving graphs. Our main contributions consist of the

following five ingredients:

– We first focus on unit edge update that does not accom-

pany new node insertions. By characterizing the Sim-

Rank update matrix �S w.r.t. every link update as a

rank-one Sylvester matrix equation, we devise a fast

incremental SimRank algorithm, which entails O(K n2)

time in the worst case to update n2 pairs of similarities

for K iterations (Sect. 3).

– To speed up the computation further, we also propose

an effective pruning strategy that captures the “affected

areas” of �S to discard unnecessary retrieval (e.g., the

grey cells in Fig. 2), without loss of accuracy. This

reduces the time of incremental SimRank to O(K (m +

|AFF|)), where |AFF| (≤ n2) is the size of “affected

areas” in �S, and in practice, |AFF| ≪ n2 (Sect. 4).

– We also consider edge updates that accompany new node

insertions, and distinguish them into three categories,

4 According to [13], using our notation, r ≤ rank(� + UT · �Q · V),

where �Q is the changes to Q for link updates.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding

edge (i, j))

inserted edge

(i, j)
Node-Pair

in G in G ∆G

sim simtrue simLi et al.

(a, b) 0.075 0.062 0.073

(a, d) 0.000 0.006 0.002

(i, f) 0.246 0.246 0.246

(k, g) 0.128 0.128 0.128

(k, h) 0.288 0.288 0.288

(j, f) 0.206 0.138 0.206

(m, l) 0.160 0.160 0.160

(j, b) 0.000 0.030 0.001

Fig. 2 Incrementally update SimRanks when a new edge (i, j) (with

{i, j} ⊆ V) is inserted into G = (V, E)

according to which end of the inserted edge is a new

node. For each case, we devise an efficient incremental

SimRank algorithm that can support new nodes insertion

and accurately update affected SimRank scores (Sect. 5).

– We next investigate the batch updates of dynamical Sim-

Rank computation. Instead of dealing with each edge

update one by one, we devise an efficient algorithm that

can handle a sequence of edge insertions and deletions

simultaneously, by merging “similar sink edges” and

minimizing unnecessary updates (Sect. 6).

– To achieve linear memory efficiency, we also express �S

as the sum of many rank-one tensor products, and devise

a memory-efficient technique that updates all-pairs Sim-

Ranks in a column-by-column style in O(K n + m)

memory, without loss of exactness. (Sect. 7)

– We conduct extensive experiments on real and synthetic

datasets to demonstrate that our algorithm (a) is consis-

tently faster than the existing incremental methods from

several times to over one order of magnitude; (b) is faster

than its batch counterparts especially when link updates

are small; (c) for batch updates, runs faster than the

repeated unit update algorithms; (d) entails linear mem-

ory and scales well on billion-edge graphs for all-pairs

SimRank update; (e) is faster than LTSF and its memory

space is less than LTSF; (f) entails more time on Cases

(C0) and (C2) than Cases (C1) and (C3) for four edge

types, and Case (C3) runs the fastest (Sect. 8).

This article is a substantial extension of our previous

work [25]. We have made the following new updates: (1) In

Sect. 5, we study three types of edge updates that accompany

new node insertions. This solidly extends [25] and Li et al.’s

incremental method [13] whose edge updates disallow node

changes. (2) In Sect. 6, we also investigate batch updates for

dynamic SimRank computation, and devise an efficient algo-

rithm that can handle “similar sink edges” simultaneously

and discard unnecessary unit updates further. (3) In Sect. 7,

we propose a memory-efficient strategy that significantly

reduces the memory from O(n2) to O(K n + m) for incre-

mentally updating all pairs of SimRanks on million-scale

graphs, without compromising running time and accuracy.

(4) In Sect. 8, we conduct additional experiments on real

and synthetic datasets to verify the high scalability and fast

123

Dynamical SimRank search on time-varying networks 83

computational time of our memory-efficient methods, as

compared with the LTSF method. (5) In Sect. 9, we update the

related work section by incorporating state-of-the-art Sim-

Rank research.

2 SimRank background

In this section, we give a broad overview of SimRank. Intu-

itively, the central theme behind SimRank is that “two nodes

are considered as similar if their incoming neighbors are

themselves similar.” Based on this idea, there have emerged

two widely used SimRank models: (1) Li et al.’s model (e.g.,

[6,8,13,18,26,28,30]) and (2) Jeh and Widom’s model (e.g.,

[4,9,11,16,20,29]). Throughout this article, our focus is on

Li et al.’s SimRank model, also known as Co-SimRank in

[18], since the recent work [18] by Rothe and Schütze has

showed that Co-SimRank is more accurate than Jeh and

Widom’s SimRank model in real applications such as bilin-

gual lexicon extraction. (Please refer to Remark 1 for detailed

explanations.)

2.1 Li et al.’s SimRank model

Given a directed graph G = (V, E) with a node set V and an

edge set E , let Q be its backward transition matrix (that is,

the transpose of the column-normalized adjacency matrix),

whose entry [Q]i, j = 1/in-degree(i) if there is an edge from

j to i , and 0 otherwise. Then, Li et al.’s SimRank matrix,

denoted by S, is defined as

S = C · (Q · S · QT) + (1 − C) · In, (1)

where C ∈ (0, 1) is a damping factor, which is generally

taken to be 0.6–0.8, and In is an n × n identity matrix (n =

|V |). The notation (⋆)T is the matrix transpose.

Recently, Rothe and Schütze [18] have introduced Co-

SimRank, whose definition is

S̃ = C · (Q · S̃ · QT) + In, (2)

Comparing Eqs. (1) and (2), we can readily verify that Li

et al.’s SimRank scores equal Co-SimRank scores scaled by

a constant factor (1 − C), i.e., S = (1 − C) · S̃. Hence, the

relative order of all Co-SimRank scores in S̃ is exactly the

same as that of Li et al.’s SimRank scores in S even though

the entries in S̃ can be larger than 1. That is, the ranking of

Co-SimRank S̃(∗, ∗) is identical to the ranking of Li et al.’s

SimRank S(∗, ∗).

2.2 Jeh and Widom’s SimRank model

Jeh and Widom’s SimRank model, in matrix notation, can be

formulated as

S′ = max{C · (Q · S′ · QT), In}, (3)

where S′ is their SimRank similarity matrix; max{X, Y}

is matrix element-wise maximum, i.e., [max{X, Y}]i, j :=

max{[X]i, j , [Y]i, j }.

Remark 1 The recent work by Kusumoto et al. [11] has

showed that S and S′ do not produce the same results.

Recently, Yu and McCann [28] have showed the subtle

difference of the two SimRank models from a semantic

perspective, and also justified that Li et al.’s SimRank S

can capture more pairs of self-intersecting paths that are

neglected by Jeh and Widom’s SimRank S′. The recent

work [18] by Rothe and Schütze has demonstrated further

that, in real applications such as bilingual lexicon extraction,

the ranking of Co-SimRank S̃ (i.e., the ranking of Li et al.’s

SimRank S) is more accurate than that of Jeh and Widom’s

SimRank S′ (see [18, Table 4]).

Despite the high precision of Li et al.’s SimRank model,

the existing incremental approach of Li et al. [13] for updat-

ing SimRank does not always obtain the correct solution S

to Eq. (1). (Please refer to “Appendix A” [32] for theoretical

explanations).

Table 1 lists the notations used in this article.

Table 1 Symbol and description

Symbol Description

n Number of nodes in old graph G

m Number of edges in old graph G

di In-degree of node i in old graph G

d Average in-degree of graph G

C Damping factor (0 < C < 1)

K Iteration number

ei n × 1 unit vector with a 1 in the i th entry and 0s

elsewhere

Q/Q̃ Old/new (backward) transition matrix

S/S̃ Old/new SimRank matrix

In n × n identity matrix

XT Transpose of matrix X

[X]i,⋆ i th row of matrix X

[X]⋆, j j th column of matrix X

[X]i, j (i, j)th entry of matrix X

123

84 W. Yu et al.

3 Edge update without node insertions

In this section, we consider edge update that does not accom-

pany new node insertions, i.e., the insertion of new edge (i, j)

into G = (V, E) with i ∈ V and j ∈ V . In this case, the new

SimRank matrix S̃ and the old one S are of the same size. As

such, it makes sense to denote the SimRank change �S as

S̃ − S.

Below we first introduce the big picture of our main idea

and then present rigorous justifications and proofs.

3.1 The main idea

For each edge (i, j) insertion, we can show that �Q is a rank-

one matrix, i.e., there exist two column vectors u, v ∈ R
n×1

such that �Q ∈ R
n×n can be decomposed into the outer

product of u and v as follows:

�Q = u · vT. (4)

Based on Eq. (4), we then have an opportunity to effi-

ciently compute �S, by characterizing it as

�S = M + MT, (5)

where the auxiliary matrix M ∈ R
n×n satisfies the following

rank-one Sylvester equation:

M = C · Q̃ · M · Q̃T + C · u · wT. (6)

Here, u, w are two obtainable column vectors: u can be

derived from Eq. (4), and w can be described by the old

Q and S (we will provide their exact expressions later after

some discussions); and Q̃ = Q + �Q.

Thus, computing �S boils down to solving M in Eq. (6).

The main advantage of solving M via Eq. (6), as compared

to directly computing the new scores S̃ via SimRank formula

S̃ = C · Q̃ · S̃ · Q̃T + (1 − C) · In, (7)

is the high computational efficiency. More specifically,

solving S̃ via Eq. (7) needs expensive matrix–matrix mul-

tiplications, whereas solving M via Eq. (6) involves only

matrix–vector and vector–vector multiplications, which is

a substantial improvement achieved by our observation that

(C ·uwT) ∈ R
n×n in Eq. (6) is a rank-one matrix, as opposed

to the (full) rank-n matrix (1 − C) · In in Eq. (7). To further

elaborate on this, we can readily convert the recursive forms

of Eqs. (6) and (7), respectively, into the series forms:

M =

∞
∑

k=0

Ck+1 · Q̃k · u · wT · (Q̃T)
k
, (8)

S̃ = (1 − C) ·

∞
∑

k=0

Ck · Q̃k · In · (Q̃T)
k
. (9)

To compute the sums in Eq. (8) for M, a conventional way

is to memorize M0 ← C ·u ·wT first (where the intermediate

result M0 is an n × n matrix) and then iterate as

Mk+1 ← M0 + C · Q̃ · Mk · Q̃T, (k = 0, 1, 2, . . .)

which involves expensive matrix–matrix multiplications

(e.g., Q̃ · Mk). In contrast, our method takes advantage

of the rank-one structure of u · wT to compute the sums

in Eq. (8) for M, by converting the conventional matrix–

matrix multiplications Q̃·(uwT)·Q̃T into only matrix–vector

and vector–vector multiplications (Q̃u) · (Q̃w)T. To be spe-

cific, we leverage two vectors ξ k, ηk , and iteratively compute

Eq. (8) as

initialize ξ0 ← C · u, η0 ← w, M0 ← C · u · wT

for k = 0, 1, 2, . . .

ξ k+1 ← C · Q̃ · ξ k, ηk+1 ← Q̃ · ηk

Mk+1 ← ξ k+1 · ηT
k+1 + Mk (10)

so that matrix–matrix multiplications are safely avoided.

3.2 Describing u, v, w in Eqs. (4) and (6)

To obtain u and v in Eq. (4) at a low cost, we have the fol-

lowing theorem.

Theorem 1 Given an old digraph G = (V, E), if there is

a new edge (i, j) with i ∈ V and j ∈ V to be added to

G, then the change to Q is an n × n rank-one matrix, i.e.,

�Q = u · vT, where

u =

{

e j

(

d j = 0
)

1
d j +1

e j

(

d j > 0
) , v =

{

ei

(

d j = 0
)

ei − [Q]T
j,⋆

(

d j > 0
)

(11)

⊓⊔

(Please refer to “Appendix B.1” [32] for the proof of The-

orem 1, and “Appendix C.2” [32] for an example.)

Theorem 1 suggests that the change �Q is an n × n rank-

one matrix, which can be obtain in only constant time from

d j and [Q]T
j,⋆. In light of this, we next describe w in Eq. (6)

in terms of the old Q and S such that Eq. (6) is a rank-one

Sylvester equation.

Theorem 2 Let (i, j)i∈V, j∈V be a new edge to be added to

G (resp. an existing edge to be deleted from G). Let u and

123

Dynamical SimRank search on time-varying networks 85

v be the rank-one decomposition of �Q = u · vT. Then, (i)

there exists a vector w = y + λ
2

u with

y = Q · z, λ = vT · z, z = S · v (12)

such that Eq. (6) is the rank-one Sylvester equation.

(ii) Utilizing the solution M to Eq. (6), the SimRank update

matrix �S can be represented by Eq. (5). ⊓⊔

(The proof of Theorem 2 is in “Appendix B.2.” [32])

Theorem 2 provides an elegant expression of w in Eq. (6).

To be precise, given Q and S in the old graph G, and an edge

(i, j) inserted to G, one can find u and v via Theorem 1 first,

and then resort to Theorem 2 to compute w from u, v, Q, S.

Due to the existence of the vector w, it can be guaranteed that

the Sylvester equation (6) is rank-one. Henceforth, our afore-

mentioned method can be employed to iteratively compute

M in Eq. (8), requiring no matrix–matrix multiplications.

3.3 Characterizing �S

Leveraging Theorems 1 and 2, we next characterize the Sim-

Rank change �S.

Theorem 3 If there is a new edge (i, j) with i ∈ V and

j ∈ V to be inserted to G, then the SimRank change �S can

be characterized as

�S = M + MT with

M =

∞
∑

k=0

Ck+1 · Q̃k · e j · γ T · (Q̃T)
k
, (13)

where the auxiliary vector γ is obtained as follows:

(i) when d j = 0,

γ = Q · [S]⋆,i + 1
2
[S]i,i · e j (14)

(ii) when d j > 0,

γ = 1
(d j +1)

(

Q[S]⋆,i − 1
C

[S]⋆, j +
(

λ

2(d j +1)
+ 1

C
− 1
)

e j

)

(15)

and the scalar λ can be derived from

λ = [S]i,i + 1
C

· [S] j, j − 2 · [Q] j,⋆ · [S]⋆,i − 1
C

+ 1. (16)

⊓⊔

(The proof of Theorem 3 is in “Appendix B.2.” [32])

Theorem 3 provides an efficient method to compute the

incremental SimRank matrix �S, by utilizing the previous

information of Q and S, as opposed to [13] that requires to

maintain the incremental SVD.

3.4 Deleting an edge (i, j)i∈V, j∈V from G = (V, E)

For an edge deletion, we next propose a Theorem 3-like tech-

nique that can efficiently update SimRanks.

Theorem 4 When an edge (i, j)i∈V, j∈V is deleted from

G = (V, E), the changes to Q is a rank-one matrix, which

can be described as �Q = u · vT, where

u =

{

e j

(

d j = 1
)

1
d j −1

e j

(

d j > 1
) , v =

{

−ei

(

d j = 1
)

[Q]T
j,⋆ − ei

(

d j > 1
)

The changes �S to SimRank can be characterized as

�S = M + MT with M =

∞
∑

k=0

Ck+1Q̃ke jγ
T(Q̃T)

k
,

where the auxiliary vector γ :=

{

−Q · [S]⋆,i + 1
2
[S]i,i · e j (d j = 1)

1
(d j −1)

(
1
C

· [S]⋆, j − Q · [S]⋆,i + (λ

2(d j −1)
− 1

C
+ 1) · e j

)

(d j > 1)

and λ := [S]i,i + 1
C

· [S] j, j − 2 · [Q] j,⋆ · [S]⋆,i − 1
C

+ 1. ⊓⊔

(The proof of Theorem 4 is in “Appendix B.4.” [32])

3.5 Inc-uSR algorithm

We present our efficient incremental approach, denoted as

Inc-uSR (in “Appendix D.1” [32]), that supports the edge

insertion without accompanying new node insertions. The

complexity of Inc-uSR is bounded by O(K n2) time and

O(n2) memory5 in the worst case for updating all n2 pairs

of similarities.

(Please refer to “Appendix D.1” [32] for a detailed descrip-

tion of Inc-uSR, and “Appendix C.3” [32] for an example.)

4 Pruning unnecessary node pairs in �S

After the SimRank update matrix �S has been characterized

as a rank-one Sylvester equation, pruning techniques can fur-

ther skip node pairs with unchanged SimRanks in �S (called

“unaffected areas”).

4.1 Affected areas in �S

We next reinterpret the series M in Theorem 3, aiming to

identify “affected areas” in �S. Due to space limitations, we

mainly focus on the edge insertion case of d j > 0. Other

cases have the similar results.

5 In the next sections, we shall substantially reduce its time and memory

complexity further.

123

86 W. Yu et al.

By substituting Eq. (15) back into Eq. (13), we can readily
split the series form of M into three parts:

[M]a,b = 1
d j +1

(
∑∞

k=0
Ck+1 · [Q̃k]a, j [S]i,⋆QT · [(Q̃T)

k
]⋆,b

︸ ︷︷ ︸

Part 1

−
∑∞

k=0
Ck [Q̃k]a, j [S] j,⋆[(Q̃

T)
k
]⋆,b

︸ ︷︷ ︸

Part 2

+ μ
∑∞

k=0
Ck+1[Q̃k]a, j [(Q̃

T)
k
] j,b

︸ ︷︷ ︸

Part 3

)

with the scalar μ := λ

2(d j +1)
+ 1

C
− 1.

Intuitively, when edge (i, j) is inserted and d j > 0, Part 1

of [M]a,b tallies the weighted sum of the following new paths

for node pair (a, b):

[Q̃k]a, j
︷ ︸︸ ︷

a ← ◦ · · · ◦ ← j
︸ ︷︷ ︸

length k

⇐

[S]i,⋆
︷ ︸︸ ︷

i ← ◦ · · · ◦ ← • → ◦ · · · ◦ → ⋆
︸ ︷︷ ︸

all symmetric in-link paths for node pair (i,⋆)

QT

︷︸︸︷

→

[(Q̃T)
k
]�,b

︷ ︸︸ ︷

� → · · · ◦ → b
︸ ︷︷ ︸

length k

(17)

Such paths are the concatenation of four types of sub-paths

(as depicted above) associated with four matrices, respec-

tively, [Q̃k]a, j , [S]i,⋆, QT, [(Q̃T)
k
]�,b, plus the inserted edge

j ⇐ i . When such entire concatenated paths exist in the

new graph, they should be accommodated for assessing the

new SimRank [S̃]a,b in response to the edge insertion (i, j)

because our reinterpretation of SimRank indicates that Sim-

Rank counts all the symmetric in-link paths, and the entire

concatenated paths can prove to be symmetric in-link paths.

Likewise, Parts 2 and 3 of [M]a,b, respectively, tally the

weighted sum of the following paths for pair (a, b):

[Q̃k]a, j
︷ ︸︸ ︷

a ← ◦ · · · ◦ ←
︸ ︷︷ ︸

length k

j

[S] j,⋆
︷ ︸︸ ︷

← ◦ · · · ◦ ← • → ◦ · · · ◦ →
︸ ︷︷ ︸

all symmetric in-link paths for (j,⋆)

⋆

[(Q̃T)
k
]⋆,b

︷ ︸︸ ︷

→ · · · ◦ → b
︸ ︷︷ ︸

length k

(18)

[Q̃k]a, j
︷ ︸︸ ︷

a ← ◦ · · · ◦ ←
︸ ︷︷ ︸

length k

j

[(Q̃T)
k
] j,b

︷ ︸︸ ︷

→ ◦ · · · ◦ → b
︸ ︷︷ ︸

length k

(19)

Indeed, when edge (i, j) is inserted, only these three kinds

of paths have extra contributions for M (therefore for �S).

As incremental updates in SimRank merely tally these paths,

node pairs without having such paths could be safely pruned.

In other words, for those pruned node pairs, the three kinds

of paths will have “zero contributions” to the changes in M in

response to edge insertion. Thus, after pruning, the remaining

node pairs in G constitute the “affected areas” of M.

We next identify “affected areas” of M, by pruning redun-

dant node pairs in G, based on the following.

Theorem 5 For the edge (i, j) insertion, let O(a) and Õ(a)

be the out-neighbors of node a in old G and new G ∪{(i, j)},

respectively. Let Mk be the kth iterative matrix in Eq. (10),

and let

F1 := {b | b ∈ O(y), ∃y, s.t. [S]i,y �= 0} (20)

F2 :=

{

∅ (d j = 0)

{y | [S] j,y �= 0} (d j > 0)
(21)

Ak × Bk := (22)
{

{ j} × (F1 ∪ F2 ∪ { j}) (k = 0)

{(a, b)| a ∈ Õ(x), b ∈ Õ(y), ∃x, ∃y, s.t. [Mk−1]x,y �= 0} (k > 0)

Then, for every iteration k = 0, 1, . . ., the matrix Mk has

the following sparse property:

[Mk]a,b = 0 for all (a, b) /∈ (Ak × Bk) ∪ (A0 × B0).

For the edge (i, j) deletion case, all the above results hold

except that, in Eq. (21), the conditions d j = 0 and d j > 0

are, respectively, replaced by d j = 1 and d j > 1. ⊓⊔

(Please refer to “Appendix B.5” [32] for the proof and intu-

ition of Theorem 5, and “Appendix C.4” [32] for an example.)

Theorem 5 provides a pruning strategy to iteratively elim-

inate node pairs with a priori zero values in Mk (thus in �S).

Hence, by Theorem 5, when edge (i, j) is updated, we just

need to consider node pairs in (Ak × Bk) ∪ (A0 × B0) for

incrementally updating �S.

4.2 Inc-SR algorithm with pruning

Based on Theorem 5, we provide a complete incremen-

tal algorithm, referred to as Inc-SR, by incorporating our

pruning strategy into Inc-uSR. The total time of Inc-

SR is O(K (m + |AFF|)) for K iterations, where |AFF| :=

avgk∈[0,K](|Ak | · |Bk |) with Ak,Bk in Eq. (22), being the

average size of “affected areas” in Mk for K iterations.

(Please refer to “Appendix D.2” [32] for Inc-SR algorithm

description and its complexity analysis.)

5 Edge update with node insertions

In this section, we focus on the edge update that accompanies

new node insertions. Specifically, given a new edge (i, j) to

be inserted into the old graph G = (V, E), we consider the

following cases when

(C1) i ∈ V and j /∈ V ; (in Sect. 5.1)

(C2) i /∈ V and j ∈ V ; (in Sect. 5.2)

(C3) i /∈ V and j /∈ V . (in Sect. 5.3)

123

Dynamical SimRank search on time-varying networks 87

For each case, we devise an efficient incremental algo-

rithm that can support new node insertions and can accurately

update only “affected areas” of SimRanks.

Remark 2 Let n = |V |, without loss of generality, it can be

tacitly assumed that

(a) In case (C1), new node j /∈ V is indexed by (n + 1);

(b) In case (C2), new node i /∈ V is indexed by (n + 1);

(c) In case (C3), new nodes i /∈ V and j /∈ V are indexed

by (n + 1) and (n + 2), respectively.

5.1 Inserting an edge (i, j) with i ∈ V and j /∈ V

In this case, the inserted new edge (i, j) accompanies the

insertion of a new node j . Thus, the size of the new SimRank

matrix S̃ is different from that of the old S. As a result, we

cannot simply evaluate the changes to S by adopting S̃ − S

as we did in Sect. 3.

To resolve this problem, we introduce the block matrix

representation of new matrices for edge insertion. Firstly,

when a new edge (i, j)i∈V, j /∈V is inserted to G, the new

transition matrix Q̃ can be described as

Q̃ =

[

Q 0

eT
i 0

]

} n rows

→ row j
∈ R

(n+1)×(n+1) (23)

Intuitively, Q̃ is formed by bordering the old Q by 0s except

[Q̃] j,i = 1. Utilizing this block structure of Q̃, we can obtain

the new SimRank matrix, which exhibits a similar block

structure, as shown below:

Theorem 6 Given an old digraph G = (V, E), if there is a

new edge (i, j) with i ∈ V and j /∈ V to be inserted, then

the new SimRank matrix becomes

S̃ =

[

S y

yT C[S]i,i + (1 − C)

]

} n rows

→ row j
with y = CQ[S]⋆,i (24)

where S ∈ R
n×n is the old SimRank matrix of G. ⊓⊔

Proof We substitute the new Q̃ in Eq. (23) back into the

SimRank equation S̃ = C · Q̃ · S̃ · Q̃T + (1 − C) · In+1:

S :=

[

S̃11 S̃12

S̃21 S̃22

]

= C

[

Q 0

eT
i 0

]
[

S̃11 S̃12

S̃21 S̃22

]
[

QT ei

0 0

]

+ (1 − C)

[

In 0

0 1

]

By expanding the right-hand side, we can obtain

[

S̃11 S̃12

S̃21 S̃22

]

=

[

CQS̃11QT + (1 − C)In CQS̃11ei

Cei
TS̃11QT Cei

TS̃11ei + (1 − C)

]

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding

edge (i, p)

inserted edge (i, p)
with new node p

p

node p)

Node-Pair
in G in G ∆G

simold simnew

(a, b) 0.0745 0.0745

(a, p) — 0.0828

(b, p) — 0.1114
(f, i) 0.2464 0.2464

(f, j) 0.2064 0.2064

(g, h) 0.128 0.128

(g, k) 0.128 0.128

(h, k) 0.288 0.288

(i, j) 0.3104 0.3104

(l, m) 0.16 0.16

(l, n) 0.16 0.16

(m, n) 0.16 0.16

Fig. 3 Incrementally updating SimRank when an edge (i, p) with i ∈

V and p /∈ V is inserted into G = (V, E)

The above block matrix equation implies that

S̃11 = CQS̃11QT + (1 − C)In

Due to the uniqueness of S in Eq. (1), it follows that

S̃11 = S

Thus, we have

S̃12 = S̃T
21 = CQS̃11ei = CQ[S]⋆,i

S̃22 = Cei
TS̃11ei + (1 − C) = C[S]i,i + (1 − C).

Combining all blocks of S̃ together yields Eq. (24). ⊓⊔

Theorem 6 provides an efficient incremental way of com-

puting the new SimRank matrix S̃ for unit insertion of the

case (C1). Precisely, the new S̃ is formed by bordering the

old S by the auxiliary vector y. To obtain y (and thereby S̃),

we just need use the i th column of S with one matrix–vector

multiplication (Q[S]⋆,i). Thus, the total cost of computing

new S̃ requires O(m) time, as illustrated in Algorithm 1.

Example 2 Consider the citation digraph G in Fig. 3. If the

new edge (i, p) with new node p is inserted to G, the new S̃

can be updated from the old S as follows:

According to Theorem 6, since C = 0.8 and

[S]⋆,i =
[

(a) ... (e) (f) (g) (h) (i) (j) (k) ... (o)

0, . . . , 0, 0.2464, 0, 0, 0.5904, 0.3104, 0, . . . , 0
]

T

it follows that

S̃ =

[

S y

yT z

]

with z = 0.8[S]i,i + (1 − 0.8) = 0.6723

y = 0.8Q[S]⋆,i =
[

(a) (b) (c) ... (o)

0.0828, 0.1114, 0, . . . , 0
]

T ∈ R
15×1

⊓⊔

123

88 W. Yu et al.

Algorithm 1: Inc-uSR-C1 (G, (i, j), S, C)

Input : a directed graph G = (V, E),

a new edge (i, j)i∈V, j /∈V inserted to G,

the old similarities S in G,

the damping factor C .

Output: the new similarities S̃ in G ∪ {(i, j)}.

1 initialize the transition matrix Q in G ;

2 compute y := C · Q · [S]⋆,i ;

3 compute z := C · [S]i,i + (1 − C) ;

4 return S̃ :=

[

S y

yT z

]

;

5.2 Inserting an edge (i, j) with i /∈ V and j ∈ V

We now focus on the case (C2), the insertion of an edge

(i, j) with i /∈ V and j ∈ V . Similar to the case (C1), the

new edge accompanies the insertion of a new node i . Hence,

S̃ − S makes no sense.

However, in this case, the dynamic computation of Sim-

Rank is far more complicated than that of the case (C1), in

that such an edge insertion not only increases the dimension

of the old transition matrix Q by one, but also changes several

original elements of Q, which may recursively influence Sim-

Rank similarities. Specifically, the following theorem shows,

in the case (C2), how Q changes with the insertion of an edge

(i, j)i /∈V, j∈V .

Theorem 7 Given an old digraph G = (V, E), if there is a

new edge (i, j) with i /∈ V and j ∈ V to be added to G, then

the new transition matrix can be expressed as

Q̃ =

[

Q̂ 1
d j +1

e j

0 0

]

} n rows

→ row i
with Q̂ := Q − 1

d j +1
e j [Q] j,⋆ (25)

where Q is the old transition matrix of G. ⊓⊔

Proof When edge (i, j) with i /∈ V and j ∈ V is added,

there will be two changes to the old Q:

(i) All nonzeros in [Q] j,⋆ are updated from 1
d j

to 1
d j +1

:

[Q̂] j,⋆ =
d j

d j +1
[Q] j,⋆ = [Q] j,⋆ − 1

d j +1
[Q] j,⋆. (26)

(ii) The size of the old Q is added by 1, with new entry

[Q̃] j,i = 1
d j +1

in the bordered areas and 0s elsewhere:

Q̃ =

[

Q̂ 1
d j +1

e j

0 0

]

(27)

Combining Eqs. (26) and (27) yields (25).

⊓⊔

Theorem 7 exhibits a special structure of the new Q̃: it is

formed by bordering Q̂ by 0s except [Q̃] j,i = 1
d j +1

, where

Q̂ is a rank-one update of the old Q. The block structure of

Q̃ inspires us to partition the new SimRank matrix S̃ con-

formably into the similar block structure:

S̃ =

[

S̃11 S̃12

S̃21 S̃22

]

where
S̃11 ∈ R

n×n, S̃12 ∈ R
n×1,

S̃21 ∈ R
1×n, S̃22 ∈ R.

To determine each block of S̃ with respect to the old S, we

next present the following theorem.

Theorem 8 If there is a new edge (i, j) with i /∈ V and

j ∈ V to be added to the old digraph G = (V, E), then

there exists a vector

z = αe j − y with y := QS[Q]T
j,⋆ and α :=

y j +1−C

2(d j +1)
(28)

such that the new SimRank matrix S̃ is expressible as

S̃ =

[

S + �S̃11 0

0 1 − C

]

} n rows

→ row i
(29)

where S is the old SimRank of G, and �S̃11 satisfies the

rank-two Sylvester equation:

�S̃11 = CQ̂�S̃11Q̂T + C
d j +1

(

e j z
T + ze j

T
)

(30)

with Q̂ being defined by Theorem 7. ⊓⊔

Proof We plug Q̃ of Eq. (25) into the SimRank formula:

S̃ = C · Q̃ · S̃ · Q̃T + (1 − C) · In+1,

which produces

S̃ =

[

S̃11 S̃12

S̃21 S̃22

]

=C

[

Q̂ 1
d j +1

e j

0 0

][

S̃11 S̃12

S̃21 S̃22

][

Q̂T 0
1

d j +1
eT

j 0

]

+ (1 − C)

[

In 0

0 1

]

By using block matrix multiplications, the above equation

can be simplified as

[

S̃11 S̃12

S̃21 S̃22

]

= C

[

P 0

0 0

]

+ (1 − C)

[

In 0

0 1

]

(31)

with P = Q̂S̃11Q̂T + 1

(d j +1)
2 e j S̃22e j

T

+ 1
d j +1

e j S̃21Q̂T + 1
d j +1

Q̂S̃12e j
T (32)

123

Dynamical SimRank search on time-varying networks 89

Block-wise comparison of both sides of Eq. (31) yields

⎧

⎨

⎩

S̃12 = S̃21 = 0

S̃22 = 1 − C

S̃11 = C · P + (1 − C) · In

Combing the above equations with Eq. (32) produces

S̃11 = CQ̂S̃11Q̂T + (1−C)C

(d j +1)
2 e j e j

T + (1 − C)In (33)

Applying S̃11 = S + �S̃11 and S = CQSQT + (1 − C)In to

Eq. (33) and rearranging the terms, we have

�S̃11 = CQ̂�S̃11Q̂T + C
d j +1

(

2αe j e j
T − e j y

T − ye j
T
)

with α and y being defined by Eq. (28). ⊓⊔

Theorem 8 implies that, in the case (C2), after a new edge

(i, j) is inserted, the new SimRank matrix S̃ takes an ele-

gant diagonal block structure: the upper-left block of S̃ is

perturbed by �S̃11 which is the solution to the rank-two

Sylvester equation (30); the lower-right block of S̃ is a con-

stant (1 − C). This structure of S̃ suggests that the inserted

edge (i, j)i /∈V, j∈V only has a recursive impact on the Sim-

Ranks with pairs (x, y) ∈ V × V , but with no impacts on

pairs (x, y) ∈ (V × {i}) ∪ ({i} × V). Thus, our incremental

way of computing the new S̃ will focus on the efficiency of

obtaining �S̃11 from Eq. (30). Fortunately, we notice that

�S̃11 satisfies the rank-two Sylvester equation, whose alge-

braic structure is similar to that of �S in Eqs. (5) and (6) (in

Sect. 3). Hence, our previous techniques to compute �S in

Eqs. (5) and (6) can be analogously applied to compute �S̃11

in Eq. (30), thus eliminating costly matrix–matrix multipli-

cations, as will be illustrated in Algorithm 2.

One disadvantage of Theorem 8 is that, in order to get the

auxiliary vector z for evaluating S̃, one has to memorize the

entire old matrix S in Eq. (28). In fact, we can utilize the

technique of rearranging the terms of the SimRank Eq. (1)

to characterize QS[Q]T
j,⋆ in terms of only one vector [S]⋆, j

so as to avoid memorizing the entire S, as shown below.

Theorem 9 The auxiliary matrix �S̃11 in Theorem 8 can be

represented as

�S̃11 = C
d j +1

(

M + MT
)

with

M =
∑∞

k=0
CkQ̂ke j z

T
(

Q̂T
)k

(34)

where Q̂ is defined by Theorem 7 and

z :=
(

1
2C(d j +1)

(

[S] j, j − (1 − C)2
)

+ 1−C
C

)

e j − 1
C

[S]⋆, j (35)

and S is the old SimRank matrix of G. ⊓⊔

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding
edge (p, j)

inserted edge (p, j)
with new node p

p

node p)

Node-Pair
in G in G ∆G

simold simnew

(a, b) 0.0745 0.0596

(f, i) 0.2464 0.2464

(f, j) 0.2064 0.1376
(g, h) 0.128 0.128

(g, k) 0.128 0.128

(h, k) 0.288 0.288

(i, j) 0.3104 0.2069

(l, m) 0.16 0.16

(l, n) 0.16 0.16

(m, n) 0.16 0.16

Fig. 4 Incrementally update SimRank when a new edge (p, j) with

p /∈ V and j ∈ V is inserted into G = (V, E)

Proof We multiply the SimRank equation by e j to get

[S]⋆, j = C · QS[Q]T
j,⋆ + (1 − C) · e j .

Combining this with y = QS[Q]T
j,⋆ in Eq. (28) produces

y = 1
C

[S]⋆, j − 1−C
C

e j and y j = 1
C

[S] j, j − 1−C
C

.

Plugging these results into Eq. (28), we can get Eq. (35).

Also, the recursive form of �S̃11 in Eq. (30) can be con-

verted into the following series:

�S̃11 = C
d j +1

∞
∑

k=0

CkQ̂k
(

e j z
T + ze j

T
) (

Q̂T
)k

= M + MT

with M being defined by Eq. (34). ⊓⊔

For edge insertion of the case (C2), Theorem 9 gives an

efficient method to compute the update matrix �S̃11. We

note that the form of �S̃11 in Eq. (34) is similar to that of �S̃

in Eq. (13). Thus, similar to Theorem 3, the follow method

can be applied to compute M so as to avoid matrix–matrix

multiplications.

In Algorithm 2, we present the edge insertion of our

method for the case (C2) to incrementally update new Sim-

Rank scores. The total complexity of Algorithm 2 is O(K n2)

time and O(n2) memory in the worst case for retrieving all

n2 pairs of scores, which is dominated by Line 8. To reduce

its computational time further, the similar pruning techniques

in Sect. 4 can be applied to Algorithm 2. This can speed up

the computational time to O(K (m + |AFF|)), where |AFF|

is the size of “affected areas” in �S11.

Example 3 Consider the citation digraph G in Fig. 4. If the

new edge (p, j) with new node p is inserted to G, the new

S̃ can be incrementally derived from the old S as follows:

First, we obtain �S̃11 according to Theorem 9. Note that

C = 0.8, d j = 2, and the old SimRank scores

[S]⋆, j =
[

(a) ... (e) (f) (g) (h) (i) (j) (k) ··· (o)

0, . . . , 0, 0.2064, 0, 0, 0.3104, 0.5104, 0, . . . , 0
]

T

123

90 W. Yu et al.

Algorithm 2: Inc-uSR-C2 (G, (i, j), S, K , C)

Input : a directed graph G = (V, E),

a new edge (i, j)i /∈V, j∈V inserted to G,

the old similarities S in G,

the number of iterations K ,

the damping factor C .

Output: the new similarities S̃ in G ∪ {(i, j)}.

1 initialize the transition matrix Q in G ;

2 d j := in-degree of node j in G ;

3 z :=
(

1
2C(d j +1)

(

[S] j, j − (1 − C)2
)

+ 1−C
C

)

e j − 1
C

[S]⋆, j ;

4 initialize ξ0 := e j , η0 := z, M0 := e j z
T ;

5 for k = 0, 1, . . . , K − 1 do

6 ξ k+1 := C · Q · ξ k − C
d j +1

([Q] j,⋆ · ξ k) · e j ;

7 ηk+1 := Q · ηk − 1
d j +1

([Q] j,⋆ · ηk) · e j ;

8 Mk+1 := ξ k+1 · ηT
k+1 + Mk ;

9 compute �S̃11 := C
d j +1

(

MK + MT
K

)

;

10 return S̃ :=

[

S + �S̃11 0

0 1 − C

]

;

It follows from Eq. (35) that the auxiliary vector

z =
(

1
2×0.8(2+1)

(

0.5104 − (1 − 0.8)2
)

+ 1−0.8
0.8

)

e j − 1
0.8

[S]⋆, j

=
[

(a) ... (e) (f) (g) (h) (i) (j) (k) ... (o)

0, . . . , 0, −0.258, 0, 0, −0.388, −0.29, 0, . . . , 0
]

T

Utilizing z, we can obtain M from Eq. (34). Thus, �S̃11 can

be computed from M as

�S̃11 = 0.8
2+1

(

M + MT
)

=

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) · · · (o)
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a) −0.0137 −0.0149 0 0

(b) −0.0149 −0.0146 0 0 0 0 0

(c) 0 0 0 0

(d) 0 0 0 −0.0116

(e) 0

(f) −0.0688

(g) 0 0 0 0

(h) 0

(i) −0.1035

(j) 0 0 −0.0688 0 0 −0.1035 −0.1547 0
... 0 0 0 0

(o)

Next, by Theorem 8, we obtain the new SimRank

S̃ =

[

S + �S̃11 0

0 0.2

]

which is partially illustrated in Fig. 4. ⊓⊔

5.3 Inserting an edge (i, j) with i /∈ V and j /∈ V

We next focus on the case (C3), the insertion of an edge (i, j)

with i /∈ V and j /∈ V . Without loss of generality, it can be

tacitly assumed that nodes i and j are indexed by n + 1

and n + 2, respectively. In this case, the inserted edge (i, j)

accompanies the insertion of two new nodes, which can form

another independent component in the new graph.

Algorithm 3: Inc-uSR-C3 (G, (i, j), S, C)

Input : a directed graph G = (V, E),

a new edge (i, j)i /∈V, j /∈V inserted to G,

the old similarities S in G,

the damping factor C .

Output: the new similarities S̃ in G ∪ {(i, j)}.

1 compute Ŝ :=

[

1 − C 0

0 1 − C2

]

;

2 return S̃ :=

[

S 0

0 Ŝ

]

;

In this case, the new transition matrix Q̃ can be character-

ized as a block diagonal matrix

Q̃ =

[

Q 0

0 N

]

} n rows

} 2 rows
with N :=

[

0 0

1 0

]

.

With this structure, we can infer that the new SimRank matrix

S̃ takes the block diagonal form as

S̃ =

[
S 0

0 Ŝ

]

} n rows

} 2 rows
with Ŝ ∈ R

2×2.

This is because, after a new edge (i, j)i /∈V, j /∈V is added, all

node pairs (x, y) ∈ (V × {i, j} ∪ {i, j} × V) have zero Sim-

Rank scores since there are no connections between nodes

x and y. Besides, the inserted edge (i, j) is an independent

component that has no impact on s(x, y) for ∀(x, y) ∈ V ×V .

Hence, the submatrix Ŝ of the new SimRank matrix can be

derived by solving the equation:

Ŝ = C · N · Ŝ · NT + (1 − C) · I2 ⇒ Ŝ =

[

1 − C 0

0 1 − C2

]

This suggests that, for unit insertion of the case (C3), the new

SimRank matrix becomes

S̃ =

[
S 0

0 Ŝ

]

∈ R
(n+2)×(n+2) with Ŝ =

[

1 − C 0

0 1 − C2

]

.

Algorithm 3 presents our incremental method to obtain the

new SimRank matrix S̃ for edge insertion of the case (C3),

which requires just O(1) time.

123

Dynamical SimRank search on time-varying networks 91

6 Batch updates

In this section, we consider the batch updates problem for

incremental SimRank, i.e., given an old graph G = (V, E)

and a sequence of edges �G to be updated to G, the retrieval

of new SimRank scores in G ⊕ �G. Here, the set �G can

be mixed with insertions and deletions:

�G := {(i1, j1, op1), (i2, j2, op2), . . . , (i|�G|, j|�G|, op|�G|)}

where (iq , jq) is the qth edge in �G to be inserted into (if

opq =“+”) or deleted from (if opq =“−”) G.

The straightforward approach to this problem is to update

each edge of �G one by one, by running a unit update algo-

rithm for |�G| times. However, this would produce many

unnecessary intermediate results and redundant updates that

may cancel out each other.

Example 4 Consider the old citation graph G in Fig. 5, and

a sequence of edge updates �G to G:

�G = {(q, i,+), (b, h,+), (f, b,−), (l, f,+), (p, f,+),

(l, f,−), (j, i,+), (r, f,+), (b, h,−), (k, i,+)}

We notice that, in �G, the edge insertion (b, h,+) can cancel

out the edge deletion (b, h,−). Similarly, (l, f,+) can cancel

out (l, f,−). Thus, after edge cancelation, the net update of

�G, denoted as �Gnet, is

�Gnet = {(q, i,+), (f, b,−), (p, f,+),

(j, i,+), (r, f,+), (k, i,+)}

⊓⊔

Example 4 suggests that a portion of redundancy in �G

arises from the insertion and deletion of the same edge that

may cancel out each other. After cancelation, it is easy to

verify that

|�Gnet| ≤ |�G| yet G ⊕ �Gnet = G ⊕ �G.

To obtain �Gnet from �G, we can readily use hashing

techniques to count occurrences of updates in �G. More

specifically, we use each edge of �G as a hash key, and

initialize each key with zero count. Then, we scan each edge

of �G once, and increment (resp. decrement) its count by

one each time an edge insertion (resp. deletion) appears in

�G. After all edges in �G are scanned, the edges whose

counts are nonzeros make a net update �Gnet. All edges in

�Gnet with +1 (resp. −1) counts make a net insertion update

�G+
net (resp. a net deletion update �G−

net). Clearly, we have

�Gnet = �G+
net ∪ �G−

net.

Having reduced �G to the net edge updates �Gnet, we

next merge the updates of “similar sink edges” in �Gnet to

speedup the batch updates further.

We first introduce the notion of “similar sink edges.”

Definition 1 Two distinct edges (a, c) and (b, c) are called

“similar sink edges” w.r.t. node c if they have a common end

node c that both a and b point to. ⊓⊔

“Similar sink edges” is introduced to partition �Gnet.

To be specific, we first sort all the edges {(i p, jp)} of

�G+
net (resp. �G−

net) according to its end node jp. Then,

the “similar sink edges” w.r.t. node jp form a partition of

�G+
net (resp. �G−

net). For each block {(i pk
, jp)} in �G+

net,

we next split it further into two sub-blocks according to

whether its end node i pk
is in the old V . Thus, after par-

titioning, each block in �G+
net (resp. �G−

net), denoted as

{(i1, j), (i2, j), . . . , (iδ, j)}, falls into one of the follow-

ing cases:

(C0) i1 ∈ V, i2 ∈ V, . . . , iδ ∈ V and j ∈ V ;

(C1) i1 ∈ V, i2 ∈ V, . . . , iδ ∈ V and j /∈ V ;

(C2) i1 /∈ V, i2 /∈ V, . . . , iδ /∈ V and j ∈ V ;

(C3) i1 /∈ V, i2 /∈ V, . . . , iδ /∈ V and j /∈ V .

Example 5 Let us recall �Gnet derived by Example 4, in

which �Gnet = �G+
net ∪ �G−

net with

�G+
net = {(q, i,+), (p, f, +), (j, i, +), (r, f, +), (k, i, +)}

�G−
net = {(f, b, −)}.

We first partition �G+
net by “similar sink edges” into

�G+
net = {(q, i,+), (j, i,+), (k, i,+)} ∪ {(p, f,+), (r, f,+)}

In the first block of �G+
net, since the nodes q /∈ V ,

j ∈ V , and k ∈ V , we will partition this block further into

{(q, i,+)} ∪ {(j, i,+), (k, i,+)}. Eventually,

�G+
net = {(q, i,+)} ∪ {(j, i,+), (k, i,+)} ∪ {(p, f,+), (r, f,+)}

⊓⊔

The main advantage of our partitioning approach is that,

after partition, all the edge updates in each block can be

processed simultaneously, instead of one by one. To elaborate

on this, we use case (C0) as an example, i.e., the insertion of

δ edges {(i1, j), (i2, j), . . . , (iδ, j)} into G = (V, E) when

i1 ∈ V, . . . , iδ ∈ V , and j ∈ V . Analogous to Theorem 1,

one can readily prove that, after such δ edges are inserted, the

changes �Q to the old transition matrix is still a rank-one

matrix that can be decomposed as Q̃ = Q + u · vT with

123

92 W. Yu et al.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (solid line)

insertion of edges in∆G

q

p
r

deletion of edges in∆G

∆G = {(q, i, +), (b, h, +),

(f, b, −), (l, f, +),

(p, f, +), (l, f, −),

(j, i,+), (r, f,+),

(b, h, −), (k, i,+)}

Node-Pair
in G in G ⊕ ∆G

simold simnew

(a, b) 0.0745 0.0809
(a, i) 0 0.0340

(b, i) 0 0.0340

(f, i) 0.2464 0.0516
(f, j) 0.2064 0.1032

(g, h) 0.128 0.128

(g, k) 0.128 0.128

(h, k) 0.2880 0.2880

(i, j) 0.3104 0.1552

(l, m) 0.16 0.16

(l, n) 0.16 0.16

(m, n) 0.16 0.16

Fig. 5 Batch updates for incremental SimRank when a sequence of edges �G are updated to G = (V, E)

Table 2 Batch updates for a sequence of edges {(i1, j), . . . , (iδ, j)} to the old graph G = (V, E), where [S]⋆,I :=
∑

i∈I [S]⋆,i , [S]I,I :=
∑

i∈I [S]i,I , 1δ := (1, 1, . . . , 1)T ∈ R
δ×1

When New transition matrix Q̃ New SimRank matrix S̃

W
it

h
o
u
t

n
ew

n
o
d
e

in
se

rt
io

n
s

(C0)

insert

i1 ∈ V

· · ·

iδ ∈ V

j ∈ V

Q̃ = Q + u · vT with

u :=

{

e j

(

d j = 0
)

δ
d j +δ

e j

(

d j > 0
) ,

v :=

{
1
δ

eI

(

d j = 0
)

1
δ

eI − [Q]T
j,⋆

(

d j > 0
)

�S = M + MT with

M :=
∑∞

k=0 Ck+1Q̃ke j γ
T(Q̃T)

k
,

γ :=

{
1
δ

Q · [S]⋆,I + 1
2δ2 [S]I,I · e j (d j = 0)

δ
(d j +δ)

(
1
δ

Q · [S]⋆,I − 1
C

· [S]⋆, j + (λδ

2(d j +δ)
+ 1

C
− 1) · e j

)

(d j > 0)

λ := 1
δ2 [S]I,I + 1

C
· [S] j, j − 2

δ
· [Q] j,⋆ · [S]⋆,I − 1

C
+ 1

(C0)

delete

i1 ∈ V

· · ·

iδ ∈ V

j ∈ V

Q̃ = Q + u · vT with

u :=

{

e j

(

d j = 1
)

δ
d j −δ

e j

(

d j > 1
) ,

v :=

{

− 1
δ

eI

(

d j = 1
)

[Q]T
j,⋆ − 1

δ
eI

(

d j > 1
)

�S = M + MT with

M :=
∑∞

k=0 Ck+1Q̃ke j γ
T(Q̃T)

k
,

γ :=

{

− 1
δ

Q · [S]⋆,I + 1
2δ2 [S]I,I · e j (d j = 1)

δ
(d j −δ)

(
1
C

· [S]⋆, j − 1
δ

Q · [S]⋆,I + (λδ

2(d j −δ)
− 1

C
+ 1) · e j

)

(d j > 1)

λ := 1
δ2 [S]I,I + 1

C
· [S] j, j − 2

δ
· [Q] j,⋆ · [S]⋆,I − 1

C
+ 1

W
it

h
n
ew

n
o
d
e

in
se

rt
io

n
s

(C1)

insert

i1 ∈ V

· · ·

iδ ∈ V

j /∈ V

Q̃ =

[

Q 0
1
δ

eT
I 0

]

} n rows

→ row j

S̃ =

[

S y

yT C
δ2 [S]I,I + (1 − C)

]

} n rows

→ row j
with

y := C
δ

Q[S]⋆,I

(C2)

insert

i1 /∈ V

· · ·

iδ /∈ V

j ∈ V

Q̃ =

[

Q̂ 1
d j +δ

e j 1
T
δ

0 0

]

} n rows

} δ rows

with Q̂ := Q − δ
d j +δ

e j [Q] j,⋆

S̃ =

[

S + Cδ
d j +δ

(

M + MT
)

0

0 (1 − C)Iδ

]

} n rows

} δ rows
with

M :=
∑∞

k=0 CkQ̂ke j z
T
(

Q̂T
)k

,

z :=
(

1
2C(d j +δ)

(

δ[S] j, j − (δ − C)(1 − C)
)

+ 1−C
C

)

e j − 1
C

[S]⋆, j

(C3)

insert

i1 /∈ V

· · ·

iδ /∈ V

j /∈ V

Q̃ =

[

Q 0

0 N

]

} n rows

} δ + 1 rows

with N :=

[

0 0
1
δ

1T
δ 0

]

} δ rows

→ row j

S̃ =

[

S 0

0 Ŝ

]

} n rows

} δ + 1 rows

with Ŝ :=

[

(1 − C)Iδ 0

0 (1 − C)(1 + C
δ
)

]

.
} δ rows

→ row j

123

Dynamical SimRank search on time-varying networks 93

Algorithm 4: Inc-bSR (G, (i, j), S, C)

Input : a directed graph G = (V, E),

a sequence of edge updates �G = {(i, j, op)},

the old similarities S in G,

the damping factor C .

Output: the new similarities S̃ in G ⊕ �G.

1 obtain the net update �Gnet from �G via hashing ;

2 split �Gnet = �G+
net ∪ �G−

net according to op ;

3 partition �G+
net and �G−

net by “similar sink edges” ;

4 for each block of �G+
net do

5 split all edges {(i, j)} of each block further into (at most) two

sub-blocks based on whether i ∈ V

6 for each block of �G−
net do

7 delete all edges of each block and update S̃ via Table 2 ;

8 remove all singleton nodes in the graph;

9 for each sub-block of �G+
net do

10 insert all edges of each sub-block and update S̃ via Table 2 ;

11 return S̃ ;

u :=

{

e j

(

d j = 0
)

δ
d j +δ

e j

(

d j > 0
) , v :=

{ 1
δ
eI

(

d j = 0
)

1
δ
eI − [Q]T

j,⋆

(

d j > 0
)

where eI is an n × 1 vector with its entry [eI]x = 1 if x ∈

I � {i1, i2, . . . , iδ}, and [eI]x = 0 if x /∈ V . Since the

rank-one structure of �Q is preserved for updating δ edges,

Theorem 2 still holds under the new settings of u and v for

batch updates. Therefore, the changes �S to the SimRank

matrix in response to δ edges insertion can be represented as

a similar formulation to Theorem 3, as illustrated in the first

row of Table 2. Similarly, we can also extend Theorems 6–

9 in Sect. 5 to support batch updates of δ edges for other

cases (C1)–(C3) that accompany new node insertions. Table 2

summarizes the new Q and S in response to such batch edge

updates of all the cases. When δ = 1, these batch update

results in Table 2 can be reduced to the unit update results of

Theorems 1–9.

Algorithm 4 presents an efficient batch updates algorithm,

Inc-bSR, for dynamical SimRank computation. The actual

computational time of Inc-bSR depends on the input param-

eter�G since different update types in Table 2 would result in

different computational time. However, we can readily show

that Inc-bSR is superior to the |�G| executions of the unit

update algorithm, because Inc-bSR can process the “similar

sink updates” of each block simultaneously and can cancel

out redundant updates. To clarify this, let us assume that

|�Gnet| can be partitioned into |B| blocks, with δt denot-

ing the number of edge updates in t th block. In the worst

case, we assume that all edge updates happen to be the most

time-consuming case (C0) or (C2). Then, the total time for

handling |�G| updates is bounded by

O

(|B|
∑

t=1

(

nδt + δ2
t + K (nd + δt + |AFF|)

)
)

≤ O

(

n|�Gnet| + |�Gnet|

|B|
∑

t=1

δt + K

|B|
∑

t=1

(nd + δt + |AFF|)

)

≤ O
(

(n + |�Gnet|)|�Gnet| + K (|B|nd + |�Gnet| + |B||AFF|)
)

Note that |B| ≤ |�Gnet|, in general |B| ≪ |�Gnet|. Thus,

Inc-bSR is typically much faster than the |�G| executions of

the unit update algorithm that is bounded by O
(

|�G|K (nd+

�G + |AFF|)
)

.

Example 6 Recall from Example 4 that a sequence of edge

updates �G to the graph G = (V, E) in Fig. 5. We want to

compute new SimRank scores in G ⊕ �G.

First, we can use hashing method to obtain the net update

�Gnet from �G, as shown in Example 4.

Next, by Example 5, we can partition �Gnet into

�G+
net = {(q, i,+)} ∪ {(j, i, +), (k, i, +)} ∪ {(p, f, +), (r, f, +)}

�G−
net = {(f, b, −)}

Then, for each block, we can apply the formulae in

Table 2 to update all edges simultaneously in a batch fash-

ion. The results are partially depicted as follows: The column

Node simold (f, b,−) (q, i,+) (j, i,+) (p, f,+)

Pairs in G (k, i,+) (r, f,+)

(a, b) 0.0745 0.0809 0.0809 0.0809 0.0809

(a, i) 0 0 0 0.0340 0.0340

(b, i) 0 0 0 0.0340 0.0340

(f, i) 0.2464 0.2464 0.1232 0.1032 0.0516

(f, j) 0.2064 0.2064 0.2064 0.2064 0.1032

(g, h) 0.128 0.128 0.128 0.128 0.128

(g, k) 0.128 0.128 0.128 0.128 0.128

(h, k) 0.288 0.288 0.288 0.288 0.288

(i, j) 0.3104 0.3104 0.1552 0.1552 0.1552

(l, m) 0.16 0.16 0.16 0.16 0.16

(l, n) 0.16 0.16 0.16 0.16 0.16

(m, n) 0.16 0.16 0.16 0.16 0.16

“(q, i,+)” represents the updated SimRank scores after the

edge (q, i) is added to G ⊕ {(f, b,−)}. The last column is

the new SimRanks in G ⊕ �G. ⊓⊔

7 Memory efficiency

In previous sections, our main focus was devoted to speeding

up the computational time of incremental SimRank. How-

ever, for updating all pairs of SimRank scores, the memory

requirement for Algorithms 1–4 remains at O(n2) since they

123

94 W. Yu et al.

Table 3 Lines of Inc-uSR (in

“Appendix D.1” [32]) that

require to get elements from old

S (highlighted in red color)

Line Description Required elements from old S

3 w ← Q · [S]⋆,i i th column of S

4 λ ← [S]i,i + 1
C

· [S] j, j − 2 · [w] j − 1
C

+ 1 (i, i)- and (j, j)th elements of S

6 γ ← w + 1
2
[S]i,i · e j (i, i)th element of S

9 γ ← 1
(d j +1)

(

w − 1
C

[S]⋆, j + (λ

2(d j +1)
+ 1

C
− 1)e j

)

j th column of S

15 S̃ ← S + MK + MT
K All elements of old S and new S̃

Table 4 Lines of Inc-uSR (in “Appendix D.1” [32]) that require to

store Mk (highlighted in red color)

Line Description Storage of Mk

10 M0 ← C · e j · γ T All elements of M0

14 Mk+1 ← ξ k+1 · ηT
k+1 + Mk All elements of Mk (∀k)

15 S̃ ← S + MK + (MK)T All elements of MK

need to store all (n2) pairs of old SimRank S into memory,

which hinders its scalability on large graphs. We call Algo-

rithms 1–4 in-memory algorithms.

In this section, we propose a novel scalable method based

on Algorithms 1–4 for dynamical SimRank search, which

updates all pairs of SimRanks column by column using only

O(K n + m) memory, with no need to store all (n2) pairs of

old SimRank S into memory, and with no loss of accuracy.

Let us first analyze the O(n2) memory requirement for

Algorithms 1–4 in Sects. 3–5. We notice that there are two

factors dominating the original O(n2) memory: (1) the stor-

age of the entire n × n old SimRank matrix S, and (2) the

computation of Mk from one outer product. For example, in

Inc-uSR (in “Appendix D.1” [32]), Lines 3, 4, 6, 9, 15 need

to get elements from old S (see Table 3); Lines 10, 14, 15

require to store n × n entries of matrix Mk (see Table 4).

Indeed, the storage of S and Mk are the main obstacles to

the scalability of our in-memory algorithms on large graphs,

resulting in O(n2) memory space. Apart from these lines,

the memory required for the remaining steps of Inc-uSR is

O(m), dominated by (a) the storage of sparse matrix Q and

(b) sparse matrix–vector products.

To overcome the bottleneck of the O(n2) memory, our

main idea is to update all pairs of S in a column-by-column

style, with no need to store the entire S and Mk . Specifically,

we update S by updating each column [S]⋆,x (∀x = 1, 2, . . .)

of S individually. Let us rewrite Line 15 of Table 3 into the

column-wise style:

[S̃]⋆,x = [S]⋆,x + [MK]⋆,x + [(MK)T]⋆,x (∀x) (36)

Applying the following facts

[�S]⋆,x = [S̃]⋆,x − [S]⋆,x and [(MK)T]⋆,x = ([MK]x,⋆)
T

into Eq. (36) produces

[�S]⋆,x = [MK]⋆,x + ([MK]x,⋆)
T. (∀x) (37)

This implies that, to compute one column of �S, we only

need prepare one row and one column of MK . To compute

only the x th row and x th column of MK , there are two chal-

lenges: (1) From Line 10 of Table 3, we notice that MK is

derived from the auxiliary vector γ , and γ depends on the

i th and j th column of old S according to lines 3, 4, 6, 9

of Table 3. Since the update edge (i, j) can be arbitrary, it

is hard to determine which columns of old S will be used in

future. Thus, all our in-memory algorithms in Sect. 5 prepare

n ×n elements of S into memory, leading to O(n2) memory.

(2) According to lines 10, 14, 15 of Table 4, it also requires

O(n2) memory to iteratively compute MK . It is not easy to

use just linear memory for iteratively computing only one

row and one column of MK . In the next two subsections, we

will address these two challenges, respectively.

7.1 Avoid storing n × n elements of old S

Our above analysis imply that, to compute each column

[�S]⋆,x , we only need prepare two columns information (i th

and j th) from old S. Since the update edge (i, j) can be

arbitrary, there are no prior knowledge which i th and j th

columns in old S will be used. As opposed to Algorithms 1–

4 that memorize all (n2) pairs of old S, we use the following

scalable method to compute only the i th and j th columns of

old S on demand in linear memory. Specifically, based on

our previous work [27] on partial-pairs SimRank retrieval,

we can readily verify that the following iterations will yield

[S]⋆,i and [S]⋆, j in just O(K n + m) memory.

initialize x0 ← ei initialize x0 ← e j

for t ← 1, 2, · · · , K for t ← 1, 2, · · · , K

xt+1 ← QT · xt xt+1 ← QT · xt

initialize y ← xK+1 initialize y ← xK+1

for t ← 1, 2, · · · , K for t ← 1, 2, · · · , K

y ← xK+1−t + C · Q · y y ← xK+1−t + C · Q · y

[S]⋆,i ← (1 − C) · y [S]⋆, j ← (1 − C) · y

Next, [S]i,i is obtained from the i th element of [S]⋆,i ,

and [S] j, j from the j th element of [S]⋆, j . Having prepared

123

Dynamical SimRank search on time-varying networks 95

Algorithm 5: Inc-SR-All-P (G,�G, [S]⋆,x , K , C)

Input : an old digraph G = (V, E),

a collection of edges �G inserted into G,

x th column [S]⋆,x of old SimRank in G,

number of iterations K , damping factor C .

Output: x th column [S̃]⋆,x of new SimRank in G ∪ �G

1 initialize the transition matrix Q in G ;

2 foreach v ∈ V do dv ← in-degree of node v in G ; foreach edge

(i, j) ∈ �G

3 if i ∈ V then [S]⋆,i ← PartialSim(Q, i, K , C) if j ∈ V then

4 [S]⋆, j ← PartialSim(Q, j, K , C) if i ∈ V and j ∈ V then

// Case (C0)

5 w ← Q · [S]⋆,i ;

6 λ ← [S]i,i + 1
C

· [S] j, j − 2 · [w] j − 1
C

+ 1 ;

7 if d j = 0 then

8 u ← e j , v := ei , γ := w + 1
2
[S]i,i · e j ;

9 else

10 u ← 1
d j +1

e j , v := ei − [Q]T
j,⋆ ;

11 γ ← 1
(d j +1)

(

w − 1
C

[S]⋆, j + (λ

2(d j +1)
+ 1−C

C
)e j

)

;

12 initialize ξ0 ← C · e j , η0 ← γ ;

13 m ← C · [γ]x · e j , n ← C · [e j]x · γ ;

14 for k = 0, 1, · · · , K − 1 do

15 ξ k+1 ← C · Q · ξ k + C · (vT · ξ k) · u ;

16 ηk+1 ← Q · ηk + (vT · ηk) · u ;

17 m ← [ηk+1]x · ξ k+1 + m ;

18 n ← [ξ k+1]x
· ηk+1 + n ;

19 [S]⋆,x ← [S]⋆,x + m + n ;

20 d j ← d j + 1, Q ← Q + u · vT ;

21 else if i ∈ V and j /∈ V then // Case (C1)

22 y ← C · Q · [S]⋆,i ;

23 if x = j then

24 z ← C · [S]i,i + (1 − C) ;

25 [S]⋆,x ←

[

y

z

]

;

26 else

27 [S]⋆,x ←

[

[S]⋆,x

[y]x

]

;

28 d j ← 0, V ← V ∪ { j}, Q ←

[

Q 0

eT
i 0

]

;

29

30 ... (Continue on right side)

Algorithm 5: (Continued) Inc-SR-All-P

... (Continued)

31 else if i /∈ V and j ∈ V then // Case (C2)

32 if x = i then

33 [S]⋆,x ←

[

0

1 − C

]

;

34 else

35 z ←
(

1
2C(d j +1)

(

[S] j, j − (1 − C)2
)

+ 1−C
C

)

e j − 1
C

[S]⋆, j

;

36 initialize ξ0 ← e j , η0 ← z ;

37 m ← [z]x · e j , n ← [e j]x
· z ;

38 for k ← 0, 1, · · · , K − 1 do

39 ξ k+1 ← C · Q · ξ k − C
d j +1

([Q] j,⋆ · ξ k) · e j ;

40 ηk+1 ← Q · ηk − 1
d j +1

([Q] j,⋆ · ηk) · e j ;

41 m ← [ηk+1]x · ξ k+1 + m ;

42 n ← [ξ k+1]x
· ηk+1 + n ;

43 [S]⋆,x ←

[

[S]⋆,x + C
d j +1

· (m + n)

0

]

;

44 di ← 0, d j ← d j + 1, V ← V ∪ {i} ;

45 Q ←

[

Q − 1
d j +1

e j [Q] j,⋆
1

d j +1
e j

0 0

]

;

else if i /∈ V and j /∈ V then // Case (C3)

46 if x = i then

47 [S]⋆,x ←

⎡

⎣

0

1 − C

0

⎤

⎦ (i)

(j)

;

48 else if x = j then

49 [S]⋆,x ←

⎡

⎣

0

0

1 − C2

⎤

⎦ (i)

(j)

;

50 else

51 [S]⋆,x ←

⎡

⎣

[S]⋆,x
0

0

⎤

⎦ (i)

(j)

;

52 Q ←

⎡

⎣

Q 0

0

[

0 0

1 0

]

⎤

⎦ (i)

(j)

;

53 di ← 0, d j ← 0, V ← V ∪ {i, j} ;

54 G ← G ∪ {(i, j)} ;

55 return [S̃]⋆,x ← [S]⋆,x ;

[S]⋆,i , [S]⋆, j , [S]i,i , and [S] j, j , we follow Lines 3, 4, 6, 9 of

Table 3 to derive the vector γ in linear memory. In addition,

since Line 15 of Table 3 can be computed column-wisely via

Eq. (37). Throughout all lines in Table 3, we do not need

store n2 pairs of old S in memory. However, O(n2) memory

is still required to store Mk . In the next subsection, we will

show how to avoid O(n2) memory to compute Mk .

7.2 Compute [MK]⋆,x and [MK]x,⋆ in linear memory

Using γ , we next devise our method based on Table 4, aiming

to use linear memory to compute each column [MK]⋆,x and

each row [MK]x,⋆ for Eq. (37). In Table 4, our key observa-

tion is that Mk is the summation of the outer product of two

vectors. Due to this structure, instead of using O(n2) mem-

ory to store Mk , we can use only O(n) memory to compute

[MK]⋆,x and [MK]x,⋆. Specifically, we can compute Lines 10

and 14 of Table 4 in a column-wise style for [MK]⋆,x as fol-

lows:

[M0]⋆,x ← C · [γ]x · e j

for k ← 0, · · · , K − 1

[Mk+1]⋆,x ← [ηk+1]x · ξ k+1 + [Mk]⋆,x

123

96 W. Yu et al.

and in a row-wise style for [MK]x,⋆ as follows:

[M0]x,⋆ ← C · [e j]x
· γ

for k ← 0, · · · , K − 1

[Mk+1]x,⋆ ← [ξ k+1]x · ηk+1 + [Mk]x,⋆

Figure 6 pictorially visualizes the column-wise computation

of [MK]⋆,x . Having computed [MK]⋆,x and [MK]x,⋆, we can

use Eq. (37) to derive the column [�S]⋆,x of �S.

The main advantage of our method is that, throughout the

entire updating process, we need not store n × n pairs of Mk

and S, and thereby, significantly reduce the memory usage

from O(n2) to O(K n + m). In addition to the insertion case

(C0), our memory-efficient methods are applicable to other

insertion cases in Sect. 5.1. The complete algorithm, denoted

as Inc-SR-All-P, is described in Algorithm 5. Inc-SR-All-P

is a memory-efficient version of Algorithms 1–4. It includes a

procedure PartialSim that allows us to compute two columns

information of old S on demand in linear memory, rather than

store n2 pairs of old S in memory. In response to each edge

update (i, j), once the two old columns S⋆,i and S⋆, j are com-

puted via PartialSim for updating the x th column [�S]⋆,x ,

they can be memorized in only O(n) memory and reused

later to compute another yth column [�S]⋆,y in response to

the edge update (i, j).

Correctness. Inc-SR-All-P correctly returns similarity. It

consists of four update cases: lines 6–22 for Case (C0), lines

23–30 for Case (C1), lines 31–45 for Case (C2), and lines

46–54 for Case (C3). The correctness of each case can be

verified by Theorems 3, 6, 8, and 9, respectively. For instance,

to verify the correctness for Case (C0), we apply successive

substitution to for-loop in lines 14–21, which produces the

following result:

[S̃]u,v = [S]u,v +

K
∑

k=1

[ξ k]u · [ηk]v +

K
∑

k=1

[ξ k]v · [ηk]u

This is consistent with Eq. (36), implying that our memory-

efficient method does not compromise any accuracy for

scalability.

It is worth mentioning that Inc-SR-All-P can be also com-

bined with our batch updating method in Sect. 6. This will

speed up the dynamical update of SimRank further, with

O(n(max
|B|
t=1 δt) + m + K n) memory. Here O(nδt) mem-

ory is needed to store δt columns of S when [S]⋆,I is required

for processing the t th block.

8 Experimental evaluation

In this section, we present a comprehensive experimental

study on real and synthetic datasets, to demonstrate (i) the

Procedure 1: PartialSim(Q, q, K , C)

Input : transition matrix Q in G,

query node q,

number of iterations K ,

damping factor C .

Output: qth column [S]⋆,q of SimRank scores in G.

1 initialize x0 ← eq ;

2 for t ← 1, 2, · · · , K do

3 xt+1 ← QT · xt ;

4 initialize y ← xK+1 ;

5 for t ← 1, 2, · · · , K do

6 y ← xK+1−t + C · Q · y ;

7 return [S]⋆,q ← (1 − C) · y ;

·

=MK =
K

k=1

[ηk]3

[ξk]2

[ξk]2[ηk]3

K

k=1

·

=[MK] ,x =
K

k=1
[ηk]x

ξk

K

k=1
=

=

[ηk]xξk

column-wise
computation

Fig. 6 Memory usage reduction by partitioning MK in a column-by-

column style

fast computational time of Inc-SR to incrementally update

SimRanks on large time-varying networks, (ii) the pruning

power of Inc-SR that can discard unnecessary incremen-

tal updates outside “affected areas”; (iii) the exactness of

Inc-SR, as compared with Inc-SVD; (iv) the high efficiency

of our complete scheme that integrates Inc-SR with Inc-

uSR-C1, Inc-uSR-C2, Inc-uSR-C3 to support link updates

that allow new node insertions; (v) the fast computation

time of our batch update algorithm Inc-bSR against the unit

update method Inc-SR; (vi) the scalability of our memory-

efficient algorithm Inc-SR-All-P in Sect. 7 on million-scale

large graphs for dynamical updates; (vii) the performance

comparison between Inc-SR-All-P and LTSF in terms of

computational time, memory space, and top-k exactness;

(viii) the average updating time and memory usage of Inc-

SR-All-P for each case of edge updates.

8.1 Experimental settings

Datasets. We adopt both real and synthetic datasets. The

real datasets include small-scale (DBLP and CitH), medium-

scale (YouTu, WebB and WebG), and large-scale graphs

(CitP, SocL, UK05, and IT04). Table 5 summarizes the

description of these datasets.

123

Dynamical SimRank search on time-varying networks 97

Table 5 Description of real-world datasets

Datasets |V | |E | # of pairs to be assessed Description

Small

DBLP (DBLP) 13,634 93,560 185,885,956 (= |V |2) DBLP citation network

CitH (cit-HepPh) 34,546 421,578 1,193,426,116 (= |V |2) High Energy Physics citation network

Medium

YouTu (YouTube) 178,470 953,534 1,784,700,000 (= 104|V |) Social network of YouTube videos

WebB (web-BerkStan) 685,230 7,600,595 6,852,300,000 (= 104|V |) Web graph of Berkeley and Stanford

WebG (web-Google) 916,428 5,105,039 9,164,280,000 (= 104|V |) Web graph from Google

Large

CitP (cit-Patents) 3,774,768 16,518,948 3,774,768,000 (= 103|V |) Citation network among US patents

SocL (soc-LiveJournal) 4,847,571 68,993,773 4,847,571,000 (= 103|V |) LiveJournal online social network

UK05 (uk-2005) 39,459,925 936,364,282 39,459,925,000 (= 103|V |) Web graph from 2005 crawl of .uk domain

IT04 (it-2004) 41,291,594 1,150,725,436 41,291,594,000 (= 103|V |) Web graph from 2004 crawl of .it domain

(Please refer to “Appendix E” [32] for details.)

To generate synthetic graphs and updates, we adopt

GraphGen6 generation engine. The graphs are controlled

by (a) the number of nodes |V |, and (b) the number of edges

|E |. We produce a sequence of graphs that follow the link-

age generation model [7]. To control graph updates, we use

two parameters simulating real evolution: (a) update type

(edge/node insertion or deletion), and (b) the size of updates

|�G|.

Algorithms. We implement the following algorithms: (a)

Inc-SVD, the SVD-based link-update algorithm [13]; (b)

Inc-uSR, our incremental method without pruning; (c)

Batch, the batch SimRank method via fine-grained memo-

rization [24]; (d) Inc-SR, our incremental method with prun-

ing power but not supporting node insertions; (e) Inc-SR-All,

our complete enhanced version of Inc-SR that allows node

insertions by incorporating Inc-uSR-C1, Inc-uSR-C2, and

Inc-uSR-C3; (f) Inc-bSR, our batch incremental update ver-

sion of Inc-SR; (g) Inc-SR-All-P, our memory-efficient

version of Inc-SR-All that dynamically computes the Sim-

Rank matrix column by column without the need to store all

pairs of old similarities; (h) LTSF, the log-based implemen-

tation of the existing competitor, TSF [20], which supports

dynamic SimRank updates for top-k querying.

Parameters. We set the damping factor C = 0.6, as used

in [9]. By default, the total number of iterations is set to

K = 15 to guarantee accuracy C K ≤ 0.0005 [16]. On CitH

and YouTu, we set K = 10; On large graphs (CitP, SocL,

UK05, and IT04), we set K = 5. The target rank r for Inc-

SVD is a speed-accuracy trade-off, we set r = 5 in our time

evaluation since, as shown in the experiments of [13], the

6 http://www.cse.ust.hk/graphgen/.

highest speedup is achieved when r = 5. In our exactness

evaluation, we shall tune this value. For LTSF algorithm,

we set the number of one-way graphs Rg = 100, and the

number of samples at query time Rq = 20, as suggested in

[20].

All the algorithms are implemented in Visual C++ and

MATLAB. For small-scale graphs, we use a machine with

an Intel Core 2.80GHz CPU and 8GB RAM. For medium-

and large-scale graphs, we use a processor with Intel Core

i7-6700 3.40GHz CPU and 64GB RAM.

8.2 Experimental results

8.2.1 Time efficiency of Inc-SR and Inc-uSR

We first evaluate the computational time of Inc-SR and Inc-

uSR against Inc-SVD and Batch on real datasets.

Note that, to favor Inc-SVD that only works on small

graphs (due to memory crash for high-dimension SVD n >

105), we just use Inc-SVD on DBLP and CitH.

Figure 7 depicts the results when edges are added to

DBLP, CitH, YouTu, respectively. For each dataset, we

fix |V | and increase |E | by |�E |, as shown in the x-axis.

Here, the edge updates are the differences between snap-

shots w.r.t. the “year” (resp. “video age”) attribute of DBLP,

CitH (resp. YouTu), reflecting their real-world evolution.

We observe the following. (1) Inc-SR always outperforms

Inc-SVD and Inc-uSR when edges are increased. For exam-

ple, on DBLP, when the edge changes are 10.7%, the time

for Inc-SR (83.7s) is 11.2x faster than Inc-SVD (937.4s),

and 4.2x faster than Inc-uSR (348.7s). This is because

Inc-SR employs a rank-one matrix method to update the

similarities, with an effective pruning strategy to skip unnec-

essary recomputations, as opposed to Inc-SVD that entails

rather expensive costs to incrementally update the SVD. The

123

http://www.cse.ust.hk/graphgen/

98 W. Yu et al.

Inc-SR Inc-uSR Inc-SVD Batch

75K 79K 83K 87K 91K
0

300

600

900

|E| + |∆E| (DBLP)

E
la

p
se

d
T

im
e

(s
ec

)

395K 401K 407K 413K 419K
0

1K

3K

5K

|E| + |∆E| (CitH)

E
la

p
se

d
T

im
e

(s
ec

)

889K 895K 901K 907K 913K
0

0.5

1

1.5

2
·104

|E| + |∆E| (YouTu)

E
la

p
se

d
T

im
e

(s
ec

)

Fig. 7 Time efficiency on real data (�E does not accompany new nodes)

DBLP CitH
70

80

90

100

%
o
f
L
o
ss

le
ss

S
V

D
R

a
n
k

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

Fig. 8 % of lossless SVD rank

results on CitH are more pronounced, e.g., Inc-SR is 30x

better than Inc-SVD when |E | is increased to 401K. (2) Inc-

SR is consistently better than Batch when the edge changes

are fewer than 19.7% on DBLP, and 7.2% on CitH. When

link updates are 5.3% on DBLP (resp. 3.9% on CitH), Inc-

SR improves Batch by 10.2x (resp. 4.9x). This is because

(i) Inc-SR can exploit the sparse structure of �S for incre-

mental update, and (ii) small link perturbations may keep

�S sparsity. Hence, Inc-SR is highly efficient when link

updates are small. (3) The computational time of Inc-SR,

Inc-uSR, Inc-SVD, unlike Batch, is sensitive to the edge

updates |�E |. The reason is that Batch needs to reassess all

similarities from scratch in response to link updates, whereas

Inc-SR and Inc-uSR can reuse the old information in Sim-

Rank for incremental updates. In addition, Inc-SVD is too

sensitive to |�E |, as it entails expensive tensor products to

compute SimRank from the updated SVD matrices.

Figure 8 shows the target rank r required for the Li et

al.’s lossless SVD approach w.r.t. the edge changes |�E | on

DBLP and CitH. The y-axis is r
n

× 100%. On each dataset,

when increasing |�E | from 6K to 18K, we see that r
n

is 95%

on DBLP (resp. 80% on CitH), Thus, r is not negligibly

smaller than n in real graphs. Due to the quartic time w.r.t. r ,

Inc-SVD may be slow in practice to get a high accuracy.

On synthetic data, we fix |V | = 79,483 and vary |E |

from 485K to 560K (resp. 560K to 485K) in 15K increments

(resp. decrements). The results are shown in Fig. 9. We can

Inc-SR Inc-uSR Inc-SVD Batch

485K 500K 515K 530K 545K 560K
0

1K

2K

3K

Edge Insertion (Syn)
E

la
p
se

d
T

im
e

(s
ec

)
560K 545K 530K 515K 500K 485K

0

1K

2K

3K

Edge Deletion (Syn)

E
la

p
se

d
T

im
e

(s
ec

)

Fig. 9 Time efficiency on synthetic data

see that, when 6.4% edges are increased, Inc-SR runs 8.4x

faster than Inc-SVD, 4.7x faster than Batch, and 2.7x faster

than Inc-uSR. When 8.8% edges are deleted, Inc-SR out-

performs Inc-SVD by 10.4x, Batch by 5.5x, and Inc-uSR

by 2.9x. This justifies our complexity analysis of Inc-SR and

Inc-uSR.

8.2.2 Effectiveness of pruning

Figure 10 shows the pruning power of Inc-SR as compared

with Inc-uSR on DBLP, CitH, and YouTu, in which the per-

centage of the pruned node pairs of each graph is depicted

on the black bar. The y-axis is in a log scale. It can be dis-

cerned that, on every dataset, Inc-SR constantly outperforms

Inc-uSR by nearly 0.5 order of magnitude. For instance,

the running time of Inc-SR (64.9s) improves that of Inc-

uSR (314.2s) by 4.8x on CitH, with approximately 82.1%

node pairs being pruned. That is, our pruning strategy is

powerful to discard unnecessary node pairs on graphs with

different link distributions.

Since our pruning strategy hinges mainly on the size of

the “affected areas” of the SimRank update matrix, Fig. 11

illustrates the percentage of the “affected areas” of SimRank

scores w.r.t. link updates |�E | on DBLP, CitH, and YouTu.

We find the following. (1) When |�E | is varied from 6K to

18K on every real dataset, the “affected areas” of SimRank

scores are fairly small. For instance, when |�E | = 12K, the

percentage of the “affected areas” is only 23.9% on DBLP,

123

Dynamical SimRank search on time-varying networks 99

DBLP CitH YouTu
101

102

103

104

% of Pruned

Node-Pairs

76.3%

82.1%

79.4%
E

la
p
se

d
T

im
e

(s
ec

)

Inc-uSR

Inc-SR

Fig. 10 Pruning power

DBLP CitH YouTu
0

20

40

60

80

100

%
o
f
|A

F
F
|

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

Fig. 11 % of affected areas

27.5% on CitH, and 24.8% on YouTu, respectively. This

highlights the effectiveness of our pruning method in real

applications, where a larger number of elements of the Sim-

Rank update matrix with zero scores can be discarded. (2)

For each dataset, the size of the “affect areas” mildly grows

when |�E | is increased. For example, on YouTu, the per-

centage of |AFF| increases from 19.0 to 24.8% when |�E | is

changed from 6K to 12K. This agrees with our time efficiency

analysis, where the speedup of Inc-SR is more obvious for

smaller |�E |.

8.2.3 Time efficiency of Inc-SR-All and Inc-bSR

We next compare the computational time of Inc-SR-All with

Inc-SVD and Batch on DBLP, CitH, and YouTu. For each

dataset, we increase |E | by |�E | that might accompany new

node insertions. Note that Inc-SR cannot deal with such

incremental updates as �S does not make any sense in such

situations. To enable Inc-SVD to handle new node inser-

tions, we view new inserted nodes as singleton nodes in the

old graph G. Figure 12 depicts the results. We can discern that

(1) on every dataset, Inc-SR-All runs substantially faster than

Inc-SVD and Batch when |�E | is small. For example, as

|�E | = 6K on CitH, Inc-SR-All (186s) is 30.6x faster than

Inc-SVD (5692s) and 15.1x faster than Batch (2809s). The

reason is that Inc-SR-All can integrate the merits of Inc-SR

with Inc-uSR-C1, Inc-uSR-C2, Inc-uSR-C3 to dynami-

cally update SimRank scores in a rank-one style with no need

to do costly matrix–matrix multiplications. Moreover, the

complete framework of Inc-SR-All allows itself to support

link updates that enables new node insertions. (2) When |�E |

grows larger on each dataset, the time of Inc-SVD increases

significantly faster than Inc-SR-All. This larger increase is

due to the SVD tensor products used by Inc-SVD. In contrast,

Inc-SR-All can effectively reuse the old SimRank scores to

compute changes even if such changes may accompany new

node insertions.

Figure 13 compares the computational time of Inc-bSR

with Inc-SR-All. From the results, we can notice that, on

each graph, Inc-bSR is consistently faster than Inc-SR-All.

The last column “(%)” denotes the percentage of Inc-bSR

improvement on speedup. On each dataset, the speedup of

Inc-bSR is more apparent when |�E | grows larger. For

example, on DBLP, the improvement of Inc-bSR over Inc-

SR-All is 8.8% when |E | = 75K, and 14.0% when |E | =

83K. On CitH (resp. YouTu), the highest speedup of Inc-

bSR over Inc-SR-All is 20.7% for |E | = 419K (resp. 16.4%

for |E | = 901K). This is because the large size of |�E |

may increase the number of the new inserted edges with

one endpoint overlapped. Hence, more edges can be handled

simultaneously by Inc-bSR, highlighting its high efficiency

over Inc-SR-All.

8.2.4 Total memory usage

Figure 14 evaluates the total memory usage of Inc-SR-All

and Inc-bSR against Inc-SVD on real datasets. Note that the

total memory usage includes the storage of the old SimRanks

required for all-pairs dynamical evaluation. For Inc-SR-All,

we test its three versions: (a) We first switch off our meth-

ods of “pruning” and “column-wise partitioning,” denoted as

“No Optimization”; (b) next turn on “pruning” only; and (c)

finally turn on both. For Inc-SVD, we also tune the default

target rank r = 5 larger to see how the memory space is

affected by r .

The results indicate that (1) on each dataset when the

memory of Inc-SVD and Inc-bSR does not explode, the

total spaces of Inc-SR-All and Inc-bSR are consistently

much smaller Inc-SVD whatever target rank r is. This is

because, unlike Inc-SVD, Inc-SR-All and Inc-bSR need not

memorize the results of SVD tensor products. (2) When the

“pruning” switch is open, the space of Inc-SR-All can be

reduced by ∼ 4x further on real data, due to our pruning

method that discards many zeros in auxiliary vectors and

final SimRanks. (3) When the “column-wise partitioning”

switch is open, the space of Inc-SR-All can be saved by

∼ 100x further. The reason is that, as all pairs of SimRanks

can be computed in a column-by-column style, there is no

need to memorize the entire old SimRank S and auxiliary M.

This improvement agrees with our space analysis in Sect. 7.

(4) The space of Inc-bSR is 8-11x larger than Inc-SR-All,

but is still acceptable. This is because batch updates require

123

100 W. Yu et al.

Inc-SR-All Inc-SVD Batch

75K 79K 83K 87K 91K
0

300

600

900

|E| + |∆E| (DBLP)

E
la

p
se

d
T

im
e

(s
ec

)

395K 401K 407K 413K 419K
0

1K

3K

5K

|E| + |∆E| (CitH)

E
la

p
se

d
T

im
e

(s
ec

)

889K 895K 901K 907K 913K
0

0.5

1

1.5

2
·104

|E| + |∆E| (YouTu)

E
la

p
se

d
T

im
e

(s
ec

)

Fig. 12 Time efficiency on real data (�E accompanies new node insertions)

Data (|E|) Inc-bSR Inc-SR-All (%)

D
B

L
P 75K 14.9 16.3 8.8

83K 70.5 82.0 14.0

91K 315.9 363.8 13.1

C
it

H

395K 50.5 54.5 7.3
407K 241.9 283.5 14.6

419K 1869.1 2357.4 20.7

Y
o
u
T

u 889K 876.6 921.9 4.9

901K 2756.8 3297.4 16.4

913K 10256.1 12109.2 15.3

Fig. 13 Time for batch updates

more space to memorize several columns from the old S to

handle a subset of edge updates simultaneously. (5) For Inc-

SVD, when the target rank r is varied from 5 to 25, its total

space increases from 1.36G to 3.86G on DBLP, but crashes

on CitH and YouTu. This implies that r has a huge impact

on the space of Inc-SVD, and is not negligible in the big-O

analysis of [13].

8.2.5 Exactness

We next evaluate the exactness of Inc-SR-All, Inc-bSR, and

Inc-SVD on real datasets. We leverage the NDCG metrics

[13] to assess the top-100 most similar pairs. We adopt the

results of the batch algorithm [6] on each dataset as the

NDCG100 baselines, due to its exactness. For Inc-SR-All,

we evaluate its two enhanced versions: “with column-wise

partitioning” and “with pruning”; for Inc-SVD, we tune its

target rank r from 5 to 25.

Figure 15 depicts the results, showing the following.

(1) On each dataset, the NDCG100s of Inc-SR-All and

Inc-bSR are 1, which are better than Inc-SVD (< 0.62).

This agrees with our observation that Inc-SVD may loss

eigen-information in real graphs. In contrast, Inc-SR-All and

Inc-bSR guarantee the exactness. (2) The NDCG100s for the

two versions of Inc-SR-All are exactly the same, implying

that both our pruning and column-wise partitioning methods

are lossless while achieving high speedup.

8.2.6 Scalability on large graphs

To evaluate the scalability of our incremental techniques, we

run Inc-SR-All-P, a memory-efficient version of Inc-SR,

on six real graphs (WebB, WebG, CitP, SocL, UK05, and

IT04), and compare its performance with LTSF. Both Inc-

SR-All-P and LTSF can compute any single column, S⋆,u ,

of S with no need to memorize all n2 pairs of the old S.

To choose the query node u, we randomly pick up 10,000

queries from each medium-sized graph (WebB and WebG),

and 1000 queries from each large-sized graph (CitP, SocL,

UK05, and IT04). To ensure every selected u can cover a

board range of any possible queries, for each dataset, we first

sort all nodes in V in descending order based on their impor-

tance that is measured by PageRank (PR), and then split all

nodes into 10 buckets: nodes with PR ∈ [0.9, 1] are in the

first bucket; nodes with PR ∈ [0.8, 0.9) the second, etc. For

every medium- (resp. large-) sized graph, we randomly select

1000 (resp. 100) queries from each bucket, such that u con-

tains a wide range of various types of queries. To generate

dynamical updates, we follow the settings in [20], randomly

choosing 1000 edges, and considering 80% of them as inser-

tions and 20% deletions.

Figure 16 compares the average time of Inc-SR-All-P

and LTSF required to compute any column S⋆,u w.r.t. a given

query u for each edge update on six real graphs. It can be dis-

cerned that, on each dataset, Inc-SR-All-P is scalable well

over large graphs, and runs consistently 4–7x faster than log-

based LTSF per edge update. On one-billion-edge graphs

(IT04), for every edge update, the updating time of Inc-SR-

All-P (69.301s) is 7.3x faster than that of LTSF (505.794 s).

This is because the time of LTSF is dominated by its cost of

merging Rg = 100 one-way graphs’ log buffers for updat-

ing the index. For example, on large IT04, almost 99.92%

time required by LTSF is due to its merge operations. In

comparison, our memory-efficient method for Inc-SR-All-

123

Dynamical SimRank search on time-varying networks 101

Datasets

Inc-SR-All Inc-bSR Inc-SVD

No

Optimization

Turn on

Pruning

Turn on Column-

wise Partitioning

Turn on Pruning
& Column-wise

Partitioning

r = 5 r = 15 r = 25

DBLP 722.5M 163.1M 1.3M 15.0M 1.36G 1.97G 3.86G

CitH 1.64G 413.9M 4.2M 34.8M 4.83G — —

YouTu — — 12.7M 186.2M — — —

Fig. 14 Total memory efficiency on real data (“—” means memory explosion)

DBLP CitH YouTu
0

0.2

0.4

0.6

0.8

1

N
D

C
G

1
0
0

Inc-SR-All
(Partitioning)
Inc-SR-All
(Pruning)
Inc-bSR
Inc-SVD (5)
Inc-SVD (15)
Inc-SVD (25)

Fig. 15 Exactness

Datasets Inc-SR-All-P
L-TSF

Total Index (Merge) Query

WebB 0.453 4.764 4.758 0.006

WebG 1.440 6.883 6.876 0.007

CitP 3.820 20.549 20.536 0.013
SocL 35.393 67.372 67.322 0.050

UK05 63.125 460.718 460.360 0.358

IT04 69.301 505.794 505.400 0.393

Fig. 16 Avg time (s) for S⋆,u per edge update

P takes advantage of the rank-one Sylvester equation which

computes the updates to S⋆,u in a column-by-column style

on demand, without the need to merge one-way graphs and

memorize all pairs of old S in advance.

Figure 17 shows the time complexities of Inc-SR-All-P

for four cases of edge insertions on each real dataset. For

every graph, we randomly select 1000 edges {(i, j)} for inser-

tion updates, with nodes i and j , respectively, having the

probability 1/2 to be picked up from the old vertex set V .

Hence, each case of edge insertion occurs at 1/4 probability.

For each insertion case, we sum all the time spent in this case,

and divide it by the total number of edge insertions counted

for this case. Figure 17 reports the average time per edge

update for each case, together with the preprocessing time

over each dataset (including the cost of loading the graph

and preparing its transition matrix Q). From the results, we

see that, on each dataset, the time spent for Cases (C0) and

(C2) is moderately higher than that for Case (C1); Case (C0)

is slightly slower than Case (C2); Case (C3) entails the low-

est time cost. These results are consistent with our intuition

and mathematical formulation of �S for each case. Case

(C0) has the most expensive time cost as it needs to itera-

tively prepare vectors ξ k and ηk , and old similarities S⋆,i and

WebB WebG CitP SocL IT04 UK05
0.1

1

101

102

A
v
er

a
g
e

T
im

e
P
er

E
d
g
e

In
se

rt
io

n
(S

ec
s) Preprocessing

Case 0
Case 1
Case 2
Case 3

Fig. 17 Avg time for each insertion case

S⋆, j via matrix–vector products. In contrast, Case (C2) only

requires to iteratively prepare ξ k, ηk and S⋆,i ; Case (C1) just

requires to perform one matrix–vector product to prepare one

vector y. For Case (C3), the new inserted edge forms a new

component of the graph. There is no precomputation of any

auxiliary vectors, and thus Case (C3) is the fastest.

8.2.7 Precision

To compare the precision of Inc-SR-All-P and LTSF, we

define the precision measure [10] for top-k querying:

Precision =
|approximate top-k set ∩ exact top-k set|

k
.

The original batch algorithm in [9] (resp. [13]) serves as the

exact solution to obtain SimRank results for LTSF (resp. Inc-

SR-All-P). We evaluate the precision of both algorithms on

several real datasets. Figure 18 reports the results on YouTu;

the tendencies on other datasets are similar. We see that,

when top-k varies from 10 to 105, the precision of LTSF

remains high (> 84%) for small top-k (< 1000), but is lower

(68–75%) for large top-k (> 104). This is because the prob-

abilistic guarantee for the error bound of LTSF is based on

the assumption that no cycle in the given graph has a length

shorter than K (the total number of steps). Hence, LTSF is

highly efficient for top-k single-source querying, where k is

not large. In contrast, the precision of Inc-SR-All-P is stable

at 1, meaning that it produces the exact SimRank results of

[13], regardless of its top-k size. Thus, Inc-SR-All-P is better

for non-top-k query.

123

102 W. Yu et al.

10 100 1000 104 105
0

0.2

0.4

0.6

0.8

1

top k

P
re

ci
si

o
n

Inc-SR-All-P

L-TSF

Fig. 18 Precision on YouTu

WebB WebG CitP SocL IT04 UK05
10M

100M

1G

10G

100G

M
em

o
ry

S
p
a
ce

Inc-SR-All-P

L-TSF

Fig. 19 Memory of Inc-SR-All-P and LTSF

8.2.8 Memory of Inc-SR-All-P

Figure 19 evaluates the memory usage of Inc-SR-All-P and

LTSF over six real datasets. We observe that both algorithms

scale well on large graphs. On WebB, IT04, and UK05, the

memory space of Inc-SR-All-P is almost the same as LTSF;

On WebG, CitP, and SocL, the memory usage of Inc-SR-

All-P is 5–8x less than LTSF. This is because, unlike LTSF

that need load a one-way graph to memory, Inc-SR-All-P

only requires to prepare the vector information of ξ k, ηk , old

S⋆,i , and old S⋆, j to assess the changes to each column of

S in response to edge update (i, j). The memory space of

these auxiliary vectors can sometimes be comparable to the

size of the one-way graph and sometimes be much smaller.

However, such memory space is linear to n as we do not need

n2 space to store the entire old S. Note that the old S⋆, j and

S⋆,i can be computed on demand with only linear memory by

our partial-pairs SimRank approach [27]. Moreover, we see

that, with the growing scale of the real datasets, the memory

space of Inc-SR-All-P is increasing linearly, highlighting its

scalability on large graphs.

Figure 20 depicts further the average memory usage of

Inc-SR-All-P for each case of edge insertion. We randomly

pick up 1000 edges {(i, j)} for insertion updates on each

dataset, with nodes i and j , respectively, having the proba-

bility 1/2 to be chosen from the old vertex set V . The average

memory space of Inc-SR-All-P for each case is reported in

Fig. 20. We see that, on each dataset, the memory required for

Cases (C0), (C1), and (C2) are similar, whereas the memory

space of Case (C3) is much smaller than the other cases. The

reason is that, for Cases (C0), (C1), and (C2), Inc-SR-All-

WebBWebG CitP SocL IT04 UK05
100K

10M

1G

100G

A
v
er

a
g
e

M
em

o
ry

P
er

E
d
g
e

In
se

rt
io

n

Case 0 Case 1
Case 2 Case 3

Fig. 20 Memory for each insertion case

P needs linear memory to store some auxiliary vectors (e.g.,

ξ k, ηk , y, old S⋆,i , and old S⋆, j) for updating SimRank scores,

whereas for Case (C3), no auxiliary vectors are required for

precomputation, thus saving much memory space.

9 Related work

Recent results on SimRank can be distinguished into two

categories: (i) dynamical SimRank [8,10,13,20,25] and (ii)

static SimRank [5,6,11,12,14–16,24].

9.1 Incremental SimRank

Li et al. [13] devised an interesting matrix representation

of SimRank, and was the first to show a SVD method for

incrementally updating all-pairs SimRanks, which requires

O(r4n2) time and O(r2n2) memory. However, their incre-

mental techniques are inherently inexact, with no guaranteed

accuracy.

Recently, Shao et al. [20] provided an excellent exposition

of a two-stage random sampling framework, TSF, for top-k

SimRank dynamic search w.r.t. one query u. In the prepro-

cessing stage, they sampled a collection of one-way graphs to

index random walks in a scalable manner. In the query stage,

they retrieved similar nodes by pruning unqualified nodes

based on the connectivity of one-way graph. To retrieve top-k

nodes with highest SimRank scores in a single column S⋆,u ,

[20] requires O(K 2 Rq Rg) average query time to retrieve

S⋆,u along with O(n log k) time to return top-k results from

S⋆,u . The recent work of Jiang et al. [10] has argued that, to

retrieve S⋆,u , the querying time of [20] is O(K n Rq Rg). The

n factor is due to the time to traverse the reversed one-way

graph; in the worst case, all n nodes are visited. Moreover,

Jiang et al. [10] observed that the probabilistic error guar-

antee of Shao et al.’s method is based on the assumption

that no cycle in the given graph has a length shorter than K ,

and they proposed READS, a new efficient indexing scheme

that improves precision and indexing space for dynamic Sim-

Rank search. The query time of READS is O(rn) to retrieve

one column S⋆,u , where r is the number of sets of random

walks. Hence, TSF and READS are highly efficient for top-k

123

Dynamical SimRank search on time-varying networks 103

single-source SimRank search. In comparison, our dynam-

ical method focuses on all (n2)-pairs SimRank search in

O(K (m + |AFF|)) time. Optimization methods in this work

are based on a rank-one Sylvester matrix equation charac-

terizing changes to n2 pairs of SimRank scores, which is

fundamentally different from [10,20]’s methods that main-

tain one-way graphs (or SA forests) updating. It is important

to note that, for large-scale graphs, our incremental meth-

ods do not need to memorize all (n2) pairs of old SimRank

scores, and can dynamically update S column-wisely in only

O(K n + m) memory. For updating each column of S, our

experiments in Sect. 8 verify that our memory-efficient incre-

mental method is scalable on large real graphs while running

4–7 times faster than the dynamical TSF [20] per edge update,

due to the high cost of [20] merging one-way graph’s log

buffers for TSF indexing.

There has also been a body of work on incremental com-

putation of other graph-based relevance measures. Banhmani

et al. [1] utilized the Monte Carlo method for incrementally

computing Personalized PageRank. Desikan et al. [3] pro-

posed an excellent incremental PageRank algorithm for node

updating. Their central idea revolves around the first-order

Markov chain. Sarma et al. [19] presented an excellent expo-

sition of randomly sampling random walks of short length,

and merging them together to estimate PageRank on graph

streams.

9.2 Batch SimRank

In comparison to incremental algorithms, the batch SimRank

computation has been well-studied on static graphs.

For deterministic methods, Jeh and Widom [9] were the

first to propose an iterative paradigm for SimRank, entailing

O(K d2n2) time for K iterations, where d is the average

in-degree. Later, Lizorkin et al. [16] utilized the partial

sums memorization to speed up SimRank computation to

O(K dn2). Yu et al. [24] have also improved SimRank com-

putation to O(K d ′n2) time (with d ′ ≤ d) via a fine-grained

memorization to share the common parts among different

partial sums. Fujiwara et al. [6] exploited the matrix form

of [13] to find the top-k similar nodes in O(n) time w.r.t. a

given query node. All these methods require O(n2) mem-

ory to output all pairs of SimRanks. Recently, Kusumoto

et al. [11] proposed a linearized method that requires only

O(dn) memory and O(K 2dn2) time to compute all pairs

of SimRanks. The recent work of [27] proposes an efficient

aggregate method for computing partial pairs of SimRank

scores. The main ideas of partial-pairs SimRank search are

also incorporated into the incremental model of our work,

achieving linear memory to update n2-pairs similarities.

For parallel SimRank computing, Li et al. [15] proposed

a highly parallelizable algorithm, called CloudWalker, for

large-scale SimRank search on Spark with ten machines.

Their method consists of offline and online phases. For offline

processing, an indexing vector is derived by solving a linear

system in parallel. For online querying, similarities are com-

puted instantly from the index vector. Throughout, the Monte

Carlo method is used to maximally reduce time and space.

The recent work of Zhang et al. [33] conducted extensive

experiments and discussed in depth many existing SimRank

algorithms in a unified environment using different metrics,

encompassing efficiency, effectiveness, robustness, and scal-

ability. The empirical study for 10 algorithms from 2002 to

2015 shows that, despite many recent research efforts, the

running time and precision of known algorithms have still

much space for improvement. This work makes a further

step toward this goal.

Fogaras and Rácz [5] proposed P-SimRank in linear time

to estimate a single-pair SimRank s(a, b) from the probabil-

ity that two random surfers, starting from a and b, will finally

meet at a node. Li et al. [14] harnessed the random walks to

compute local SimRank for a single node pair. Later, Lee

et al. [12] employed the Monte Carlo method to find top-k

SimRank node pairs. Tao et al. [22] proposed an excellent

two-stage way for the top-k SimRank-based similarity join.

Recently, Tian and Xiao [23] proposed SLING, an effi-

cient index structure for static SimRank computation. SLING

requires O(n/ǫ) space and O(m/ǫ + n log n
δ
/ǫ) precompu-

tation time and answers any single-pair (resp. single-source)

query in O(1/ǫ) (resp. O(n/ǫ)) time.

10 Conclusions

In this article, we study the problem of incrementally updat-

ing SimRank scores on time-varying graphs. Our complete

scheme, Inc-SR-All, consists of five ingredients: (1) For

edge updates that do not accompany new node insertions, we

characterize the SimRank update matrix �S via a rank-one

Sylvester equation. Based on this, a novel efficient algorithm

is devised, which reduces the incremental computation of

SimRank from O(r4n2) to O(K n2) for each link update.

(2) To eliminate unnecessary SimRank updates further, we

also devise an effective pruning strategy that can improve the

incremental computation of SimRank to O(K (m +|AFF|)),

where |AFF| (≪ n2) is the size of the “affected areas” in the

SimRank update matrix. (3) For edge updates that accom-

pany new node insertions, we consider three insertion cases,

according to which end of the inserted edge is a new node.

For each case, we devise an efficient incremental SimRank

algorithm that can support new node insertions and accu-

rately update the affected similarities. (4) For batch updates,

we also propose efficient batch incremental methods that

can handle “similar sink edges” simultaneously and elimi-

nate redundant edge updates. (5) To optimize the memory

for all-pairs SimRank updates, we also devise a column-

123

104 W. Yu et al.

wise memory-efficient technique that significantly reduces

the storage from O(n2) to O(K n + m), without the need

to memorize n2 pairs of SimRank scores. Our experimen-

tal evaluations on real and synthetic datasets demonstrate

that (a) our incremental scheme is consistently 5–10 times

faster than Li et al.’s SVD-based method; (b) our pruning

strategy can speed up the incremental SimRank further by

3–6 times; (c) the batch update algorithm enables an extra

5–15% speedup, with just a little compromise in memory;

(d) our memory-efficient incremental method is scalable on

billion-edge graphs; for every edge update, its computational

time can be 4–7 times faster than LTSF and its memory space

can be 5–8 times less than LTSF; (e) for different cases of

edge updates, Cases (C0) and (C2) entail more time than

Case (C1), and Case (C3) runs the fastest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and per-

sonalized PageRank. PVLDB 4(3), 173–184 (2010)

2. Berkhin, P.: Survey: a survey on PageRank computing. Internet

Math. 2, 73–120 (2005)

3. Desikan, P.K., Pathak, N., Srivastava, J., Kumar, V.: Incremental

PageRank computation on evolving graphs. In: WWW, pp. 1094–

1095 (2005)

4. Fogaras, D., Rácz, B.: Scaling link-based similarity search. In:

WWW, pp. 641–650 (2005)

5. Fogaras, D., Rácz, B.: Practical algorithms and lower bounds for

similarity search in massive graphs. IEEE Trans. Knowl. Data Eng.

19, 585–598 (2007)

6. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient

search algorithm for SimRank. In: ICDE, pp. 589–600 (2013)

7. Garg, S., Gupta, T., Carlsson, N., Mahanti, A.: Evolution of an

online social aggregation network: an empirical study. In: Internet

Measurement Conference, pp. 315–321 (2009)

8. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation

on large graphs with iterative aggregation. In: KDD, pp. 543–552

(2010)

9. Jeh, G., Widom, J.: SimRank: a measure of structural-context sim-

ilarity. In: KDD, pp. 538–543 (2002)

10. Jiang, M., Fu, A.W., Wong, R.C., Wang, K.: READS: a ran-

dom walk approach for efficient and accurate dynamic SimRank.

PVLDB 10(9), 937–948 (2017)

11. Kusumoto, M., Maehara, T., Kawarabayashi, K.: Scalable similar-

ity search for SimRank. In: SIGMOD, pp. 325–336 (2014)

12. Lee, P., Lakshmanan, L.V., Yu, J.X.: On top-k structural similarity

search. In: ICDE, pp. 774–785 (2012)

13. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast com-

putation of SimRank for static and dynamic information networks.

In: EDBT, pp. 465–476 (2010)

14. Li, P., Liu, H., Yu, J.X., He, J., Du, X.: Fast single-pair SimRank

computation. In: SDM, pp. 571–582 (2010)

15. Li, Z., Fang, Y., Liu, Q., Cheng, J., Cheng, R., Lui, J.C.S.: Walking

in the cloud: parallel SimRank at scale. PVLDB 9(1), 24–35 (2015)

16. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy

estimate and optimization techniques for SimRank computation.

PVLDB 1, 422–433 (2008)

17. Ntoulas, A., Cho, J., Olston, C.: What’s new on the web? The

evolution of the web from a search engine perspective. In: WWW,

pp. 1–12 (2004)

18. Rothe, S., Schütze, H.: CoSimRank: A flexible & efficient graph-

theoretic similarity measure. In: ACL, pp. 1392–1402 (2014)

19. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating PageRank

on graph streams. J. ACM 58, 13 (2011)

20. Shao, Y., Cui, B., Chen, L., Liu, M., Xie, X.: An efficient similarity

search framework for SimRank over large dynamic graphs. PVLDB

8(8), 838–849 (2015)

21. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based

top-k similarity search in heterogeneous information networks.

PVLDB 4, 992–1003 (2011)

22. Tao, W., Yu, M., Li, G.: Efficient top-k SimRank-based similarity

join. PVLDB 8(3), 317–328 (2014)

23. Tian, B., Xiao, X.: SLING: a near-optimal index structure for Sim-

Rank. In: SIGMOD, pp. 1859–1874 (2016)

24. Yu, W., Lin, X., Zhang, W.: Towards efficient SimRank computa-

tion on large networks. In: ICDE, pp. 601–612 (2013)

25. Yu, W., Lin, X., Zhang, W.: Fast incremental SimRank on link-

evolving graphs. In: ICDE, pp. 304–315 (2014)

26. Yu, W., McCann, J.A.: Sig-SR: SimRank search over singular

graphs. In: SIGIR, pp. 859–862 (2014)

27. Yu, W., McCann, J.A.: Efficient partial-pairs SimRank search for

large networks. PVLDB 8(5), 569–580 (2015)

28. Yu, W., McCann, J.A.: High quality graph-based similarity

retrieval. In: SIGIR, pp. 83–92 (2015)

29. Yu, W., Lin, X., Zhang, W., McCann, J.A.: Fast all-pairs SimRank

assessment on large graphs and bipartite domains. IEEE Trans.

Knowl. Data Eng. 27, 1810–1823 (2015)

30. Yu, W., McCann, J.A.: Gauging correct relative rankings for simi-

larity search. In: CIKM, pp. 1791–1794 (2015)

31. Yu, W., McCann, J.A.: Random walk with restart over dynamic

graphs. In: ICDM, pp. 589–598 (2016)

32. Yu, W., Lin, X., Zhang, W., McCann, J.A.: Dynamical

SimRank search on time-varying networks. Technical report,

arXiv:1711.00121 (2017)

33. Zhang, Z., Shao, Y., Cui, B., Zhang, C.: An experimental eval-

uation of SimRank-based similarity search algorithms. PVLDB

10(5), 601–612 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1711.00121
https://arxiv.org/abs/1711.00121

	Dynamical SimRank search on time-varying networks
	Abstract
	1 Introduction
	1.1 Main contributions

	2 SimRank background
	2.1 Li et al.'s SimRank model
	2.2 Jeh and Widom's SimRank model

	3 Edge update without node insertions
	3.1 The main idea
	3.2 Describing u, v,w in Eqs. (4) and (6)
	3.3 Characterizing ΔS
	3.4 Deleting an edge (i,j)i inV, j inV from G=(V,E)
	3.5 Inc-uSR algorithm

	4 Pruning unnecessary node pairs in ΔS
	4.1 Affected areas in ΔS
	4.2 Inc-SR algorithm with pruning

	5 Edge update with node insertions
	5.1 Inserting an edge (i,j) with i inV and j -.25ex-.25ex-.25ex-.25exV
	5.2 Inserting an edge (i,j) with i -.25ex-.25ex-.25ex-.25exV and j inV
	5.3 Inserting an edge (i,j) with i -.25ex-.25ex-.25ex-.25exV and j -.25ex-.25ex-.25ex-.25exV

	6 Batch updates
	7 Memory efficiency
	7.1 Avoid storing n timesn elements of old S
	7.2 Compute [MK], x and [MK]x, in linear memory

	8 Experimental evaluation
	8.1 Experimental settings
	8.2 Experimental results
	8.2.1 Time efficiency of Inc-SR and Inc-uSR
	8.2.2 Effectiveness of pruning
	8.2.3 Time efficiency of Inc-SR-All and Inc-bSR
	8.2.4 Total memory usage
	8.2.5 Exactness
	8.2.6 Scalability on large graphs
	8.2.7 Precision
	8.2.8 Memory of Inc-SR-All-P

	9 Related work
	9.1 Incremental SimRank
	9.2 Batch SimRank

	10 Conclusions
	References

