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Abstract: Due to requirements of their operating conditions, such as high speed, high flexibility and

high efficiency, rotating machines are designed to obtain larger operating ranges. These operating

conditions can increase the risk of fluid-induced instability. In fact, the presence of non-linear fluid

forces when the threshold speed is overcome by the rotational speed, can generate rotor lateral

self-excited vibrations known as “oil whirl” or “oil whip”. These instabilities derive from the

interaction between the rotor and the sliding bearing and they are typically sub-synchronous and

they contribute to eventual rubbing between rotor and stator with consequent damage to the rotating

machines. For these reasons, the aim of this paper is to numerically investigate the differences in the

dynamic behaviour of a flexible rotor supported by cylindrical lubricated journal bearings. The study

considers two different cases, uncavitated and cavitated lubricated films, in order to develop an

original Matlab-Simulink algorithm for the numerical solution of the differential non-linear equations

of motion of the unbalanced flexible rotor supported on hydrodynamic journal bearings. The bearings

were modelled as uncavitated and cavitated (π-Film) short bearings derived from classical Reynolds’

theory. Dynamic simulation allowed prediction of the shape and size of the orbit performed by the

system and evaluation of the vibrating phenomena exerted by the rotor during the motion. The results

show that cavitation completely modifies the behaviour of the system in every aspect. The analysis of

the diagrams obtained showed that the proposed algorithm provides consistent results and represents

a valuable instrument for dynamic analysis of rotating systems.

Keywords: rotor dynamics; journal bearing; cavitation; Matlab-Simulink algorithm

1. Introduction

Hydrodynamic journal bearings are extensively used to support rotors in turbomachinery.

They can ensure low wear rate and high load-carrying capacity in a wide range of applications [1].

The coupled analysis of the rotor and journal bearing is of fundamental importance in the case of a

flexible rotor in order to guarantee reliable operation of these dynamic systems. From a dynamical

point of view, it is well known that a special type of self-excited vibrations may occur in the rotors

mounted on journal bearings due to fluid dynamic phenomena in the oil film [2]. Instability phenomena

due to the interaction between the rotating system and the oil film of the journal bearing are known as

oil whirl and oil whip. They are characterized by sub-synchronous precessional motions [3,4]. In the

presence of the oil whirl phenomenon, the whirl frequency increases with rotational speed, and it
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is typically around half the rotational speed. The residual unbalance give rise to a synchronous

motion to which the whirl frequency is superimposed. Instability due to oil whip phenomena

occurs when the sub-synchronous whirl frequency reaches the natural frequency of the elastic rotor

system [5]. Oil whip instability is typically characterized by high vibration amplitudes. For this

reason, this instability requires careful analysis in order to prevent excessive wear or even failure of

the dynamical system. Typically, these instabilities are due to the forces of the oil film [6] and can

be analysed in terms of stiffness and damping coefficients of the rotating system. In the last few

years, research has demonstrated that the oil whirl occurs when the journal bearing operates with

micropolar lubricant [6–10]. For this reason, the effect of the contamination of the lubricants [11]

and of non-linear behaviour of film-oil journal bearings in rotating machines have been studied

by many authors [12]. Harika et al. investigated the effect of water contamination of lubricants

on hydrodynamic lubrication and the results show that the viscosity of the lubricant is modified

by the presence of water in the lubricating oil. The same occurs for the thermal properties of the

lubricant. In fact, the viscosity increase leads to an increase in the film thickness that can generate

instability of the bearing under these operating conditions [13]. In addition, the bearing performance,

in order to avoid instability phenomena, has been analysed, studied and simulated by considering

factors such as misalignment [10], elasticity of the bearing liner [14], dynamic conditions and surface

roughness [15,16]. Pennacchi et al. presented a study on the nonlinear effects caused by coupling

misalignment in rotors equipped with journal bearings. The results of their simulations showed the

presence of nonlinear effects in the system response [17]. Lund and Sternlicht [18] mathematically

described a flexible rotor on fluid film bearing by coupling the dynamic characteristics of the bearing

with the elastic characteristics of the rotor. They introduced the linearization of bearing forces predicted

by the Reynolds equation, around its static equilibrium condition. This method has mostly been used

for stability calculations. Subsequently, thanks to more powerful calculation systems and more precise

simulation algorithms, it became possible to analyse different phenomena [19,20], such as: cavitation

effects [21], thermal effects, shaft tilting effects and fluid inertia effects [22,23]. The behaviour of a

dynamic system is mainly mathematically analysed by the representation in the state space and the

formalism of the frequency domain. Van der Pol et al. verified empirically that the response of a

system depends on the frequency of the driving force and that the same system can reveal different

sub-harmonic motions depending on the initial conditions imposed [24]. This phenomenon is an

important feature of non-linear systems. They also observed that if two dynamic systems have very

similar initial conditions, the initial transient can also apparently be the same, but the final motion

is completely different. Obviously, if the initial conditions of the two systems are the same, then the

deterministic nature of equations ensures that the motion is identical for all of the time. However,

uncertainty on the initial conditions is inevitable due to the physical nature of the systems; therefore,

divergence of the motions cannot be avoided in the chaotic regime. This phenomenon is evident in the

phase diagram.

The studies conducted by Van der Pol led to the conclusion that a combination of random events

is very common in non-linear dynamics. Lorenz continued these studies and with the introduction of

the concept of chaotic attractors, he built the first example of chaotic dynamics. In fact, the analysis

of the power spectrum is an excellent instrument for identifying the attractors in the phase space.

If the spectrum is continuous, then there is a chaotic attractor; if it is discrete, it denotes the absence of

chaos [25]. The aim of this paper is to numerically investigate the differences in the dynamic behaviour

of a flexible rotor supported by cylindrical lubricated journal bearings. The simulation was carried

out by developing a new Matlab-Simulink algorithm for the numerical solution of the differential

non-linear equations of motions of the unbalanced flexible rotor supported on hydrodynamic journal

bearings. The bearings were modelled by using the Reynolds’ theory and adopting the models of

Uncavitated and Cavitated (π-Film) Short Bearings. For the simulation, five real dynamic cases for the

rotor bearing system were used.
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2. Materials and Methods

2.1. The System

The analysed system consists of a hard disk spliced in the centreline of a flexible shaft. The disc has

mass 2 m (Figure 1). The shaft is a thin bar of circular cross section and it has negligible mass compared

to that of the disc. With these assumptions, the mass and the inertia contribution are exclusively from

the disc. The flexibility originates exclusively from the shaft.

Figure 1. Scheme of rotor bearing system.

The disc is stiff and thin. It also remains perpendicular to the axis of rotation during the motion,

thus the gyroscopic effect is negligible. The disc is also provided with a static imbalance, whereby the

geometric centre does not coincide with the centre of mass.

The bearings are represented by cylindrical elements placed at the ends of the shaft and have the

same characteristics.

Finally, it is possible to affirm that:

• the system is completely symmetrical with respect to the disc

• the motion of the disk is plane.

2.2. Journal Bearings

Under classical hypotheses of fluid-dynamic isoviscous lubrication, the Reynold’s equation, for

the lubricated dynamical system under investigation, can be written in cylindrical coordinates [26]

(Figure 2):

∂

∂θ

[

(1 + ǫcosθ)3 ∂p

∂θ

]

+ R2 ∂

∂z

[

(1 + ǫcosθ)3 ∂p

∂z

]

= −6µ

(

R

C

)2
[(

ω − 2
.
ψ
)

ǫsinθ − 2
.
ǫcosθ

]

(1)

It is well known that under the hypothesis of a short bearing, it is possible to obtain a simplification

of Reynold’s equation, for approaching simple analytical fluid film force expressions, which are useful

in many rotor dynamic design problems.

In order to analyse and simulate the real behaviour of a flexible rotating dynamic system,

the effects due to the cavitation (π-Film) of the lubricating fluid film must be taken into account [26].



Lubricants 2018, 6, 40 4 of 29

The effects due to the cavitation of the fluid film add up to the force exerted on the journal by

the bearing. The latter is calculated by integrating the pressure over the entire surface. The supply

pressure and the eccentricity determine the extent of cavitation.

For this reason, in this paper two different configurations of the rotating system will be analysed,

the uncavitated short bearing and the cavitated (π-Film) short bearing.

The two components of the fluid film force derive from a solution of the integrals, by setting the

appropriate values of θ1 and θ2 according to the uncavitated and cavitated models:

Fr = Fcosψ =

L
∫

0

R
∫ θ2

θ1

p(θ, z)cosθdθdz (2)

Ft = Fsinψ =

L
∫

0

R
∫ θ2

θ1

p(θ, z)sinθdθdz (3)

Under this hypothesis the two force component for both cases are [26]:

Uncavitated Short Bearing

Fr = −µRL

(

L

C

)2 π
(

1 + 2ε2
) .
ε

(1 − ε2)
5
2

(4)

Ft = µRL

(

L

C

)2

(ω − 2
.

ψ)
ε

2(1 − ε2)
3
2

(5)

Cavitated (π-Film) Short Bearing

Fr = −µRL

(

L

C

)2
[

∣

∣
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.
ψ
∣

∣

∣

ε2

(1 − ε2)
2
+

π
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) .
ε
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2

]
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Ft = µRL

(

L

C

)2
[

(ω − 2
.

ψ)
πε

4(1 − ε2)
3/2

+
2ε

.
ε

(1 − ε2)
2

]

+ 2RLp0 (7)

The expression in polar coordinates (ε, ψ) is very compact, but it is convenient, in order to

define the equation of motion in a Cartesian system as shown in Figure 2, in which the centre of the

coordinates is the centre of the bearing.

The coordinate transformation is given by [26]:

[

Fx

Fy

]

=

[

sinψ cosψ

−cosψ sinψ

][

Fr

Ft

]

(8)

{

x = esinψ

y = −ecosψ
(9)

where the x and y represent the coordinates of the centre of the journal. The fluid film force will be not

linearized because the analysis is desired for large motion.
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Figure 2. Journal bearing geometry.

2.3. Equations of Motion

The scalar equations of motion of the rotor-bearing system can be written as follows [26]:



















m
..
x + k

(

xC − xJ

)

= muω2sinωt (10)

m
..
y + k

(

yC − yJ

)

= −muω2cosωt − W (11)

Fx

(

xJ ,
.

xJ , yJ ,
.
yJ

)

= −k
(

xC − xJ

)

(12)

Fy

(

xJ ,
.

xJ , yJ ,
.
yJ

)

= −k
(

yC − yJ

)

(13)

in which Equations (10) and (11) have been obtained by imposing the dynamic balance of the centre of

the disc C. Equations (12) and (13) have been derived from the dynamic balance of the centre of the

Journal J.

The forces acting on the centre of the disc are:

• force of inertia

• spring force (k is the flexural stiffness of the shaft)

• centrifugal force of inertia

• static load (due to the rotor weight).

The forces acting on the centre of the journal are:

• nonlinear fluid film force

• spring force.

Since the shaft is massless, no inertia force acts on the centre of the journal. The system consists

of four equations and four unknowns, xC, xJ , yC and yJ . The unknowns are the coordinates of the

journal centre and of the disc centre.

2.4. Numerical Integration of the Equations of Motion

With the aim of obtaining a numerical solution for the dynamic system of Equations (10)–(13),

in this study an original algorithm was developed in the Matlab®-Simulink environment. Figure 3

shows as example the global Simulink scheme in the case of an uncavitated bearing.

Each part of the scheme corresponds to an equation from the system of Equations (10)–(13).

In Figure 4, it is possible to observe the top of Figure 3 corresponding to Equation (10) in detail.
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In Figure 5, it is possible to observe the bottom of Figure 3 corresponding to Equation (13) in detail.

Figure 3. Simulink algorithm scheme for the uncavitated short bearing.

Figure 4. Simulink algorithm scheme—detail of Equation (10).
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Figure 5. Simulink algorithm scheme—detail of Equation (13). The variables (a,b) represent the

coordinates of the centre of the journal (xj,yj).

The “auxiliary variables” were built in order to simplify the non-linear equations. These auxiliary

variables are time-varying functions. In fact, they contain the coordinates of the centre of the journal.

In the case of the uncavitated short bearing, the auxiliary variables that appear in Figures 3 and 5, are:

M =
π

(

c2 + 2x2
j + 2y2

j

)

c2

(

c2
− x2

j − y2
j

)5/2(

x2
j + y2

j

)

(14)

N =
c2

2
(

c2
− x2

j − y2
j

)3/2
(15)

P =
2

(

x2
j + y2

j

) (16)

The Simulink scheme for the Cavitated (π-Film) Short Bearing model is similar, but it was

necessary to implement more auxiliary variables because of the greater mathematical complexity of

this model. In this case the auxiliary variables, shown below, are:

M =
2

(

x2
j + y2

j

) (17)

N =

(

x2
j + y2

j

)1/2

(

c2
− x2

j − y2
j

)2
(18)

P =
1.57

(

c2 + 2x2
j + 2y2

j

)

(

c2
− x2

j − y2
j

)5/2(

x2
j + y2

j

)

(19)
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Q =
0.875

(

c2
− x2

j − y2
j

)3/2
(20)

R =
2

(

c2
− x2

j − y2
j

)2(

x2
j + y2

j

)1/2
(21)

S =
2RLp0

(

x2
j + y2

j

)1/2
(22)

For the simulation, five real dynamic cases for the rotor bearing system were used. Table 1

shows the values of the parameters related to the Uncavitated Short Bearing and Cavitated (π-Film)

Short Bearing.

Table 1. Simulation parameters and initial condition for the Uncavitated Short Bearing and for the

Cavitated (π-Film) Short Bearing.

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

m (kg) 10 1.5 5 × 101 2 2

K (N/m) 106 4 × 106 107 3 × 105 3 × 105

u (m) 10−4 10−3 10−5 10−5 10−5

R (m) 5 × 10−2 1.6 × 10−2 2 × 10−2 5 × 10−3 5 × 10−3

L (m) 5 × 10−2 1.6 × 10−2 2 × 10−2 5 × 10−3 5 × 10−3

µ (kg/s) 2 × 10−2 3.4 × 10−2 2.5 × 10−2 2 × 10−2 2 × 10−2

ω (Hz) 50 100 15.92 31.83 31.83
c (m) 10−4 3.16 × 10−5 3.16 × 10−5 10−5 10−5

p0 (bar) 2 2 2 2 2
xc(0) 0 0 0 0 10−5
.
xc(0) 0 0 0 0 0
yc(0) −10−5

−10−5
−5 × 10−6

−6 × 10−5 10−5
.
yc(0) 0 0 0 0 0
xj(0) 0 0 0 0 10−6

yj(0) −10−5
−10−6

−10−6
−10−6 10−6

Time
Uncavitated 103 103 103 3 × 103 3 × 103

Cavitated (π−Film) 5 × 102 3 × 103 3 × 103 2 × 103 2 × 103

Solver Ode4

Fixed-step size [s]
Uncavitated 10−4 10−4 10−3 10−3 10−3

Cavitated (π−Film) 10−4 10−3 10−4 10−4 10−4

The simulations results were analysed by a displacements diagram; orbits in the x–y plane; the

power spectrum; and phase diagrams.

3. Results and Discussions

3.1. Simulation 1

This simulation is characterized by flexural resonance because the angular speed of the rotor

coincides with the natural frequency of the rotor-bearing system. In this case, it is possible to

understand the dynamics of the rotor system by analysing the orbits in space. In the case of the

uncavitated short bearing, the orbit of the disc centre increases steadily generating a concentric spiral

until it reaches a stable condition. The steady orbit has a radius of 3 m. This is obviously not acceptable

because the system will fault before reaching this condition. The steady orbit of the journal centre is a

circle with a radius value very close to the radial clearance (Figure 6). The discrete power spectrum

(Figure 7) indicates the absence of chaos and that the only significant vibration is at 50 Hz (frequency

of the rotor).

In the case of the cavitated short bearing, the model also returns a periodic manner for the disc

centre. The maximum amplitude of this orbit is smaller than the uncavitated bearing. The transient of

the journal centre is different but the steady orbit is the same (Figure 8). The power spectrum is almost

the same (Figure 9).
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Figure 6. Simulation 1: Uncavitated—Orbits.

Figure 7. Simulation 1: Uncavitated—Normalized Power Spectrum.
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Figure 8. Simulation 1: Cavitated—Orbits.

Figure 9. Simulation 1: Cavitated—Normalized Power Spectrum.

3.2. Simulation 2

In this section are presented the results for the simulation 2 (Table 1) for the uncavitated short

bearing (Figures 10–12) and cavitated short bearing (Figures 13–15). In this simulation the orbit

assumes a particular shape during both the transition phase and during the steady phase reaching

a stable operating condition. This can be observed in the phase diagrams, which show well-defined

limit cycles (Figures 11 and 14).
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In the case of the uncavitated short bearing, the orbit of the centre of the disc increases during

the initial transient but subsequently decreases, maintaining a shape with extra-loops. The steady

orbit of the journal centre is a circle with a radius value very close to the radial clearance (Figure 10).

The power spectrum (Figure 12) shows how the most relevant frequency is approximately 260 Hz. It is

possible that this is asynchronous whirling because the natural frequency of the system is 259.9 Hz.

In the case of the cavitated short bearing the quality of the plots of the orbit is lower due to

lower approximation in numerical integration (Figure 13). However, the orbit of the disc centre retains

the extra-loop. The steady orbit of the journal centre is always circular but the radius is slightly

less than the uncavitated one. The phase diagrams of the disc centre are similar, while the plots

of the journal centre are completely different (Figure 14). The power spectrum (Figure 15) shows

vibratory phenomena at 50 Hz and 100 Hz, therefore the system is characterized by synchronous and

sub-synchronous vibrations. This power spectrum is completely different from the uncavitated one.

Figure 10. Simulation 2: Uncavitated—Orbits.



Lubricants 2018, 6, 40 12 of 29

Figure 11. Simulation 2: Uncavitated—Phase Diagrams.

Figure 12. Simulation 2: Uncavitated—Normalized Power Spectrum.
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Figure 13. Simulation 2: Cavitated—Orbits.

Figure 14. Cont.
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Figure 14. Simulation 2: Cavitated—Phase Diagrams.

Figure 15. Simulation 2: Cavitated—Normalized Power Spectrum.

3.3. Simulation 3

In the case of the uncavitated short bearing, the disc centre reaches the steady state in a very

short time (Figure 16). The steady orbit is circular and its centre is located below the axis of the

bearings (Figure 17). The dynamics of the journal centre are similar to the other cases. The discrete

power spectrum (Figure 18) confirms the absence of chaos and indicates the presence of considerable

vibrations at frequencies of 8 and 72 Hz.

The trends for the cavitated short bearing waveforms are similar to like the uncavitated case

shown in Figure 19. The disc centre does not reach a steady-state condition but the amplitude of

the motion is lower (Figure 20). The journal centre always performs a circular orbit in a steady-state

condition. The power spectrum (Figure 21) shows the same vibratory phenomena. However, in this

case the most relevant vibration is at 8 Hz.
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Figure 16. Simulation 3: Uncavitated—Waveforms.

Figure 17. Cont.
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Figure 17. Simulation 3: Uncavitated—Orbits.

Figure 18. Simulation 3: Uncavitated—Normalized Power Spectrum.

Figure 19. Cont.
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Figure 19. Simulation 3: Cavitated—Waveforms.

Figure 20. Simulation 3: Cavitated—Orbits.
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Figure 21. Simulation 3: Cavitated—Normalized Power Spectrum.

3.4. Simulation 4

In the case of the uncavitated short bearing, it was possible to extend the simulation time.

This allowed observation of a certain periodicity in the displacement diagrams (Figure 20).

The Figure 22 shows the waveform of the journal. The oscillation of the centre of the disc increased

every 1500 s. It reached a maximum amplitude that decreased over time, so it is possible to predict that

this phenomenon is extinguished in time. Regarding the motion of the journal centre, the oscillation

undergoes changes at instances in time in which there are variations of oscillation of the disc centre.

This indicates that the perturbation involves the whole system. The orbit of the centre of the disc

(Figure 23) is not circular. This phenomenon can be explained by analysing the power spectrum

(Figure 24). The power spectrum reveals significant vibrations at frequencies near 15, 30 and 60 Hz,

i.e., corresponding to ω/2, ω and 2ω. This means that the system is affected by the sub-synchronous

vibrations and vibrations two per revolution. From these observations, it seems that the orbit of the

disc centre has a particular form. The phase diagrams denote stability since they show well-defined

closed curves (Figure 25).

In the case of the cavitated short bearing, the motion of the disc centre is not characterized by

periodic phenomena as in the uncavitated short bearing. As can be observed from the detail of the

waveform, the oscillation is strongly non-linear (Figure 26). The orbits of the disc centre are completely

different (Figure 27). The transient of the journal centre is different, but the steady orbit is almost the

same. Even the phase diagrams are completely different (Figure 28). The power spectrum shows some

common vibratory phenomena (Figure 29).
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Figure 22. Simulation 4: Uncavitated—Waveforms.

Figure 23. Cont.
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Figure 23. Simulation 4: Uncavitated—Orbits.

Figure 24. Simulation 4: Uncavitated—Normalized Power Spectrum.

Figure 25. Cont.
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Figure 25. Simulation 4: Uncavitated—Phase Diagrams.

Figure 26. Simulation 4: Cavitated—Waveforms Detail.
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Figure 27. Simulation 4: Cavitated—Orbits.

Figure 28. Cont.
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Figure 28. Simulation 4: Cavitated—Phase Diagrams.

Figure 29. Simulation 4: Cavitated—Normalized Power Spectrum.

3.5. Simulation 5

This simulation was conducted by assigning the same values from Simulation 4 to the parameters,

except for the initial conditions. This was done in order to highlight the characteristics of dynamical

systems, where two identical systems with similar initial conditions show different resulting motions.

This feature can be observed in the plot of the orbits and in the phase diagrams (Figures 30–35).
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Figure 30. Simulation 5: Uncavitated—Orbits.

Figure 31. Cont.
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Figure 31. Simulation 5: Uncavitated—Phase Diagrams.

Figure 32. Simulation 5: Uncavitated—Normalized Power Spectrum.

Figure 33. Cont.
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Figure 33. Simulation 5: Cavitated—Orbits.

Figure 34. Simulation 5: Cavitated—Phase Diagrams.
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Figure 35. Simulation 5: Cavitated—Normalized Power Spectrum.

4. Conclusions

In this paper, the dynamic behaviour of a thin disk splined in the middle of a flexible rotor

supported by hydrodynamic bearings was analysed. To make mathematical expressions easier, the fluid

film forces, exerted by the bearings on the journal in hydrodynamic lubrication conditions, have been

previously defined under the hypothesis of short bearings.

The equations of motion have been written considering the dynamic balance of the rotor

system consisting of a shaft and a disc. As the equations of motion are characterized by a strong

non-linearity, it is necessary to use a computer code for the numerical integration. For this purpose,

the Matlab-Simulink environment allowed calculation of the numerical results. The study of the

rotor-bearing system, both in the presence and absence of cavitation enabled us to compare these

two journal bearings models to understand how the cavitation phenomenon can influence the

system dynamics.

The results show that cavitation significantly influences the dynamic behaviour of the rotor system.

The waveform changes considerably, especially for the centre of the disc, and leads to completely

different orbits in the two cases studied. However, the order of magnitude of the orbits remains

almost the same, at least in the simulations performed, so cavitation should not cause problems

with bulkheads.

The most significant effect is found by analysing the power spectra as the effect of cavitation

changes the frequencies and intensity of the vibrating phenomena.

The Cavitated (π-Film) Short Bearing model responds quite well and can be used as a predictive

tool for the dynamic behaviour of a rotor system such as the one treated, especially to avoid critical

events such as flexural resonance.
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Nomenclature

2m disc mass

Ks shaft bending stiffness

2W static load

O bearing centre

J journal centre

C disc geometric centre

M disc centre of gravity

u disc static imbalance

R journal radius

r disc radius

L bearing length

c radial bearing clearance

e eccentricity

ε = e
c eccentricity ratio

δ shaft deflection

ω disc angular velocity

µ lubricant viscosity

ω angular velocity of the journal (constant)

ψ attitude angle

k flexural stiffness of the shaft
.
ψ angular velocity of the line of centres (journal whirling)

(xc,yc) disc centre coordinates

(xj,yj) journal centre coordinates
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