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Abstract

We establish two conditions which ensure the non-divergaricadditive recur-
rent networks with unsaturating piecewise linear tranifactions, also called linear
threshold or semilinear transfer functions. As was regestibwn by Hahnloser et al.
(2000), networks of this type can be efficiently built in gdlh and exhibit the coex-
istence of digital selection and analogue amplification sirgle circuit. To obtain
this behaviour, the network must be multistable and noerdient and our conditions
allow to determine the regimes where this can be achieved mdximal recurrent
amplification. The first condition can be applied to nonsyrrineetworks and has
a simple interpretation of requiring that the strength aaloinhibition must match
the sum over excitatory weights converging onto a neurore §étond condition is
restricted to symmetric networks, but can also take int@aoctthe stabilizing effect
of non-local inhibitory interactions. We demonstrate tpelecation of the conditions
on a simple example and the orientation-selectivity moéiBlem-Yishai et al. (1995).
We show that the conditions can be used to identify in theidehcegions of maximal
orientation-selective amplification and symmetry bregkin

1 Introduction

A prominent model of the coupled dynamics of networks of nestis the additive recurrent
model

T, = —x; + 0 ( Z Wiy + hi), Q)
J

wherez; denotes the activity of neuran The synaptic weights);; denote the strength of
the synaptic connection from neurgronto neuron.. The weights can be positive or neg-
ative corresponding to an excitatory or inhibitory synapesspectively. The functios;(.)
is called the transfer or gain function of the neugprand can be interpreted as computing
the cell's average spike rate depending on its membranaftiateThe constants; denote
external inputs.

The form of the transfer functioa(.) (see Figure 1) plays an important role for bound-
ing the dynamics (1). If the transfer function has lower apdar saturation limits according
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Figure 1. Transfer functions. The sigmoidal function a) étinuous and saturates for
x — oo. The limiter function b) is linear between its saturatiornt®. The linear threshold
or semilinear transfer function does not saturate as oo.

toa < o(x) < b, then the dynamics is obviously bounded, siage> 0 for z; < a and
z; < 0 for z; > b. Examples for such saturating transfer functions are thistic or Fermi
function
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o(z)
and the limiter function (also referred to as the saturaliimgar function or the piecewise
linear sigmoidal function)

a, if z<a,
o(z) =<z, if a<az<b, (3)
b, if z>0b.

In recent years there has been a growing amount of literatutdologically-based models
(Hartline & Ratliff 1958; von der Malsburg 1973; Douglas, Mavald, & Martin 1994;
Ben-Yishai, Lev Bar-Or, & Sompolinsky 1995; Salinas & Abb&996; Adorjan, Levitt,
Lund, & Obermayer 1999; Bauer, Scholz, Levitt, Obermayei.#d 1999), where the
transfer function, denoted as semilinear or linear thrigistid’) function, is non-saturating
and of the form

0 if <8,
o(@) = {k(m —-0) if >0, *)

whered is the threshold ané > 0 is the gain of the transfer function. It has been argued
(Douglas, Koch, Mahowald, Martin, & Suarez 1995) that tmansfer function is more
appropriate, because cortical neurons rarely operate ttosaturation, despite strong re-
current excitation. This indicates that the upper satoinathay not be involved in the actual
computations of the recurrent network, since the actinaisodynamically bounded due to
the effective net interactions. Another important field fmm-saturating linear threshold
transfer functions are winner-take-all (WTA) networksghimann 1987; Hahnloser 1998;
Ritter 1990; Wersing, Steil, & Ritter 2000), where the ladlan upper saturation is neces-
sary to exclude spurious ambiguous states.

Some properties of neural networks with piecewise lineangfer functions have been
investigated since. Feng & Hadeler (1996) and Kuhn & Loeh(@®87) proved conditions
which ensure the uniqueness of a stationary state. Feng&HRoychowdhury (1996) ana-
lyzed the general fixed point structure of networks with pigise linear sigmoidal functions
and a convergence condition for asynchronous update proegd/as given in (Feng 1997).
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Hahnloser (1998) considered non-saturating linear tlotdsth.T) neurons for winner-take-
all (WTA) networks and discussed their piecewise linealyaim Wersing, Steil, & Ritter
(2000) showed that complex perceptual grouping tasks catbemplished in an LT net-
work composed of competitive layers, where the overall @doal modulation can be en-
hanced by operating the model close to the stability limiRiscently Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung (2000) demonstrated an efficiiobn design for LT net-
works and discussed the coexistence of analogue amplificatid digital selection in their
circuit. They showed that the stability analysis for symmeatetworks can be reduced to
the discussion of sets which contain the active neuronsrene active superset of an un-
stable attractor is also unstable and a subset of a stabdetattis also stable. They also
stated a condition for non-divergence of symmetric systemsch, however, depends on
eigenvalues of all possible subsystems, and is therefdiieutli to evaluate for complex
systems.

To summarize, in spite of their wide application in biolagji@and cortically inspired
circuit models, there has been paid little attention soddhé general analysis of the condi-
tions which ensure non-divergence in linear threshold agsr Therefore, this paper gives
an in-depth analysis of this issue.

2 Monostable and M ultistable Dynamics

In the following we only consider the case whére= 1 andf; = 0, since any network
can be reduced to this form by an affine transformation of titevides that leaves the
boundedness property of the dynamics invatiafihe dynamics is then given by

T; = —x; + 0( Z wiiT; + hi), (5)
J

where the transfer function is of the foriz) = max(0, z).

The standard approach to obtain a non-diverging dynamice (he general case of
nonsymmetric weights is to choose the combined gains oféimsfier function and weights
sufficiently small (see Steil 1999 for a review). A simple exae is the condition given by
Hirsch (1989) which is based on the property that all eigkeresof the symmetrical parts
of the Jacobians of the vector field in (5) must be negativés gives for (5) the conditions

1 .
wi; + 3 z#: |wij| + |wj;| <1 foralli, (6)
JF

which poses a limit on the sum of the magnitudes of the incgnaind outgoing weights
of each neurori, compared to its self-coupling weight;;. These conditions, however,
imply global asymptotic stability, i.e. convergence to a single and umiattractor, and can
be therefore only employed if the application requires a ostable dynamical behavior
(see Figure 2). Nevertheless, there are many applicatidvesemultistabledynamics is

essential to the model’s operation. One example are WTA aré&By where, depending
on the external input (or the initial value) only the neuroithvstrongest input (or highest
initial value) should remain active. If arbitrarily smaliffégrences can be amplified by this
competitive process, then the system is said to exhibit sgimyabreaking behavior. In

N o4 (2:) = ki max(0, z; — 0;), the transformation is given by, = /%;(z; — ;) and the corresponding
coefficients araw;; w/k k;jwi; andh; = (h; — 6;)/+/k;. Note also that forw;; being invertible, (5) is
dynamically equivalent toh; = —mi + 3, wijo (m]‘) + hi, wherem; = 7. wi;z; + hi.
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Figure 2: Difference between monostable and multistablenhics. In a monostable sys-
tem a) different initial activations (dashed lines) cogeeto the same and unique attractor
(straight line on the left and filled circle on the right). Imaultistable system b) many
attractors can coexist and the dynamics also has unstabt fizints (open circle) which
allow for unstable modes and symmetry breaking.

the piecewise linear LT systems this is only possible iféh@re unstable directions in the
state space, corresponding to local Jacobians with eifigrss/avith positive real parts. The
conditions that we present in the following allow for this Itigtable behavior.

3 Conditionsfor Non-Divergence

3.1 Nonsymmetric Networks

Hahnloser (1998) has proved a condition for non-divergesidel’ networks that is based
on a principle of global inhibition. For a given excitatoryeight matrix with components
a;; > 0, he assumes a global inhibition with a strength equal to dine aver all excitatory
weights diverging from a neuron. This leads to an effectieight matrixi¥ of the form

w” = aij — Zakj, fOI’ a” ’l,] (7)
k

Although the result is rather restrictive, and global aHall interactions are prohibitive in
large networks, it is an example for a condition which doesimply monostability and
can be applied to some WTA networks (Hahnloser 1998).

In the following we prove a more general criterion, whichwhdhat in fact local inhi-
bition is sufficient to achieve boundedness of the LT dynarrildie condition is based on a

2Suppose the matri¥ with components:;; is symmetric positive definite and has an eigenvector’ of
Since the column-constant shift in (7) affects only thiseaigalue, the resulting matril¥ still has positive
eigenvalues, causing unstable dynamical modes.



reduced connection matri% + with entries
w;; = 5Z~jwij + (1 - 5ij) max(O,wij) (8)

which is constructed from the diagonal and the positivedéfjonal entries of¥, and
where the Kronecker delta is defineddy = 1if ¢ = j andd;; = 0if i # j.

Theorem 1. If there exists a vecto¥ with positive components > 0 satisfying

> wii; <o forall i, €)
J

then the LT dynamics; = —z; + U(Zj wijxz; + hi) is bounded: If0 < z;(0) < cv;
for all i, wherec > 0 is sufficiently large to satisfy(o; — 3, w;;9;) > h; for all 4, then
0 < z;(t) < cv; for all i andt > 0.

Proof. First note that initially nonnegative activities remaimnegative, since:;; > 0 for
z; = 0, and therefore the activity variables cannot cross zerdtaio negative values (see
footnote below). The boundedness is proved by construetiitgx” in the positive domain
which cannot be left by the dynamics. Thth face of the box is defined by

x; = cv;, zj+; < cbj. (10)
Now we have eithet; = —z; < 0or

T, = —x; + Zwija:j + h; (11)
J

< -z, + Zw;;a:j + h;. (12)
J

Inserting (10) and due to the positiveness of both actwitiedv we obtain (note that for
the diagonal termw;;z; = w;;ct; = w;gcf)i, since we sit on facé):

z; < —x; + Zw;;cﬁj + h; (13)
J
= C(Zw;;@j — f)z) + hz'. (14)
J

Therefore, if we choose > 0 sufficiently large such that > max;(h;/(%; — >, w%@j))
for all 4, thenz; < 0. Thus the vector field defining the dynamics is pointing irdgaon
all sides of the box, and the neural activities are confinglitobounded region of the state
space. O

Using the theory of nonnegative matrit¢¢Berman & Plemmons 1979), condition (9) may
be expressed in terms of eigenvalues of the maffik. It is known that the maximal real
part Reé )\« ) Of the eigenvalues dfV * is an eigenvalue itself with corresponding nonneg-
ative eigenvectofr, 9; > 0 for all s. Condition (9) is then equivalent o, {W*} < 1.
This shows that condition (9) is sharp if the eigenvedtds positive and¥ = W+ (no
off-diagonal inhibitory weights). In fact, it¥ has an eigenvalua > 1 with positive

%In dynamical systems theory this is calledubtangent conditiofsee Amann 1990).
“The results can be applied regardless of the sign of the diagoatrix elements.
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eigenvector then the dynamics obviously tends to infinitgrahitialization with a suitable
multiple of this eigenvector.

Another well known characterization of condition (9) (seerf@an & Plemmons 1979)
states that the linear system

b — Y whiy =1 (15)
j

has a unique solution which has positive componépts 0. Thus condition (9) can be
tested by solving this system. Finally we notice that thecepecases; = 1 for all 7 in
Theorem 1 yields an especially simple criterion

Corallary 1. If the self-coupling weights satisfy;; < 1 — Zj# w:; for all i then the LT
dynamics is bounded.

If we compare this to the global inhibition principle of Hdbser, expressed in (7), we
see that starting from the samg;, local inhibition mediated by a self-inhibitory term is
sufficient for non-divergence with

wij = aij — bij ) @ik (16)
K

Since self-interacting synapses (autapses) are rare ficalacircuits, the local inhibition
should be mediated by local interneurons in a biologicalbyrarrealistic setting. This inhi-
bition, however, must be sufficiently fast to avoid a quéliachange in the dynamics (Li
& Dayan 1999).

The conditions of Corollary 1 can be interpreted as a measiunehibitory diagonal
dominance, which is weaker than the condition of equatigra(@l thus allows multistable
dynamics. This is complementary to networks with satugationlinearities, wherexcita-
tory diagonal dominance (Greenberg 1988) can be used to enfaitistability by a locally
divergent dynamics which drives the system into the coroktise bounded state space.

3.2 Symmetric Networks

In the following we assume that the weights are symmetrib wit; = w;; for all ¢, ;. In
this case, an additional criterion can be given that allawvisnprove the stability margins
by taking into account also the non-local inhibitory cantition. The result is based on the
energy function of the system which can be constructed famsgtric weights.

Theorem 2. The LT dynamics is bounded if there exists a symmetric miafrixith Wij >
wj; for all 4, 7, for whichApax {W} < 1.

Proof. The LT dynamics has an energy function of the form
1
E = —3 Z(wm dij)xizy — Zh ;. a7
ij
If we take F; = O /0z; = Zj wijr; — x; + h; then we see that is nonincreasing under
the dynamics

E=) Ejij;= ZE —z; +o(—E; + z;)) <O0. (18)



Sincez; > 0 we simply obtain

1
FE = _E Z(wm — 5ij)mz’mj — Z h]’:L‘j (19)
ij i
1 .
>3 > (ibij = ij)wiws — Y hya; (20)
ij i
1 ~
> =5 Omax{ W} = Dl[x[[* = > hjzj — oo, (21)
j

for x — oo. SinceF is bounded from below anfl — oo for x — oo according to (21)F
is a global Lyapunov function and the dynamics must be bodirrahel converges to the set
of equilibria (Hirsch 1989). O

The matrix’W* used in Theorem 1 provides an example for a possible choit# wfith
nonnegative off-diagonal elements. The componentd ohowever, need not be positive.
In the following we give an argument based on linear pertishaheory, which shows that
negative entries can be used to infer larger stability margi

Suppose the weight matri¥ is decomposed into the excitatory p&t™ and an in-
hibitory off-diagonal part¥ ~ according taw;; = w;; +aw;;, wherea controls the strength
of the off-diagonal inhibitory part. The condition of Theon 1 amounts to choosirg= 0,
takingW = W and neglecting the off-diagonal inhibition. The eigeneeatf W+ with
largest eigenvalué ., has nonnegative componerits> 0. According to linear pertur-
bation theory, the eigenvalue of the dominant eigenvedianges to first order ia by
N oox = Amax + 0T W 9. SinceW ~ has only nonpositive entried! .. < Amax, and by
raising o from zero the stability margin is increased by a decreaséefriaximal eigen-
value. Since this, however, may in turn increase other gaeas for which ther\; > 1,
the increase in stability can be inferred only for small eslwfe. Note that althoughi’
corresponds to a monostable netwolK, can correspond to a multistable network, since
Amax{W?} > Amax{W} for smalla.

What happens if the strength of the non-local inhibitionnisreased to large values of
a ? For such a strong inhibition, only pools of neurons can ieraative, which share
only excitatory interactions. Since then only these poaoistribute to the dynamics, we
can reconsider Theorem 1, applied to all possible activéspddince now the number of
excitatory interactions which must be considered is smalteong lateral inhibition has the
expected effect of decreasing the local self-inhibitioattis necessary to avoid runaway

excitation.

4 Examples

4.1 A Simple Example

Let us consider an example network consisting of four neyjrarhich is simple enough
to allow a complete analytic discussion of the differentapaeter regimes of the presented
conditions for non-divergence. The interaction of neuxlvdties z;, i = 1,2,3,4 (see
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Figure 3: A simple network consisting of four neurons, whiska simple example for a
lateral inhibition network with local cooperation.

Figure 3) is given by

a b —c b
b a b -—c

W= —c b a b (22)
b —c b a

The network is a simplified version of the lateral inhibitinatwork with closed boundary
conditions considered by Ben-Yishai et al. which is disedsim the next section. The
parameteb > 0 characterizes the cooperation between neighbouring ngure- 0 imple-
ments inhibition between diagonally opposing neurons, aiglthe self-coupling weight.
The circulant matriX¥/? has the corresponding eigenvectersand eigenvalues;:

(1,1,1,1) A =a+2b-c, (23)
( 0 ) A2 =a+c,
(0,130 ) A3 =a+tc,

V4=(1,—1,1,—1), /\4=a—2b—c.

We now address the following question: Givern> 0 andc > 0, how small must be the
self-couplinga to keep non-divergence of the dynamics?

If we apply Corollary 1, which neglects all off-diagonal ibtory contributions, we
obtain the non-divergence condition

a<1—2b, (24)

which is not dependent an

According to Theorem 2 we can infer non-divergence of a sysidth parameters
(a,b,c) from the non-divergence of a system with parametefst’,c'), wherea < d,
b < b, andc > ¢’. The maximum eigenvalue is given by

2b — if b>
)\max = ot ¢ I =6 (25)
a+c if b<e
The condition\pax < 1 then results in
i) a<l—2b+c¢ for b>c, (26)
i) a<l-—c for b<e. (27)
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Figure 4: Non-divergence domains and regions of mono- anlistalbble dynamics. a)
shows the non-divergent domains depending on parametaingl inhibition strengtle >
0. Region A is bounded according to Theorem 1. Theorem 2 cdwausdedness in the
additional region B. Note that due to Th. 2 the non-divergefar a pair of parameters
(a, c) implies non-divergence for alld’, ¢') with @’ < a and¢’ > ¢. b) In region C the
monostable attractor has (approximately) equal activitall neurons. In region D the
system is multistable and four attractors of pairwise aatigurons coexist.

Casei) improves the stability margin towards larger valuessofiith a maximum when
c=btoa < 1— b. Caseii) offers no advantage sinée< c implies thatl — ¢ < 1 — 2b.
The domains of non-divergence for largand smalla which can be obtained from these
inequalities are shown in Figure 4. The diagrams demomesttiaat by taking into account
off-diagonal inhibitory contributions Theorem 2 coveramgkr area of the parameter space.

Figure 4b shows the domains of mono- and multistable dyrgrifithe system obtains
a weak inputh; = m + ¢;, wherem is constant and; < m is a small random modulation.
Only in the multistable regime the system is capable of sytnmareaking, where the
dynamics causes a nonlinear amplification of small inpdedihces.

4.2 A Mode for Orientation Selectivity

Ben-Yishai, Lev Bar-Or, & Sompolinsky (1995) have consatba one-dimensional contin-
uum model for orientation selectivity which is of the form

H(6) = —2(9) + o(F(9)),  -m/2< <2 28)
where
w/2
1 / / / ext
F@) =1 [ 166~ )a@)id + 14 - o) (29
—7/2



with f(¢) = —Jo + J2 cos(2¢) and

0 if <1,
oz) =< k(z—1) if 1<z<kl+1, (30)
1 if >k 141

The parameterd; > 0 andJy; > 0 characterize on “On-Center-Off-Surround” interaction
between a continuum of neurons in a 1-D orientation spadecdsed boundary conditions.
The external input is of the form®Y(¢) = c(1 — 5 + ncos(2¢)), wherec denotes the
contrast and) < 1 is the amplitude of a weakly biased input stimulus. The patank
is the gain of the transfer function. Of particular interissa region in the/, x J, space,
where the model exhibits a so-called marginal phase. Irptiése the model spontaneously
generates orientation selectivity, by recurrently angpii arbitrarily small anisotropies in
the input forn — 0. As the results of Ben-Yishai et.al. demonstrate, this ccoua regime
where the upper saturation of the transfer function is natled, which corresponds to the
case of non-divergent linear threshold dynamics. Theeefae use in the following the
presented conditions for non-divergence with multi-stadynamics to identify this regime
in the parameter space.

The linear integral operator in (29) has two continuousigiectionsz, x2 with eigen-
valueslg, A2, where

.’L‘U(QZS) = 1, )\0 =-1- J()k, (31)

.’L‘Q(QZS) = COS(2¢), )\2 =—-1+ §J2

As Ben-Yishai et.al. have stated, a necessary conditiothéosystem being in the marginal
phase is thafl, > 2k~!, which in turn makes the,-mode unstable with, > 0.

We can now use Corollary 1 to infer a condition which ensunesrton-divergence of
the system, even if unstable modes are present. The sfoxightd generalization to the
continuum case is given by the condition

w/2

0> -1 +§ / max (0, f(¢))d¢. (32)

—m/2

This can be geometrically interpreted as the condition tiatarea under the positive
part of f is smaller thant/k. If J; > J, the lateral interaction is completely negative,
and the condition is trivially satisfied. Due to the absentexgitatory interactions the
activity settles down to zero for a weak unspecific input. Fpr< Jy < J, the area can
be estimated from above by the larger rectangle with helght J, and width between
the zeroes off (see Figure 5). Using the approximatiosig = Jo — € with ¢ small and
earccos(1 — ae) ~ v/2a¢%/? we obtain the condition

71'2/3 1 1/3

JU>J(()::J2_—21/3W 9

(33)

This condition can be used to effectively identify the regio the J, x J, space, where
the lateral interaction is capable of recurrently amptiysmall fluctuations in the activity
distribution, without saturating at the upper saturatiionitl (see Figure 5). This leads to
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Figure 5: Angular On-Center-Off-Surround interaction ahdse diagram of the orientation
selectivity model by Ben-Yishai et.al. The shaded rectamgla) is an estimate to the sum
over excitatory interactions. With this estimate a phaagmim shown in b) can be obtained.
In region A (shaded area) all eigenvalues are negative @&sliem always converges to an
isotropic state. In region B the activity remains small dudarge inhibition withJ, > J
with the same unique isotropic attractor. Region M is thegimat phase, where a sharp and
peaked response can be generated from isotropic inputgionr€ the network saturates
due to strong excitation. The border between M and C is giwetthb non-divergence
condition, the bold straight line gives the theoreticaldicgon for the critical inhibitionJg,
while the dashed line was obtained from a simulation of theesy. Within region M there
is a gradual increase of peak height towards this boundary.

localized peaks with increasing amplification @y — J§. ForJy > Jg the network runs
into saturation. A comparison with a numerical simulatiéthe dynamics shows that (33)
captures the border between maximal amplification anda@&arrather precisely.

5 Conclusion

The two presented conditions allow to ensure the non-dérerg of linear threshold net-
works without restricting them to be monostable. Althougfeast for symmetric systems,
the second condition covers a larger parameter regimeguines the knowledge of eigen-
values which may not be readily available. On the contréugfirst condition can be easily
applied by choosing appropriate local (self-inhibitorgjerractions matching the sum over
excitatory weights. Although the conditions are strictheaking only sufficient and not
necessary, our discussion of the orientation-selectivibdel shows that they can be used
to effectively approach the regime of critical amplification LT networks, where small
stimulus contrasts can be largely enhanced through dya@symmetry breaking.

Linear threshold networks provide a promising step towasdgomorphic analogue cir-
cuit design and were shown to accomplish complex tasks laal perceptual grouping.
Non-divergence is a crucial property for the coexistencanaflogue amplification and digi-
tial selection in these circuits. Our results largely egtearlier conditions, which required
either global inhibitory interactions or symmetry of theighgs, and open the door for more
complex models and circuit designs.
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