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Abstract

We establish two conditions which ensure the non-divergence of additive recur-
rent networks with unsaturating piecewise linear transferfunctions, also called linear
threshold or semilinear transfer functions. As was recently shown by Hahnloser et al.
(2000), networks of this type can be efficiently built in silicon and exhibit the coex-
istence of digital selection and analogue amplification in asingle circuit. To obtain
this behaviour, the network must be multistable and non-divergent and our conditions
allow to determine the regimes where this can be achieved with maximal recurrent
amplification. The first condition can be applied to nonsymmetric networks and has
a simple interpretation of requiring that the strength of local inhibition must match
the sum over excitatory weights converging onto a neuron. The second condition is
restricted to symmetric networks, but can also take into account the stabilizing effect
of non-local inhibitory interactions. We demonstrate the application of the conditions
on a simple example and the orientation-selectivity model of Ben-Yishai et al. (1995).
We show that the conditions can be used to identify in their model regions of maximal
orientation-selective amplification and symmetry breaking.

1 Introduction

A prominent model of the coupled dynamics of networks of neurons is the additive recurrent
model_xi = �xi + �i�Xj wijxj + hi�; (1)

wherexi denotes the activity of neuroni. The synaptic weightswij denote the strength of
the synaptic connection from neuronj onto neuroni. The weights can be positive or neg-
ative corresponding to an excitatory or inhibitory synapserespectively. The function�i(:)
is called the transfer or gain function of the neuroni, and can be interpreted as computing
the cell’s average spike rate depending on its membrane potential. The constantshi denote
external inputs.

The form of the transfer function�(:) (see Figure 1) plays an important role for bound-
ing the dynamics (1). If the transfer function has lower and upper saturation limits according�New address: HONDA R&D Europe (Germany) GmbH, Future Technology Research, Carl-Legien-Str.30,
63073 Offenbach/Main, Germany, email: heiko.wersing@hre-ftr.f.rd.honda.co.jp
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Figure 1: Transfer functions. The sigmoidal function a) is continuous and saturates forx!1. The limiter function b) is linear between its saturation points. The linear threshold
or semilinear transfer function does not saturate asx!1.

to a � �(x) � b, then the dynamics is obviously bounded, since_xi � 0 for xi � a and_xi � 0 for xi � b. Examples for such saturating transfer functions are the logistic or Fermi
function�(x) = 11 + e�2�x (2)

and the limiter function (also referred to as the saturatinglinear function or the piecewise
linear sigmoidal function)�(x) = 8><>:a; if x < a;x; if a � x � b;b; if x > b: (3)

In recent years there has been a growing amount of literatureon biologically-based models
(Hartline & Ratliff 1958; von der Malsburg 1973; Douglas, Mahowald, & Martin 1994;
Ben-Yishai, Lev Bar-Or, & Sompolinsky 1995; Salinas & Abbott 1996; Adorjan, Levitt,
Lund, & Obermayer 1999; Bauer, Scholz, Levitt, Obermayer, &Lund 1999), where the
transfer function, denoted as semilinear or linear threshold (LT) function, is non-saturating
and of the form�(x) = (0 if x < �;k(x� �) if x � �; (4)

where� is the threshold andk > 0 is the gain of the transfer function. It has been argued
(Douglas, Koch, Mahowald, Martin, & Suarez 1995) that this transfer function is more
appropriate, because cortical neurons rarely operate close to saturation, despite strong re-
current excitation. This indicates that the upper saturation may not be involved in the actual
computations of the recurrent network, since the activation is dynamically bounded due to
the effective net interactions. Another important field fornon-saturating linear threshold
transfer functions are winner-take-all (WTA) networks (Lippmann 1987; Hahnloser 1998;
Ritter 1990; Wersing, Steil, & Ritter 2000), where the lack of an upper saturation is neces-
sary to exclude spurious ambiguous states.

Some properties of neural networks with piecewise linear transfer functions have been
investigated since. Feng & Hadeler (1996) and Kuhn & Loehwen(1987) proved conditions
which ensure the uniqueness of a stationary state. Feng, Pan, & Roychowdhury (1996) ana-
lyzed the general fixed point structure of networks with piecewise linear sigmoidal functions
and a convergence condition for asynchronous update procedures was given in (Feng 1997).
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Hahnloser (1998) considered non-saturating linear threshold (LT) neurons for winner-take-
all (WTA) networks and discussed their piecewise linear analysis. Wersing, Steil, & Ritter
(2000) showed that complex perceptual grouping tasks can beaccomplished in an LT net-
work composed of competitive layers, where the overall contextual modulation can be en-
hanced by operating the model close to the stability limits.Recently Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung (2000) demonstrated an efficientsilicon design for LT net-
works and discussed the coexistence of analogue amplification and digital selection in their
circuit. They showed that the stability analysis for symmetric networks can be reduced to
the discussion of sets which contain the active neurons, where an active superset of an un-
stable attractor is also unstable and a subset of a stable attractor is also stable. They also
stated a condition for non-divergence of symmetric systems, which, however, depends on
eigenvalues of all possible subsystems, and is therefore difficult to evaluate for complex
systems.

To summarize, in spite of their wide application in biological and cortically inspired
circuit models, there has been paid little attention so far to the general analysis of the condi-
tions which ensure non-divergence in linear threshold networks. Therefore, this paper gives
an in-depth analysis of this issue.

2 Monostable and Multistable Dynamics

In the following we only consider the case whereki = 1 and�i = 0, since any network
can be reduced to this form by an affine transformation of the activities that leaves the
boundedness property of the dynamics invariant1. The dynamics is then given by_xi = �xi + ��Xj wijxj + hi�; (5)

where the transfer function is of the form�(x) = max(0; x).
The standard approach to obtain a non-diverging dynamics (5) in the general case of

nonsymmetric weights is to choose the combined gains of the transfer function and weights
sufficiently small (see Steil 1999 for a review). A simple example is the condition given by
Hirsch (1989) which is based on the property that all eigenvalues of the symmetrical parts
of the Jacobians of the vector field in (5) must be negative. This gives for (5) the conditionswii + 12Xj 6=i jwij j+ jwjij < 1 for all i; (6)

which poses a limit on the sum of the magnitudes of the incoming and outgoing weights
of each neuroni, compared to its self-coupling weightwii. These conditions, however,
imply global asymptotic stability, i.e. convergence to a single and unique attractor, and can
be therefore only employed if the application requires a monostable dynamical behavior
(see Figure 2). Nevertheless, there are many applications wheremultistabledynamics is
essential to the model’s operation. One example are WTA networks, where, depending
on the external input (or the initial value) only the neuron with strongest input (or highest
initial value) should remain active. If arbitrarily small differences can be amplified by this
competitive process, then the system is said to exhibit symmetry-breaking behavior. In

1If �i(xi) = ki max(0; xi � �i), the transformation is given byx0i = pki(xi � �i) and the corresponding
coefficients arew0ij = pkikjwij andh0i = (hi � �i)=pki. Note also that forwij being invertible, (5) is
dynamically equivalent to_mi = �mi +Pj wij�(mj) + hi, wheremi =Pj wijxj + hi.
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a) Monostable dynamics

b) Multistable dynamics
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Figure 2: Difference between monostable and multistable dynamics. In a monostable sys-
tem a) different initial activations (dashed lines) converge to the same and unique attractor
(straight line on the left and filled circle on the right). In amultistable system b) many
attractors can coexist and the dynamics also has unstable fixed points (open circle) which
allow for unstable modes and symmetry breaking.

the piecewise linear LT systems this is only possible if there are unstable directions in the
state space, corresponding to local Jacobians with eigenvalues with positive real parts. The
conditions that we present in the following allow for this multistable behavior.

3 Conditions for Non-Divergence

3.1 Nonsymmetric Networks

Hahnloser (1998) has proved a condition for non-divergenceof LT networks that is based
on a principle of global inhibition. For a given excitatory weight matrix with componentsaij � 0, he assumes a global inhibition with a strength equal to the sum over all excitatory
weights diverging from a neuron. This leads to an effective weight matrixW of the formwij = aij �Xk akj; for all i; j: (7)

Although the result is rather restrictive, and global all-to-all interactions are prohibitive in
large networks, it is an example for a condition which does not imply monostability2 and
can be applied to some WTA networks (Hahnloser 1998).

In the following we prove a more general criterion, which shows that in fact local inhi-
bition is sufficient to achieve boundedness of the LT dynamics. The condition is based on a

2Suppose the matrixA with componentsaij is symmetric positive definite and has an eigenvector of10s.
Since the column-constant shift in (7) affects only this eigenvalue, the resulting matrixW still has positive
eigenvalues, causing unstable dynamical modes.
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reduced connection matrixW+ with entriesw+ij = Æijwij + (1� Æij)max(0; wij) (8)

which is constructed from the diagonal and the positive off-diagonal entries ofW , and
where the Kronecker delta is defined byÆij = 1 if i = j andÆij = 0 if i 6= j.
Theorem 1. If there exists a vector̂v with positive componentŝvi > 0 satisfyingXj w+ij v̂j < v̂i for all i; (9)

then the LT dynamics_xi = �xi + �(Pj wijxj + hi) is bounded: If 0 � xi(0) � v̂i
for all i, where > 0 is sufficiently large to satisfy�v̂i �Pj w+ij v̂j� > hi for all i, then0 � xi(t) � v̂i for all i andt > 0.

Proof. First note that initially nonnegative activities remain nonnegative, since_xi � 0 forxi = 0, and therefore the activity variables cannot cross zero to obtain negative values (see
footnote below). The boundedness is proved by constructinga “box” in the positive domain
which cannot be left by the dynamics. Thei-th face of the box is defined byxi = v̂i; xj 6=i � v̂j : (10)

Now we have either_xi = �xi � 0 or_xi = �xi +Xj wijxj + hi (11)� �xi +Xj w+ijxj + hi: (12)

Inserting (10) and due to the positiveness of both activities andv̂ we obtain (note that for
the diagonal termwiixi = wiiv̂i = w+ii v̂i, since we sit on facei):_xi � �xi +Xj w+ijv̂j + hi (13)= �Xj w+ij v̂j � v̂i�+ hi: (14)

Therefore, if we choose > 0 sufficiently large such that > maxi(hi=(v̂i �Pj w+ij v̂j))
for all i, then _xi � 0. Thus the vector field defining the dynamics is pointing inwards on
all sides of the box, and the neural activities are confined tothis bounded region of the state
space3.

Using the theory of nonnegative matrices4 (Berman & Plemmons 1979), condition (9) may
be expressed in terms of eigenvalues of the matrixW+. It is known that the maximal real
part Re(�max) of the eigenvalues ofW+ is an eigenvalue itself with corresponding nonneg-
ative eigenvector̂v; v̂i � 0 for all i. Condition (9) is then equivalent to�maxfW+g < 1.
This shows that condition (9) is sharp if the eigenvectorv̂ is positive andW = W+ (no
off-diagonal inhibitory weights). In fact, ifW has an eigenvalue� > 1 with positive

3In dynamical systems theory this is called asubtangent condition(see Amann 1990).
4The results can be applied regardless of the sign of the diagonal matrix elements.
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eigenvector then the dynamics obviously tends to infinity after initialization with a suitable
multiple of this eigenvector.

Another well known characterization of condition (9) (see Berman & Plemmons 1979)
states that the linear systemv̂i �Xj w+ij v̂j = 1 (15)

has a unique solution which has positive componentsv̂i > 0. Thus condition (9) can be
tested by solving this system. Finally we notice that the special casev̂i = 1 for all i in
Theorem 1 yields an especially simple criterion

Corollary 1. If the self-coupling weights satisfywii < 1 �Pj 6=iw+ij for all i then the LT
dynamics is bounded.

If we compare this to the global inhibition principle of Hahnloser, expressed in (7), we
see that starting from the sameaij , local inhibition mediated by a self-inhibitory term is
sufficient for non-divergence withwij = aij � ÆijXk aik: (16)

Since self-interacting synapses (autapses) are rare in cortical circuits, the local inhibition
should be mediated by local interneurons in a biologically more realistic setting. This inhi-
bition, however, must be sufficiently fast to avoid a qualitative change in the dynamics (Li
& Dayan 1999).

The conditions of Corollary 1 can be interpreted as a measureof inhibitory diagonal
dominance, which is weaker than the condition of equation (6) and thus allows multistable
dynamics. This is complementary to networks with saturating nonlinearities, whereexcita-
tory diagonal dominance (Greenberg 1988) can be used to enforce multistability by a locally
divergent dynamics which drives the system into the cornersof the bounded state space.

3.2 Symmetric Networks

In the following we assume that the weights are symmetric with wij = wji for all i; j. In
this case, an additional criterion can be given that allows to improve the stability margins
by taking into account also the non-local inhibitory contribution. The result is based on the
energy function of the system which can be constructed for symmetric weights.

Theorem 2. The LT dynamics is bounded if there exists a symmetric matrixŴ with ŵij �wij for all i; j, for which�maxfŴg < 1.

Proof. The LT dynamics has an energy function of the formE = �12Xij (wij � Æij)xixj �Xj hjxj: (17)

If we takeEi = �E=�xi =Pj wijxj � xi + hi then we see thatE is nonincreasing under
the dynamics_E =Xj Ej _xj =Xj Ej(�xj + �(�Ej + xj)) � 0: (18)
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Sincexi � 0 we simply obtainE = �12Xij (wij � Æij)xixj �Xj hjxj (19)� �12Xij (ŵij � Æij)xixj �Xj hjxj (20)� �12(�maxfŴg � 1)jjxjj2 �Xj hjxj !1; (21)

for x!1. SinceE is bounded from below andE !1 for x!1 according to (21),E
is a global Lyapunov function and the dynamics must be bounded and converges to the set
of equilibria (Hirsch 1989).

The matrixW+ used in Theorem 1 provides an example for a possible choice ofŴ with
nonnegative off-diagonal elements. The components ofŴ , however, need not be positive.
In the following we give an argument based on linear perturbation theory, which shows that
negative entries can be used to infer larger stability margins.

Suppose the weight matrixW is decomposed into the excitatory partW+ and an in-
hibitory off-diagonal partW� according towij = w+ij+�w�ij , where� controls the strength
of the off-diagonal inhibitory part. The condition of Theorem 1 amounts to choosing� = 0,
takingŴ = W+ and neglecting the off-diagonal inhibition. The eigenvector of W+ with
largest eigenvalue�max has nonnegative componentsv̂i � 0. According to linear pertur-
bation theory, the eigenvalue of the dominant eigenvector changes to first order in� by�0max = �max + �v̂TW�v̂. SinceW� has only nonpositive entries,�0max < �max, and by
raising� from zero the stability margin is increased by a decrease of the maximal eigen-
value. Since this, however, may in turn increase other eigenvalues for which then�i > 1,
the increase in stability can be inferred only for small values of�. Note that althoughŴ
corresponds to a monostable network,W can correspond to a multistable network, since�maxfWg > �maxfŴg for small�.

What happens if the strength of the non-local inhibition is increased to large values of� ? For such a strong inhibition, only pools of neurons can remain active, which share
only excitatory interactions. Since then only these pools contribute to the dynamics, we
can reconsider Theorem 1, applied to all possible active pools. Since now the number of
excitatory interactions which must be considered is smaller, strong lateral inhibition has the
expected effect of decreasing the local self-inhibition that is necessary to avoid runaway
excitation.

4 Examples

4.1 A Simple Example

Let us consider an example network consisting of four neurons, which is simple enough
to allow a complete analytic discussion of the different parameter regimes of the presented
conditions for non-divergence. The interaction of neural activities xi, i = 1; 2; 3; 4 (see
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Figure 3: A simple network consisting of four neurons, whichis a simple example for a
lateral inhibition network with local cooperation.

Figure 3) is given byW = 0BB� a b � bb a b �� b a bb � b a 1CCA : (22)

The network is a simplified version of the lateral inhibitionnetwork with closed boundary
conditions considered by Ben-Yishai et al. which is discussed in the next section. The
parameterb � 0 characterizes the cooperation between neighbouring neurons, � 0 imple-
ments inhibition between diagonally opposing neurons, anda is the self-coupling weight.
The circulant matrixW has the corresponding eigenvectorsvi and eigenvalues�i:v1 = (1; 1; 1; 1); �1 = a+ 2b� ; (23)v2 = (1; 0;�1; 0); �2 = a+ ;v3 = (0; 1; 0;�1); �3 = a+ ;v4 = (1;�1; 1;�1); �4 = a� 2b� :
We now address the following question: Givenb � 0 and � 0, how small must be the
self-couplinga to keep non-divergence of the dynamics?

If we apply Corollary 1, which neglects all off-diagonal inhibitory contributions, we
obtain the non-divergence conditiona < 1� 2b; (24)

which is not dependent on.
According to Theorem 2 we can infer non-divergence of a system with parameters(a; b; ) from the non-divergence of a system with parameters(a0; b0; 0), wherea < a0,b < b0, and > 0. The maximum eigenvalue is given by�max = (a+ 2b�  if b � ;a+  if b < : (25)

The condition�max < 1 then results ini) a < 1� 2b+  for b > ; (26)ii) a < 1�  for b � : (27)
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Figure 4: Non-divergence domains and regions of mono- and multistable dynamics. a)
shows the non-divergent domains depending on parametersa and inhibition strength >0. Region A is bounded according to Theorem 1. Theorem 2 coversboundedness in the
additional region B. Note that due to Th. 2 the non-divergence for a pair of parameters(a; ) implies non-divergence for all(a0; 0) with a0 < a and0 > . b) In region C the
monostable attractor has (approximately) equal activity in all neurons. In region D the
system is multistable and four attractors of pairwise active neurons coexist.

Casei) improves the stability margin towards larger values ofa with a maximum when = b to a < 1 � b. Caseii) offers no advantage sinceb �  implies that1 �  < 1 � 2b.
The domains of non-divergence for large and smalla which can be obtained from these
inequalities are shown in Figure 4. The diagrams demonstrate, that by taking into account
off-diagonal inhibitory contributions Theorem 2 covers a larger area of the parameter space.

Figure 4b shows the domains of mono- and multistable dynamics, if the system obtains
a weak inputhi = m+ �i, wherem is constant and�i � m is a small random modulation.
Only in the multistable regime the system is capable of symmetry breaking, where the
dynamics causes a nonlinear amplification of small input differences.

4.2 A Model for Orientation Selectivity

Ben-Yishai, Lev Bar-Or, & Sompolinsky (1995) have considered a one-dimensional contin-
uum model for orientation selectivity which is of the form_x(�) = �x(�) + �(F (�)); ��=2 � � � �=2 (28)

whereF (�) = 1� �=2Z��=2 f(�� �0)x(�0)d�0 + hext(�� �0) (29)
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with f( ) = �J0 + J2 os(2 ) and�(x) = 8><>:0 if x � 1;k(x� 1) if 1 < x < k�1 + 1;1 if x � k�1 + 1: (30)

The parametersJ0 > 0 andJ2 > 0 characterize on “On-Center-Off-Surround” interaction
between a continuum of neurons in a 1-D orientation space with closed boundary conditions.
The external input is of the formhext(�) = (1 � � + � os(2�)), where denotes the
contrast and� � 1 is the amplitude of a weakly biased input stimulus. The parameterk
is the gain of the transfer function. Of particular interestis a region in theJ0 � J2 space,
where the model exhibits a so-called marginal phase. In thisphase the model spontaneously
generates orientation selectivity, by recurrently amplifying arbitrarily small anisotropies in
the input for� ! 0. As the results of Ben-Yishai et.al. demonstrate, this occurs in a regime
where the upper saturation of the transfer function is not reached, which corresponds to the
case of non-divergent linear threshold dynamics. Therefore, we use in the following the
presented conditions for non-divergence with multi-stable dynamics to identify this regime
in the parameter space.

The linear integral operator in (29) has two continuous eigenfunctionsx0; x2 with eigen-
values�0; �2, wherex0(�) = 1; �0 = �1� J0k; (31)x2(�) = os(2�); �2 = �1 + k2J2:
As Ben-Yishai et.al. have stated, a necessary condition forthe system being in the marginal
phase is thatJ2 > 2k�1, which in turn makes thex2-mode unstable with�2 > 0.

We can now use Corollary 1 to infer a condition which ensures the non-divergence of
the system, even if unstable modes are present. The straightforward generalization to the
continuum case is given by the condition0 > �1 + k� �=2Z��=2 max �0; f(�)�d�: (32)

This can be geometrically interpreted as the condition thatthe area under the positive
part of f is smaller than�=k. If J0 > J2 the lateral interaction is completely negative,
and the condition is trivially satisfied. Due to the absence of excitatory interactions the
activity settles down to zero for a weak unspecific input. ForJ0 < J0 < J2 the area can
be estimated from above by the larger rectangle with heightJ2 � J0 and width between
the zeroes off (see Figure 5). Using the approximationsJ0 = J2 � � with � small and� aros(1� a�) � p2a�3=2 we obtain the conditionJ0 > J0 = J2 � �2=321=3 1k2=3 J1=32 : (33)

This condition can be used to effectively identify the region in theJ0 � J2 space, where
the lateral interaction is capable of recurrently amplifying small fluctuations in the activity
distribution, without saturating at the upper saturation limit (see Figure 5). This leads to
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Figure 5: Angular On-Center-Off-Surround interaction andphase diagram of the orientation
selectivity model by Ben-Yishai et.al. The shaded rectangle in a) is an estimate to the sum
over excitatory interactions. With this estimate a phase diagram shown in b) can be obtained.
In region A (shaded area) all eigenvalues are negative and the system always converges to an
isotropic state. In region B the activity remains small due to large inhibition withJ0 > J2
with the same unique isotropic attractor. Region M is the marginal phase, where a sharp and
peaked response can be generated from isotropic input. In region C the network saturates
due to strong excitation. The border between M and C is given by the non-divergence
condition, the bold straight line gives the theoretical prediction for the critical inhibitionJ0 ,
while the dashed line was obtained from a simulation of the system. Within region M there
is a gradual increase of peak height towards this boundary.

localized peaks with increasing amplification forJ0 ! J0 . ForJ0 > J0 the network runs
into saturation. A comparison with a numerical simulation of the dynamics shows that (33)
captures the border between maximal amplification and saturation rather precisely.

5 Conclusion

The two presented conditions allow to ensure the non-divergence of linear threshold net-
works without restricting them to be monostable. Although,at least for symmetric systems,
the second condition covers a larger parameter regime, it requires the knowledge of eigen-
values which may not be readily available. On the contrary, the first condition can be easily
applied by choosing appropriate local (self-inhibitory) interactions matching the sum over
excitatory weights. Although the conditions are strictly speaking only sufficient and not
necessary, our discussion of the orientation-selectivitymodel shows that they can be used
to effectively approach the regime of critical amplification in LT networks, where small
stimulus contrasts can be largely enhanced through dynamical symmetry breaking.

Linear threshold networks provide a promising step towardsneuromorphic analogue cir-
cuit design and were shown to accomplish complex tasks like visual perceptual grouping.
Non-divergence is a crucial property for the coexistence ofanalogue amplification and digi-
tial selection in these circuits. Our results largely extend earlier conditions, which required
either global inhibitory interactions or symmetry of the weights, and open the door for more
complex models and circuit designs.
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