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Abstract

We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine-

Gordon model. We show that this interacting system is dynamically stable to periodic drives with

finite frequency and amplitude. This finding is in contrast to the common belief that periodically-

driven unbounded interacting systems should always tend to an absorbing infinite-temperature

state. The transition to an unstable absorbing state is described by a change in the sign of the ki-

netic term in the effective Floquet Hamiltonian and controlled by the short-wavelength degrees of

freedom. We investigate the stability phase diagram through an analytic high-frequency expan-

sion, a self-consistent variational approach, and a numeric semiclassical calculations. Classical

and quantum experiments are proposed to verify the validity of our results.
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1. Introduction

Motivated by advances in ultra-cold atoms[1, 2, 3, 4, 5], the stability of periodically-driven

many-body systems is the subject of several recent studies [6, 7, 8, 10, 13, 9, 11, 12, 14]. Ac-

cording to the second law of thermodynamics, isolated equilibrium systems can only increase

their energy when undergoing a cyclic process. For many-body interacting ergodic systems,

it is often assumed that they will heat monotonously, asymptotically approaching an infinite-

temperature state [8, 15, 10, 9]. In contrast, for small systems such as a single two-level system

(spin), thermalization is not expected to occur and periodic alternations of heating and cooling

(Rabi oscillations) are predicted. A harmonic oscillator can display a transition between these

two behaviors, known as “parametric resonance” [16]: depending on the amplitude and fre-

quency of the periodic drive, the oscillation amplitude either increases indefinitely, or displays
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periodic oscillations. An interesting question regards how much of this rich dynamics remains

when many-degrees of freedom are considered.

This question was addressed for example by Russomanno et al.[6], who studied the time evo-

lution of the transverse-field Ising (TI) model. This model is integrable and never flows to an

infinite-temperature state. In the translational-invariant case, this result can be rationalized by

noting that the TI model is integrable and can be mapped to an ensemble of decoupled two-level

systems (spin-waves with a well defined wavevector), each of whom periodically oscillates in

time and never equilibrates. In this sense, the findings of Ref.s [[9, 11, 12, 14]] on periodically-

driven disordered systems subject to a local driving falls into the same category: many-body

localized (MBL) systems are effectively integrable because they can be described as decou-

pled local degrees of freedom as well[17, 18, 19]. When the driving frequency is higher than

a given threshold, MBL systems remain localized and no not thermalize. This is in contrast to

ergodic systems, which are expected to thermalize to an infinite temperature for any periodic

drive[6, 15, 10, 9]. These findings are in apparent contradiction to earlier numerical studies

[20, 21, 22, 7], who found indications of a finite stability threshold in non-integrable systems as

well.

To investigate this problem in a systematic way, we consider here a many-body analog of the

Kapitza pendulum: the periodically-driven sine-Gordon model. This model is well suited for an-

alytical treatments, including a high-frequency expansion, quadratic variational approaches, and

renormalization-group methods. Unlike previously-studied spin systems, the present model has

an unbounded single-particle energy spectrum [23]. Thanks to this property, infinite-temperature

ensembles are characterized by an infinite energy density and are easily identified. We show

the emergence of a sharp “parametric resonance”, separating the absorbing (infinite temperature)

from the non-absorbing (periodic) regimes. This transition survives in the thermodynamic limit

and leads to a non-analytic behavior of the physical observables in the long time limit, as a func-

tion of the driving strength and/or frequency. We conjecture that this transition corresponds to

a mean-field critical point of the many-body Floquet Hamiltonian. Our finding enriches the un-

derstanding of the coherent dynamics of parametrically forced system and paves the road toward

the search of unconventional dynamical behavior of closed many-body systems.

2. Review of a single Kapitza pendulum

Before entering the domain of many-body physics, we briefly review the (well understood)

case of a classical single degree of freedom. We consider the Hamiltonian of a periodically-

driven simple (non-linear) pendulum, also known as Kapitza pendulum [24], and described by

the Hamiltonian

H(t) =
1

2
p2 − g(t) cos(φ), with g(t) = g0 + g1 cos(γt) . (1)

Here p and φ are canonically-conjugated coordinates satisfying {p, φ} = −i, where {·, ·} are Pois-

son brackets. For g1 = 0 the system displays two classical fixed points: a stable one at φ = 0

and an unstable one at φ = π. (Throughout this paper we assume without loss of generality that

g0 > 0.).

In the presence of a periodic drive (g1 , 0), the unstable fixed point can become dynamically

stable. This counterintuitive result was first obtained by Kapitza [24] in the high-frequency limit

γ2 ≫ g0, g1. By averaging the classical equations of motion over the fast oscillations of the

drive, Kapitza found that the “upper” extremum φ = π becomes stable for large enough driving
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Figure 1: Stability diagram of the classical Kapitza pendulum, adapted from Ref. [[29]]. In the colored areas at least

one fixed point is stable, while in the white areas both minima are unstable and the system is fvariational methodsully

ergodic. The parameters g0, g1 and γ are defined in Eq. (1) as g(t) = g0 + g1 cos(γt). The green lines correspond to the

stability threshold of the first parametric resonance, Eq. (2)

amplitudes g2
1
> g0γ

2/2. This pioneering work initiated the field of vibrational mechanics[25],

and the Kapitza’s method is used for description of periodic processes in atomic physics[26],

plasma physics[27], and cybernetical physics [28].

For finite driving frequencies γ2 ∼ g0, g1 the lower fixed point (φ = 0) can become dynam-

ically unstable as well. This transition can be analytically studied for example by applying the

quadratic approximation cos(φ)→ 1−φ2/2 to Eq. (1) (valid for small g1). The resulting Hamilto-

nian corresponds to a periodically-driven harmonic oscillator, with frequency ω0 =
√

g0, driving

frequency γ, and driving amplitude g1. For infinitesimal driving frequencies (g1 → 0), this sys-

tem displays parametric resonances at γ = 2ω0/n = 2
√

g0/n, where n is an integer[16]. For

finite driving amplitudes each resonance extends to a finite region of driving frequencies[16]: in

particular the first parametric resonance (n=1) extends to

2g1 ≤
∣

∣

∣γ2 − 4g0

∣

∣

∣ . (2)

Because the subsequent parametric resonances occur at lower frequencies, one finds that the point

φ = 0 is always dynamically stable for driving frequencies that are larger than the critical value

γc =
√

4g0 + 2g1, while regions of stability and instability alternate for γ < γc. In particular, the

system is stable for g0/γ
2 > 0.25 and small driving amplitudes. In what follows we will refer

to these two stability regions as “large driving frequency” and ”large g0” respectively. As a side

remark, we note that this quadratic approximation is valid for the quantum case as well, provided

that the initial state is close to the |φ = 0〈 state. In this case, the resulting stability phase diagram

is expected to be the same.

Subsequent numerical studies of the classical Hamiltonian (1) lead to the stability diagram

reproduced in Fig. 1 [29]. In this plot, the white areas represent regions in the parameter space

in which both extrema are unstable and the system flows towards an infinite-temperature state,

independently on the initial conditions. In contrast, in the colored regions at least one of the two

extrema is stable, and the system is not ergodic. In this case the pendulum can be confined to

move close to one of the extrema and will not in general reach a steady state described by an

effective infinite temperature. The stability of the lower fixed point (green line in Fig. 1) is well

approximated by the boundaries of Eq. (2). In particular, for g0 = 0 (where the upper and lower

extrema are mathematically equivalent), the system is dynamically stable for g1 < gc ≈ 0.45γ2,

and dynamically unstable for g1 > gc. As a main result of this paper we will show that this

transition remains sharply defined even in the many-body case.
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Figure 2: Proposed physical realizations. (a) A one-dimensional array of Kapitza pendula, which are coupled and

synchronously-driven realizes the time-dependent Frenkel-Kontorova model (3). (b) Two coupled one-dimensional con-

densates, whose tunneling amplitude is periodically driven in time, realize the time-dependent sine-Gordon model (4).

More details about the experimental realizations are presented in Sec. 9.

3. Many-body Kapitza pendulum

To explore the fate of the dynamical instability in a many-body condition we consider an infi-

nite number of coupled identical Kapitza pendula, depicted in Fig. 2(a). This system is described

by the periodically-driven Frenkel-Kontorova [30] model

H = Λ
∑

i

[

K

2
P2

i −
1

K
cos(φi − φi+1) − g(t)

Λ2
cos(φi)

]

, (3)

where Pi, φi are unitless variables satisfying {P j, φk} = −iδ j,k, and g(t) is defined in Eq. (1). The

energy scale Λ determines the relative importance of the coupling between the pendula and the

forces acting on each individual pendulum: in the limit Λ → 0 we expect to recover the case of

an isolated periodically-driven pendulum. In the continuum limit, the model (3) can be mapped

to the periodically-driven sine-Gordon model

H =

∫

dx

[

K

2
P2
+

1

2K
(∂xφ)

2 − g(t) cos(φ)

]

, (4)

P(x) and φ(x) are canonically-conjugate fields, {P(x), φ(x′)} = −iδ(x − x′) and K is the Luttinger

parameter (we work in units for which the sound velocity is u = 1). The parameter Λ enters as

an ultraviolet cutoff, setting the maximal allowed momentum: φ(x) =
∫

Λ

−Λ dq/(2π) eiqxφq. The

model (4) can also be realized using ultracold atoms constrained to cigar-shaped traps. In this

case, the field φ = φ1 − φ2 represent the phase difference between the two condensates, and

the time-dependent drive can be introduced by periodically modulating the transversal confining

potential, as shown in Fig. 2(b). Because the fields P and φ are continuous variable, the en-

ergy densities of the Hamiltonians (3) and (4) are unbounded from above and allows to easily

distinguish an absorbing behavior (in which the energy density grows indefinitely in time) from

a periodic one. This situation differs from previously-considered spin models, whose energy

density is generically bounded from above.
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4. Infinite frequency expansion

To understand the effect of periodic drives on dynamical instabilities and localization, it is

convenient to define the effective Hamiltonian (often termed “Floquet Hamiltonian”) Heff as

U(T ) = e−iHeffT , (5)

where U(T ) is the evolution operator over one period of time T = 2π/γ. In the case of the

harmonic oscillator, it has been shown that the parametric resonance can be easily understood

in terms of the effective Hamiltonian [36]: in the stable regime the eigenmodes of Heff are nor-

malizable and any initial state can be expanded in this basis, leading to a periodic dynamics.

In contrast, in the unstable regime the eigenmodes of Heff become not normalizable, in analogy

to equilibrium Hamiltonians that are not bounded from below (such as H = x2 − p2), and the

dynamics becomes absorbing.

The Magnus expansion [37, 38] is an analytical tool to derive the effective Hamiltonian

in the limit of large drive frequency. The first-order term of the Magnus expansion, Heff =

(1/T )
∫ T

0
dt H(t), has a simple physical interpretation: when the driving frequency is infinite, the

system perceives only the time-averaged value of H(t). This observation has been successfully

employed, for example, to engineer optical lattices with negative tunneling amplitude [3, 4, 5].

In our case, the average Hamiltonian is simply described by the time-independent sine-Gordon

model (Eq. (4) with g1 = 0) and the drive has no effect on the system. The third-order Magnus

expansion delivers:

Heff = HLL + H′ + H′′ −
∫

dx

2π
[g0 cos(φ) + g̃ cos(2φ)] , (6)

where HLL is the Luttinger liquid Hamiltonian (Eq. (4) with g1 = g0 = 0),

H′ = −g′
∫

dxP2 cos(φ), (7)

H′′ = −g′′
∫

dx(∂xφ)
2 cos(φ); (8)

g′ = g1

γ2 K2, g′′ = g1

γ2 and g̃ = K
g1

γ2

(

1
4
g1 − g0

)

. See Appendix Appendix A for the details of this

derivation. Eq. (6) is analogous to the effective Hamiltonian of the single Kapitza pendulum [7].

The stability of the “upper” extremum φ = π is captured by the interplay between g0 cos(φ) and

g̃ cos(2φ): this point becomes dynamically stable when g0 < 4g̃, or equivalently when g0 <
g2

1
K

γ2 ,

taking into account that the Magnus expansion is valid in the limit[39] of g0/γ
2 ≪ 1.

The term H′ leads to the dynamical instability of the system: having a negative sign, it sup-

presses the kinetic energy ∼ P2, eventually leading to an inversion of its sign. Using a quadratic

variational approach, we can approximate H′ ≈ −4g′
∫

dx〈cos(φ)〉P2. The stability of the φ = 0

minimum can then be studied through 〈cos(φ)〉 ≈ 1, leading to a renormalized kinetic energy

KP2/2 − K2(g1/γ
2)P2

= KeffP2/2, with

Keff = K

(

1 − 2K
g1

γ2

)

(9)

This expression indicates that the system is dynamically stable for Kg1/γ
2 < 0.5. For larger

driving amplitudes (or smaller driving frequencies) the kinetic energy becomes negative and the

system becomes unstable.
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Higher-order terms in the Magnus expansion can be used to determine the qualitative

dependence of the critical driving amplitude as a function of Λ/γ and Kg1/γ
2. For

example, the fifth-order term of the Magnus expansion contains terms proportional to

g1(t)/γ4{(∂xφ)
2, {(∂xφ)

2, {P2, {P2, cos φ}}}} ∼ P2∂2
x cos(φ), which renormalizes g′ by a factor of

8
g2

1

γ2

(

Λ

γ

)2
. This positive contribution leads to a decrease of the critical driving amplitude as a

function of Λ/γ. As mentioned above (see Eq.(3)), Λ sets the coupling between the Kapitza

pendula and is indeed expected to shrink the stability region of the system.

Since the Magnus expansion generates an infinite number of terms, one may suspect that the

full series could renormalize the critical amplitude to zero (making the system always dynam-

ically unstable). To address this point, we now resort to the quantum version of the problem,

where powerful analytical techniques are available.

5. Renormalization group arguments

Let us now consider the quantum version of the Hamiltonian (4). In the absence of a drive

(g1 = 0), this model corresponds to the celebrated sine-Gordon model[31, 32]. Its ground state

displays a quantum phase transition of the Kosterlitz-Thouless type: for K > Kc = 8π − o(g/Λ)

the cosine term is irrelevant and the model supports gapless excitations, while for K < Kc the

system has a finite excitation gap ∆. The presence of a gap is known to have significant effects

on the response of the system to low-frequency modes, by exponentially suppressing the energy

absorption. In contrast, at large driving frequencies the excitation gap is expected to have little

effect.

To analyze the limit of large driving frequencies, we propose to consider the Floquet Hamilto-

nian, as defined by the Magnus expansion 1. Specifically, we consider the ground-state properties

of this Hamiltonian, which can be conveniently studied through the renormalization group (RG)

approach. The existence of a well-defined ground state for the Floquet Hamiltonian implicitly

demonstrates the ergodicity of the system: unstable systems are generically expected to have

non-normalizable eigenstates [36].

In our case, the first-order term of the Magnus expansion corresponds to the well-known sine-

Gordon model. When Keff > 8π this Hamiltonian flows under RG towards the Luttinger liquid

theory (Eq.(4) with g(t) = 0). Higher order terms are given by commutators of the Hamiltonian

at different times (see Appendix Appendix A). Because the time-dependent part of our Hamil-

tonian is proportional to cos(φ), each commutator necessarily includes cos(φ), or its derivatives.

With respect to the Luttinger-liquid fixed point, these terms are irrelevant in an RG sense, and are

not expected to affect the ground-state-properties of the Floquet Hamiltonian. If this is indeed

the case, the (asymptotic) expectation values of physical operators such as |φq|2 and |Pq|2 are

finite (and proportional to Keff/|q| and |q|/Keff respectively), indicating that the system does not

always flow to an infinite-temperature ensemble. When the frequency is reduced, the amplitude

of higher-order terms of the Magnus expansion increases: although irrelevant in an RG sense, if

sufficiently large, these terms can lead to a transition towards an unstable regime.

Many-body quantum fluctuations have an important effect on the stability of the inverted pen-

dulum φ = π as well. As mentioned above, this effect is related to the interplay between cos(φ)

and cos(2φ) in Eq. 6. In the ground-state of this Hamiltonian, quantum fluctuations change the

1The eigenvalues of the Floquet Hamiltonian are defined only up to γ, but the Magnus expansion implicitly specifies

one particular choice
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Figure 3: Stability diagram of the periodically-driven sine-Gordon model, as obtained from the quadratic expansion of

the lower minimum. The system displays two distinct stability regions at large γ and large g0, respectively (see text).

The green line refers to the limit Λ/γ → 0, where the problem maps to the stability of the lower minimum of the Kapitza

pendulum (green line of Fig. 1).

scaling dimension of an operator cos(αφ) to 2 − α2K/4. Thus for finite Keff , the term with g̃ is

less relevant than the term with g0 from a renormalization group (RG) point of view, making the

upper extremum less stable than in the case of a simple pendulum. A simple scaling analysis

reveals that the stability boundary between the two extrema at 0 and π is renormalized by ap-

proximately (g̃/Λ)2, where Λ is the theory cutoff. This is a strong indication that, for any finite

Λ, the extremum at π can still be made stable with large enough driving amplitudes[40].

6. Quadratic expansion

In analogy to the single Kapitza pendulum, the simplest way to tackle the many-body Hamil-

tonian (4) is to expand the cosine term to quadratic order. In particular, to analyze the stability of

the φ = 0 minimum we can use cos(φ) → 1 − φ2/2. In this approximation the system becomes

equivalent to a set of decoupled harmonic oscillators with Hamiltonian H =
∑

q Hq, where

Hq =
K

2
P2

q +
1

2K

(

q2
+ Kg0 + Kg1 cos(γt)

)

φ2
q . (10)

Eq. (10) corresponds to the Hamiltonian of a periodically driven harmonic oscillator, whose sta-

bility diagram is well known. In the limit of g1 → 0, the system is dynamically stable as long as

γ > 2 max[ωq] = 2 max[
√

q2 + Kg0] = 2
√

Λ2 + Kg0, or γ < 2 min[ωq] = 2 min[
√

q2 + Kg0] =

2
√

Kg0. In analogy to Eq.(2), for finite g1 the stability condition is modified to

2Kg1 < max
[

γ2 − 4
(

Kg0 + Λ
2
)

, 4 (Kg0) − γ2
]

(11)

The resulting dynamical phase diagram is plotted in Fig. 3. In the limit of Λ→ 0 we recover the

stability diagram of the lower minimum of an isolated Kapitza pendulum: this is demonstrated

by the quantitative agreement between the green curves of Fig.1 and Fig. 3.
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For finite Λ we observe two distinct stability regions, characterized by a different depen-

dence on the ultraviolet cutoff Λ. The first stability region is adiabatically connected to the limit

of infinite driving-frequency, γ → ∞ (the origin in Fig. 3)). Its boundaries are described by

Kg1/2γ
2
+ Kg0/γ

2
+ Λ

2/γ2
= 0.25. For g0 → 0 and Λ → 0 this expression precisely coincides

with the result obtained from the large-frequency Magnus expansion, Kg1/γ
2
= 0.5. The stabil-

ity region is strongly suppressed by Λ and eventually disappears at Λ/γ ≈ 0.5. This indicates

that it is related to the stability of the degrees of freedom at the shortest length scales Λ−1: its

character is therefore predicted to be analogous to the stability of a single Kapitza pendulum. In

contrast, the second stability region, at large g0 is roughly independent on Λ/γ. This stability re-

gion is determined by the resonant excitation of the lowest frequency collective excitation of the

system in the static (γ → 0) regime, where the system is dynamically stable due to the presence

of a gap, ∆. In the quadratic approximation, the gap is given by ∆ ≈
√

Kg0, and the stability

condition γ < 2∆ reads Kg0/γ
2 < 0.25.

The present quadratic expansion bares a close resemblance to the analysis of Pielawa [33],

who considered periodic modulations of the sound velocity (but keeping g0 = 0). The valid-

ity of these quadratic approximations is however undermined by the role of non-linear terms

in non-equilibrium situations (and specifically noisy environments [34] and quantum quenches

[35]). Even if irrelevant at equilibrium, non-linear terms enable the transfer of energy between

modes with different momentum and are therefore necessary to describe thermalization. The

question which we will address here is whether mode-coupling effects are sufficient to destroy

the dynamical instability described above.

7. Self-consistent variational approach

The above-mentioned quadratic approximation can be improved by considering a generic

time-dependent Gaussian wavefunction, along the lines of Jackiw and Kerman [48]:

Ψv[φ(x)] = A exp

(

−
∫

x,y

φ(x)

[

1

4
G−1

x,y − iΣx,y

]

φ(y)

)

(12)

Eq. (12) is a particular case of the generic wavefunction proposed by Cooper et al.[49], valid

when the expectation value of the field and its conjugate momenta are zero: 〈φ(x)〉 = 〈P(x)〉 = 0.

The operatorA ∼ (det G)1/4 is the normalization constant to ensure the unitarity of the evolution

at all times:

〈Ψv|Ψv〉 =
∫

D[φ]Ψ∗v[φ]Ψv[φ] = 1. (13)

The functions Gx,y and Σx,y are variational parameter to be determined self-consistently. To

this end, we invoke the Dirac-Frenkel variational principle and define an effective classical La-

grangian density as follows:

Leff =

∫

D[φ]Ψ∗v[φ] (i∂t −H[φ, ∂/∂φ])Ψv[φ] (14)

For a translation-invariant system, we find Gx,y ≡ Gx−y ≡ 1/(2π)
∫

Λ

−Λ dk Gk eik(x−y), where Λ is the

8



UV cutoff, and the effective action S eff ≡
∫

dt
∫

dxLeff is given by

S cl =

∫

Λ

−Λ

dk

2π

(

ΣkĠk −
1

8
K G−1

k − 2K ΣkGkΣk −
k2

2K
Gk

)

+ Z(t) g(t),

where Z(t) = exp

(

−1

2

∫

Λ

−Λ

dk

2π
Gk

)

. (15)

The equations of motion are given by the saddle point of the effective action. By requiring

δS eff/δG = δS eff/δΣ = 0 we obtain

Ġk = 4K GkΣk, (16a)

Σ̇k =
1

8
KG−2

k − 2K Σ2
k −

k2

2K
− 1

2
Z(t) g(t) (16b)

In the following calculations we assume the system to be initially found in a stationary state

satisfying

Gk =
K

2

1
√

k2 + ∆
2
0

, (17)

where ∆0 is self-consistently given as:

∆
2
0 = g0K exp

























−1

2

∫

Λ

−Λ

dk

2π

K

2

1
√

k2 + ∆
2
0

























. (18)

Assuming ∆0 ≪ Λ, the above equation gives ∆2
0
≈ (g0K/2)[∆0/(2Λ)]K/4π, which implies a

critical point at Kc = 8π (Kosterlitz-Thouless transition). The cosine is relevant (irrelevant) for

K < Kc (K > Kc).

In this initial gapped phase, the classical oscillation frequency,
√

Kg0 is renormalized by the

factor Z due to quantum fluctuations (see Eqs. (15) and (16)). The introduction of a modulation

to the amplitude of the bare cosine potential leads to one of the two following scenarios (i) Un-

stable (ergodic) regime: the driving field amplifies quantum fluctuations (i.e. leads to “particle

generation” via parametric resonance) and closes the gap, i.e. Z(t) → 0. Once the gap closes, it

remains closed; we take this as an indication of the runaway to the infinite-temperature limit (we

can also study the absorbed kinetic energy in this formalism as well); (ii) Stable (non-ergodic)

regime: quantum fluctuations remain bounded, Z(t) stays finite at all times, and φ remains lo-

calized. These two regimes are indicated in Fig. 4 as white and steel-blue regions, and are in

quantitative agreement with the results of the quadratic approximation, Fig. 3. The apparent in-

consistency for small Λ/γ ≪ 1 and Kg1/γ
2 ≪ 1 is simply due to finite-time effects (see also

Appendix Appendix B)

The effects of quantum fluctuations is analyzed in Fig. 4(b). This plot displays the stability

diagram for a fixed and small g0 (g0K/γ2
= 10−4) as a function of g1, K and Λ. For small K we

reproduce the large-frequency stability lobe of Fig. 4(a). Indeed, the quadratic approximation

is expected to become exact in the limit of K → 0. Finite values of the Luttinger parameter

K significantly shrink the volume of the non-ergodic (stable) regime. This result indicates that

many-body quantum fluctuations promote ergodicity. At the same time, our analysis indicates

that a finite region of stability can survive in the thermodynamic limit, even in the presence of

quantum fluctuations.
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(a) K = 0.1π (b) Kg0/γ
2
= 10−4

Figure 4: The dynamical regimes (a) as a function of (g0K/γ2, g1K/γ2,Λ/γ) for fixed K = 0.1, (b) as a function of

(K, g1K/γ2,Λ/γ) for fixed g0K/γ2
= 10−4. Blue (white) regions correspond to points in the parameter space where the

system is stable (unstable). Solid lines in (a) correspond to the results of the quadratic approximation (Fig. 3) and identify

two distinct stability regions, respectively at large γ and large g0. In this plot the stability criterion is arbitrarily set to

Z(T f )/Z(0) > 0.95 with T f = 100(2π/γ) (See also Fig. A.9 for details about the finite-time scaling.)

8. Semiclassical dynamics

To further demonstrate the existence of an instability transition at a finite driving frequency,

we now numerically solve the classical equations of motion associated with the Hamiltonian (4).

Specifically, we focus here on the stability region at large driving frequencies and along g0 = 0

(magenta curve of Fig.s 3 and 4(a)). Following the truncated-Wigner prescription [41, 47], we

randomly select the initial conditions from a Gaussian ensemble corresponding to the ground

state of (4) with g(t) = 0 and solve the classical equations of motion associated with the Hamil-

tonian (4). Although not shown here, we checked that other choices of initial conditions lead to

qualitatively similar results. Fig. 5 shows (a) the time evolution of the average kinetic energy

and (b) of the expectation value 〈cos(φ)〉 for different driving amplitudes. The former displays a

sharp increase in correspondence of the expected dynamical transition. Fig. 6(a) shows the aver-

age kinetic energy E∞, and the oscillation amplitude δ cos(φ) as a function of driving frequency:

Although E∞ is smooth as a function of the driving amplitude, its first derivative (Fig. 6(b))

shows a sharp kink at a critical value of Kg1/γ
2. Non-discontinuities in the second derivative of

the energy are clear evidence of continuous transitions. In contrast, δ cos(φ) presents a kink itself

at the critical value of Kg1/γ
2.

From the position of the kink in either Fig. 6(b) or (c) we compute the dynamical phase di-

agram shown in Fig. 7. We find that larger K lead to a reduction of the stability region. A

similar result was obtained using the self-consistent variational approach (Fig. 4). In particu-

lar, the stability diagram is mainly insensitive to the initial conditions. Specifically, we repeated

the semiclassical dynamics for a different set of initial conditions (corresponding to an initially

gapped state with local correlations only) and observed a qualitatively similar dynamical phase
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Figure 5: (a) Time evolution of the normalized kinetic energy σkin(t) = Ekin(t)/Ekin(t = 0) − 1, with Ekin(t) =

(1/K)〈(∂xφ)
2〉 for K = 0.4π, g0 = 0, Λ/γ = 0.04, L = 200, N = 400. For small drives and large frequencies (lower

curves) the system is stable and periodically oscillates with a period π/Λ = 12.5(2π/γ). Upon reaching a critical value of

Kg1/γ
2 the oscillations are substituted by an exponential increase of the energy. The dashed line is a guide for the eye.

(b) Time evolution of 〈cos(2φ)〉 for the same parameters as before. The oscillations become very large around a critical

value of Kg1/γ
2.

diagram.

The above calculations refer to physical observables measured after a finite number of driving

periods. One important question regards the evolution of the phase diagram of Fig. 3 as a func-

tion of time. In particular, one may wonder whether the stability region gradually shrinks and

disappears in the infinite-time limit. In other words, can the dynamical transition be induced by

applying an infinitesimal drive for very long times? To address this question, in Fig. 8 we plot the

critical driving amplitude as a function of the number of driving periods. Although the critical

driving amplitude initially decreases as a function of time, we observe that at long times it tends

to a finite asymptotic value: the stable regime occupies a finite region in the parameter space

even in the asymptotic long-time limit. The number of driving periods plays an analogous role to

the size of the system in equilibrium phase transitions: when appropriately rescaled, any physical

quantity is associated with a well-defined asymptotic scaling limit (see Appendix Appendix C).

The present calculations demonstrate the existence of a localized (non-ergodic) phase in the

thermodynamic limit. Following D’Alessio et al.[7], this result can be interpreted as a (many-

body) energy localization transition. Remarkably, the present semiclassical approach involves

the solution of classical equations of motion (subject to quantum initial conditions). Our find-

ings are in contrast to an earlier conjecture formulated in the context of MBL systems with

randomness by Oganesyan et al.[50] and suggesting that such a transition has a pure quantum

origin and does not occur in classical systems.

9. Experimental Realization and Outlook

We now offer more details about the two physical realizations that were anticipated in Fig. 2.

The two proposed experiments belong respectively to the classical and quantum realm. The
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Figure 6: (a) Normalized kinetic energy σkin at long times (t = 100 × 2π/γ) as a function of the normalized driving

amplitude Kg1/γ
2 for K = 0.4π, g0 = 0, L = 200. This quantity displays a sharp kink around a critical value indicated by

the dashed line. (b) First derivative of the kinetic energy, showing a sharp discontinuity in its derivative, confirming the

hypothesis of a second-order-like phase transition. (b) Oscillation amplitude of 〈cos(2φ)〉 at long times (T = 30 × 2π/γ)

as a function of the normalized driving amplitude Kg1/γ
2. This quantity displays a sharp peak around a critical value,

corresponding to the sharp increase in the kinetic energy identified in (a). With increasing Λ/γ the peak moves to lower

values of the drive amplitude and becomes less pronounced.

present calculations suggest that the two model should have a qualitatively similar stability dia-

gram, but an experimental verification is required. The realization of the Hamiltonian (3) using

classical elements seems particularly appealing and relatively easy: this model describes an array

of pendula attached to a common periodically oscillating support, and coupled through nearest

neighbor couplings (see Fig.2(a)).

A quantum version of the periodically-driven sine-Gordon model (4) can be realized using

ultracold atoms[51, 52, 53, 54]. By trapping the atoms in cigar-shaped potentials it is pos-

sible to obtain systems in which the dynamics is effectively one dimensional. Specifically,

the transversal confinement can be generated through laser standing waves (see for example

Ref. [[55]]), or through magnetic fields induced by currents running on a nearby chip (see for

example Ref. [[56]]). In both cases, the amplitude of the transverse confinement can be easily

modulated over time, allowing to realize the setup shown in Fig. 2(b). Here a time-dependent

transverse confinement induces a time-dependent tunneling coupling between two parallel tubes.

In model (4) this coupling is modeled as
∫

dx cos(φ), where φ(x) = φ1(x) − φ2(x) is the local

phase difference between the quasi-condensates[57, 58, 59, 60, 42, 61]. Dealing with a system

of two coupled tubes, the Luttinger parameter is doubled with respect to a single tube and equals

to K = 2
√
Γ, where Γ = mΛ/~2ρ0, Λ = µ is the chemical potential, m is the mass of the atoms,

and ρ0 their average one-dimensional density 2. Atoms on a chip are characterized by relatively

2With respect to the conventions of Ref. [[62]] the Luttinger parameter of a single tube is first inverted to account
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curve corresponds to the result of the quadratic expansion (Eq.(11) and magenta curve in Fig. 3).

small interaction energies, constraining the maximal value of the achievable K. Typical experi-

mental values of γ are in the order of γ . 10−2, or K . 0.2. The parameter g(t) is set by the

instantaneous (single-particle) tunneling rate through J⊥(t) = Kg(t)/µ. These experiments are

therefore constrained to g(t) > 0, or g1 < g0. Fig.s 3 and 4 show that the a wide region of stability

is expected in the physically relevant regime (small K and g1 < g0), demonstrating the feasibility

of the proposed experiment.

An alternative procedure to periodically drive the two coupled tubes involves the modulation

of the chemical potential difference between them δµ(t) = µ1(t) − µ2(t) (while keeping approxi-

mately fixed the tunneling element). In the bosonization language of Eq.(4), this corresponds to

a time-dependent field that couples to the atomic density. An appropriate gauge transformation

allows one to map this problem into a phase-modulated sine-Gordon model in which the drive

enters through the phase drive φ0(t) as g cos(φ − φ0(t)). We postpone the detailed analysis of

this model to a future publication: preliminary calculations indicate that the stability diagram is

analogous to Fig. 3. However, we do not know yet whether the two models belong to the same

universality class.

The sine-Gordon model is often discussed in the context of isolated tubes under the effect of

a longitudinal standing waves, or optical lattice, as well. At equilibrium this model describes

the Luttinger liquid to Mott insulator quantum phase transition of one dimensional degenerate

gases (see Ref. [62] for a review). Interestingly, the inverted pendulum φ = π corresponds to a

distinct topological phase, the Haldane insulator [43, 44]. At equilibrium non-local interactions

are needed in order to stabilize this phase. As explained above, in the presence of a periodic

from the transition between the phase and density representations, and then multiplied by π due to the different choice of

commutation relations.
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drive it may be possible to stabilize it by tuning the system in the region where only the “upper”

extremum is stable. This situation is analogous to the recent proposal of Greschner et al. [63]. In

relation to the dynamical stability of this phase, one however needs to notice that the optical lat-

tice affects the Luttinger parameter as well. A correct description of these experiments therefore

involves the additional transformation K → K(t) = K0 + K1 cos(γt), with possible significant

consequences for the resulting stability diagram. Finally, it is worth mentioning other possible

realizations of the model (4), including for example RF coupled spinor condensates [45] and

arrays of Josephson junctions [46] in the presence of time-dependent magnetic fields .

To summarize, in this paper we combined different analytical and numerical tools to study

the periodically-driven sine-Gordon model. We applied a controlled high-frequency expansion,

the Magnus expansion, to derive an effective (Floquet) Hamiltonian. Employing ideas from

the renormalization group (RG) method, we propose the existence of a non-absorbing (non-

ergodic) fixed point, in which the system is weakly affected by the periodic drive. At a critical

value of the driving frequency (or equivalently of the driving amplitude), the system undergoes a

dynamical phase transition and flows towards the infinite temperature absorbing (ergodic) state.

The transition occurs at a finite value of the drive amplitude and is therefore beyond the reach of

perturbative approaches. To provide a glimpse about the nature of the transition we considered

the lowest-order Magnus expansion suggesting that the transition could correspond to the point

where the kinetic term in the Floquet Hamiltonian becomes negative.

The existence of a transition at a finite value of the driving amplitude is further supported

by two numerical methods: a self-consistent time-dependent variational approach, and a semi-

classical approach. Interestingly, the emergent phase diagram (Fig.s 4 and 7) is in qualitative

agreement with a simple-minded quadratic expansion (Fig. 3). The dynamical phase diagram

displays two distinct stability islands, respectively for large driving frequencies γ and for large

g0 = 1/T
∫ T

0
g(t). The former island becomes unstable when γ is comparable to the short wave-

length cutoff Λ. This suggests that the transition is of mean-field nature, thus bearing the same

character as the parametric resonance of a single harmonic oscillator. The latter island is related

to the existence of finite excitation gap, which protects the system from low-frequency drives. In
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both cases, we observe that quantum fluctuations promote ergodicity and decrease the value of

the critical driving amplitude.

The observed transitions are analogous to the stability threshold predicted in Ref.s [[9, 11, 12,

14]] for many-body localized (MBL) states, but does not require localization in real space. Our

findings are in contrast to the conclusions of D’Alessio et al.[15], who argued that generic many-

body system should be dynamically unstable under a periodic drive. Ponte et al.[9] showed that

ergodic systems are always unstable to the periodic modulation of a local perturbation: we find

here that global coherent perturbations can display a qualitatively different behavior (See also

Russomanno et al.[64] for a specific example).
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Appendix A. Third-order Magnus expansion

If the driving frequency γ is the largest scale in the problem, Magnus expansion applies and

going up to third order one has:

H
(1)

eff
=

1

T

∫ T

0

dtĤ(t1) =

=

∫

dx[KP2
+

1

K
(∇φ)2 − g0 cos(φ)]

H
(2)

eff
=

1

2Ti

∫ T

0

dt1

∫ t1

0

dt2{Ĥ(t1), Ĥ(t2)} = 0

H
(3)

eff
=

1

6Ti2

∫ T

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

×
(

{Ĥ(t1) , {Ĥ(t2), Ĥ(t3)}} + {Ĥ(t3), {[Ĥ(t2), Ĥ(t1)}}
)

where the time-integral domain is ordered 0 < tn < . . . < t2 < t1 < T and T is the period of the

driving T = 2π
γ

.

In the present case the second-order term vanishes H
(2)

eff
= 0: for time-reversal invariant per-

turbations, all even-order terms are exactly zero. The third order Magnus expansion leads to the

effective Hamiltonian (6), where we used the following identities:

{P2, {P2, cos(φ)}} = −2i{P2, P sin(φ)} = 4P2 cos(φ) ;
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{(∂xφ)
2, {P2, cos(φ)}} = −2i{(∂xφ)

2, P sin(φ)}
= 2(∂xφ)

[

∂x sin(φ) + sin(φ)∂x

]

;

1

12π

∫ 2π

0

dt1

∫ 2π

0

dt2

∫ 2π

0

dt3

[

g(t3) − g(t2) +g(t1) − g(t2)
]

= g1 ;

1

12π

∫ 2π

0

dt1

∫ 2π

0

dt2

∫ 2π

0

dt3

g(t1)[g(t3) − g(t2)] + g(t3)[g(t1) − g(t2)] = g0g1 −
1

4
g2

1 . (A.1)

Appendix B. Single Pendulum Limit

As mentioned in the text, the limit Λ → 0 of Eq.(4) recovers the case of an isolated classical

Kapitza pendulum. In Fig. A.9 we show that this limit is correctly reproduced by the self-

consistent variational approach. With decreasing g1, the time required for the system to become

unstable grows approximately as 1/g1. This explains the apparent inconsistency between the

quadratic expansion and the self-consistent variational approach (Fig. 4(a)) for Λ/γ ≪ 1 and

Kg1/γ
2.
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Figure B.10: Energy absorption rate as a function of the normalized periodic amplitude, for a different number of periods

(T f in). (a) raw data for a system of size L = 400, K = 0.4π and Λ/γ = 0.1; (b) same data on a normalized x-axis,

showing a good data collapse when the position of the peak is rescaled as g = gc + A/T with A = 20.

Appendix C. Finite time scaling

In this Appendix we extend the analysis of Sec. 8 and determine the scaling of physical ob-

servables as a function of the number of driving periods. Figs. B.10(a) and B.11(a) show the

energy absorption rate and the average cosine as a function of the driving amplitude, at different

times. These plots show that all the curves tend to a well defined long-time limit. To better

highlight this asymptotic limit, we shift each curve to take into account the dependence of the

critical amplitude on Tfin (Fig. 8). Specifically we consider finite-time corrections of the type:

gc → gc(1+A/Tfin). Through this transformation we obtain an excellent data collapse on a single

universal asymptotic curve, as shown Fig.s B.10(b) and B.11(b). In both cases, the asymptotic

curves become steeper and steeper as the number of driving periods increases. This may indicate

that physical observables are ultimately not continuous in the Tfin → ∞ limit, with important

consequences for the universal properties of the transition.
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