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The emergence of rich dynamical phenomena in coupled self-sustained oscillators, primarily synchronization
and amplitude death, has attracted considerable interest in several fields of science and engineering. Here, we
present a comprehensive theoretical study on the manifestation of these exquisite phenomena in a reduced-
order model of two coupled Rijke tube oscillators, which are prototypical thermoacoustic oscillators. We
characterize the dynamical behaviors of two such identical and non-identical oscillators by varying both system
parameters (such as the uncoupled amplitudes and the natural frequencies of the oscillators) and coupling
parameters (such as coupling strength and coupling delay). The present model captures all the dynamical
phenomena – namely synchronization, phase-flip bifurcation, amplitude death, and partial amplitude death
– observed previously in experiments on coupled Rijke tubes. By performing numerical simulations and
deriving approximate analytical solutions, we systematically decipher the conditions and the bifurcations
underlying the aforementioned phenomena. The insights provided by this study can be used to understand
the interactions between multiple cans in gas turbines combustors and develop suitable control strategies to
avert undesirable thermoacoustic oscillations in them.
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death, Thermoacoustic instability

The interactions between two coupled self-
sustained oscillators can lead to a myriad of dy-
namical phenomena. For example, depending on
the scenario, the coupled oscillators may adjust
their rhythms and consequently synchronize, or
both the oscillators may cease to oscillate, result-
ing in amplitude death. At times, the coupled os-
cillators may attain partial amplitude death, i.e.,
the oscillations in only one of the oscillators may
be suppressed, while the other exhibits compara-
tively large amplitude oscillations. Though the
aforementioned phenomena have been demon-
strated recently in experiments on two thermoa-
coustic oscillators coupled acoustically using a
single connecting tube, they are yet to be corrob-
orated through modeling. Moreover, their un-
derlying bifurcations are yet to be investigated.
In the present study, we consider a model of
two thermoacoustic oscillators subjected to delay
coupling.Through numerical and analytical tech-
niques, we throw light on how parameters such as
coupling strength, coupling delay, heater power,
and frequency mismatch affect the bifurcations
leading to synchronization, amplitude death, and
partial amplitude death in the system.

a)Electronic mail: samadhanpawar@ymail.com

I. INTRODUCTION

Coupled nonlinear oscillators have garnered con-
siderable interest due to their pervasive applications
in domains extending from biological to engineering
systems1–6. Populations of coupled oscillators can ex-
hibit a wide variety of exquisite phenomena depending
on the nature of coupling between them7–11. The most
widely studied phenomenon among them is synchroniza-
tion, which refers to the adjustment of rhythms of cou-
pled oscillators due to the mutual interactions between
them12,13. These interactions can sometimes lead to com-
plete suppression of all oscillations in the system; i.e., all
the constituent oscillators reach a homogeneous steady
state. This phenomenon, which was first discovered by
Rayleigh14, is referred to as amplitude death (AD)15.
The occurrence of AD has been demonstrated experi-
mentally and theoretically in many systems with different
coupling schemes including delay, dissipative, and conju-
gate couplings6,16–18. A system of coupled oscillators can
also attain partial amplitude death (PAD), a dynamical
state wherein some of the oscillators in the system are
completely damped (or exhibit very small amplitude pe-
riodic oscillations) while the others exhibit comparatively
large amplitude limit cycle oscillations19. This state is
generally observed in systems of coupled non-identical
oscillators17.

Traditionally, the routes to various dynamical states
in coupled oscillators have been studied only by vary-
ing their coupling parameters (such as coupling strength
and coupling delay). For example, several studies have
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varied coupling strength to investigate the route to syn-
chronization and amplitude death in coupled Kuramoto
oscillators20 and Stuart-Landau oscillators6,16, respec-
tively. Studies have also characterized the effect of cou-
pling delay on the occurrence of phase-flip bifurcation
(PFB), which is the abrupt transition of a coupled system
from a state of in-phase synchronization (IP) to a state of
anti-phase synchronization (AP) or vice-versa21–23. How-
ever, recent studies by Dange et al.24 and Premraj et
al.25 indicate that, in addition to coupling parameters,
variation in system parameters, such as the amplitude
and the natural frequency of oscillators, significantly af-
fects the dynamics of coupled systems. Although pre-
vious studies have considered the effect of varying the
natural frequencies of oscillators on the dynamics of cou-
pled systems26,27, the effect of change in the amplitude
of the oscillators on their coupled behavior has not been
investigated extensively.

The occurrence of large amplitude self-sustained oscil-
lations can have disastrous consequences to systems in
real life. These consequences include structural damage
to combustors due to thermoacoustic instabilities28,29,
destruction of aircraft wings due to fluttering30, wobbling
and collapse of bridges31,32, spread of epidemics33,34,
crashes in financial markets35, and so on. These oscilla-
tory instabilities possess widely different amplitudes and
natural frequencies. Hence, in order to effectively con-
trol them, it is vital to understand how changes in the
inherent system parameters of the oscillators can alter
their coupled behavior. More specifically, we need to de-
cipher the nature of bifurcations underlying the transi-
tions between different dynamical states on the variation
of system parameters in coupled oscillators. Towards this
end, we investigate how system parameters and coupling
parameters affect the dynamical behavior of a model of
coupled horizontal Rijke tube oscillators36, using bifur-
cation analysis and synchronization theory.

The Rijke tube is a classical example of a thermoa-
coustic oscillator, consisting of a simple tube open at
both ends with a heat source present inside37. A ther-
moacoustic oscillator refers to a confined system wherein
the positive feedback between the heat release rate fluc-
tuations of the heat source and the acoustic field of
the system gives rise to large amplitude self-sustained
tonal sound waves. The occurrence of these high am-
plitude acoustic oscillations is known as thermoacoustic
instability28,38,39. The presence of thermoacoustic insta-
bility has detrimental effects on the structural integrity of
gas turbine combustors and rocket engines28,29,40. Many
mitigation strategies have been developed over the years
to control thermoacoustic instability in individual com-
bustion systems28,38,41,42. However, most practical gas
turbines, such as can type or can-annular type combus-
tors, consist of multiple combustion systems which in-
teract with each other and lead to the simultaneous oc-
currence of thermoacoustic instabilities in more than one
system43–49. It is thus important to understand the com-
plex dynamics resulting from interactions between multi-

ple such coupled thermoacoustic systems and also to de-
velop control strategies to simultaneously mitigate ther-
moacoustic instabilities in them.

Recently there has been an increased interest to study
the effect of mutual coupling on the dynamics of two cou-
pled thermoacoustic systems, theoretically50–54 as well
as experimentally24,52,53,55. Biwa et al.55 experimentally
investigated the occurrence of amplitude death in two
thermoacoustic engines that are coupled via both delay
and dissipative couplings. Thomas et al.50,51 systemat-
ically examined the occurrence of amplitude death in a
model of two horizontal Rijke tubes when time-delay and
dissipative couplings are added individually and simulta-
neously. Dange et al.24 experimentally revealed the ex-
istence of amplitude death, phase-flip bifurcation, and
partial amplitude death through systematic variation of
system and coupling parameters in two horizontal Rijke
tubes coupled via a connecting tube. Hyodo et al.52 ex-
perimentally studied oscillation quenching through dou-
ble tube coupling in two flame-driven Rijke tube oscilla-
tors. Further, Sahay et al.53 demonstrated the expansion
of AD region in the control parameter space by imple-
menting asymmetric forcing to coupled horizontal Rijke
tube oscillators. Although the above studies demonstrate
a wide variety of dynamical phenomena in thermoacous-
tic systems, the mechanisms (or bifurcations) by which
such phenomena occur on variation of system parameters
or coupling parameters is still not clearly understood.
Moreover, the presence of phase-flip bifurcation and par-
tial amplitude death in thermoacoustic systems is yet to
be modeled.

Here, we aim to throw light on the route to the myriad
of dynamical states observed in previous experiments on
coupled horizontal Rijke tube oscillators24. We numer-
ically and analytically show that an interplay between
the system parameters and the coupling parameters de-
termines the occurrence of amplitude death in thermoa-
coustic oscillators. We demonstrate that identical de-
lay coupled Rijke tube oscillators transition between the
states of in-phase synchronization and anti-phase syn-
chronization through two routes: i) by undergoing phase-
flip bifurcation, or ii) via an intermediate state of ampli-
tude death. When the delay coupled Rijke tube oscilla-
tors are non-identical, we also observe a third route via
an intermediate state of desynchronization. Addition-
ally, we uncover the presence of partial amplitude death
(PAD) in non-identical delay coupled Rijke tube oscilla-
tors. On varying the system and coupling parameters,
we observe that desynchronized limit cycle oscillations
in delay-coupled non-identical Rijke tube oscillators sud-
denly synchronize and attain PAD en route to amplitude
death.

The rest of the paper is organized as follows. Section
II provides details of the model for two coupled identical
Rijke tube oscillators. In Sec. III A, we first study the ef-
fect of delay coupling on the bifurcations occurring in two
Rijke tube oscillators. Subsequently, we numerically and
analytically investigate synchronization and amplitude
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FIG. 1. Schematic diagram of two horizontal Rijke tube os-
cillators that are delay coupled to each other with coupling
strength Kτc and coupling delay τc. Delay coupling can be
established in practice by connecting two or more thermoa-
coustic systems using a connecting tube of length lc.

suppression in two delay coupled identical Rijke tube os-
cillators and explain the presence of AD and PFB in the
system. In Sec. III B, we demonstrate PAD and desyn-
chronization, and examine the route to amplitude death
in delay coupled non-identical Rijke tube oscillators. We
finally present our conclusions in Sec. IV.

II. MODEL OF COUPLED RIJKE TUBE OSCILLATORS

In the present study, we consider the horizontal Ri-
jke tube56,57 as a nonlinear oscillator. In this system,
an electrically heated wire mesh acts as a concentrated
heat source. We use the model of the horizontal Rijke
tube developed by Balasubramanian and Sujith36. To
model the coupled Rijke tubes [depicted in Fig. 1], we
first neglect the effects of mean flow (zero Mach number
approximation58) and mean temperature gradient in the
duct. The resultant non-dimensionalized linearized mo-
mentum and energy equations for the acoustic field of the
Rijke tubes are as follows:

γM
∂uA,B

∂t
+
∂pA,B

∂x
= 0, (1)

∂pA,B

∂t
+ γM

∂uA,B

∂x
+ ζpA,B

= (γ − 1)Q̇A,B(x, t)δ(x− xf )

+ CA,B(x, t)δ(x− xc). (2)

Here, u(x, t) and p(x, t) are the acoustic velocity and
acoustic pressure fluctuations non-dimensionalized by
their steady state values u0 and p0, respectively. The su-
perscripts “A” and “B” denote that the quantities are for
oscillators A and B, respectively. x is the distance along
the Rijke tubes non-dimensionalized by the length (lA) of

oscillator A. The time t is non-dimensionalized by lA/c0,
where c0 is the speed of sound at ambient conditions.
γ and M are the ratio of specific heats and the Mach
number (M = u0/c0), respectively. ζ is the damping

coefficient. Q̇(x, t) denotes the non-dimensional heat re-
lease rate fluctuations per unit area from the heat source,
while C(x, t) represents the acoustic coupling between
the Rijke tubes. A Dirac delta function is multiplied to
Q̇ to indicate that the heat source is concentrated at xf ,
which is the non-dimensional heater location in the Ri-
jke tubes36. Similarly, C(x, t) is multiplied by a Dirac
delta function to indicate that the coupling is located at
a position xc on the Rijke tubes.

We describe the heat release rate fluctuations
(Q̇A,B) in the individual Rijke tubes using the Heckl’s
correlation59:

Q̇A,B(x, t) =
2Lw(Tw − T0)

c0p0S
√

3

√
πλTCvu0ρ0rw

×
[√∣∣∣∣

1

3
+ uA,B(x, t− τh)

∣∣∣∣−
√

1

3

]
, (3)

where rw and Lw are the radius and the length of the
heated wire, respectively. Tw and T0 are the temper-
ature of the heated wire and the medium in steady
state, respectively. ρ0 is the density of the medium in
steady state. S is the cross-sectional area of the duct.
λT is the thermal conductivity, while Cv is the specific
heat at constant volume of the medium within the duct.
uA,B(x, t − τh) is the acoustic velocity of the oscillators
at time t− τh. Here, we include the time lag, τh, due to
the thermal inertia of heat transfer in the medium60.

Previous experiments24,46,52,55,61 suggest that acous-
tic waves take a finite time to propagate between two
systems through the connecting tube. To capture this
delayed interaction between the Rijke tubes, we use time-
delay coupling50,53,54, described by the following expres-
sion:

CA,B(x, t) = Kτc

[
pB,A(x, t− τc)− pA,B(x, t)

]
, (4)

where Kτc is the coupling strength and τc is the cou-
pling delay. This coupling indicates that the interactions
between the Rijke tubes is determined by the pressure
difference between them. Though there are various other
forms of coupling6, we choose the above coupling since it
qualitatively captures most of the experimental results,
as we demonstrate in Sec. II of the Supplementary Ma-
terial. Furthermore, this simple form also gives us an
understanding of the essential features of the coupling
that affect the dynamical behavior of the coupled Rijke
tubes.

To simplify the partial differential equations, uA,B and
pA,B are expressed in terms of their Galerkin modes as
follows53,62:
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uA(x, t) =
N∑

j=1

UAj (t) cos(kjx), (5)

pA(x, t) = γM
N∑

j=1

PAj (t) sin(kjx), (6)

uB(x, t) =
N∑

j=1

UBj (t) cos(kjx/r), (7)

pB(x, t) = γM
N∑

j=1

PBj (t) sin(kjx/r), (8)

where kj = jπ refers to the non-dimensional wave num-

ber of the jth mode. UA,Bj (t) and PA,Bj (t) capture the

temporal variation of the jth modes of uA,B and pA,B ,
respectively. Here, r = lB/lA is the ratio between the
length of the Rijke tubes. Since the Rijke tubes are open
at both ends, the total pressures (pt) at the boundaries
is equal to the ambient pressure (p0). Thus, the acoustic
pressure fluctuations, p = pt − p0, at the boundaries are
zero. Hence, the Galerkin modes are chosen such that the
boundary conditions pA(0, t) = pA(1, t) = 0 in oscillator
A and pB(0, t) = pB(r, t) = 0 in oscillator B are satisfied.

Employing the Galerkin technique after substituting
Eqs. (3)-(5) in Eqs. (1) and (2), we obtain the governing
equations for the delay coupled Rijke tubes A and B as:

U̇Aj + kjP
A
j = 0, (9)

ṖAj + 2ζjωjP
A
j − kjUAj

= WA

(√∣∣∣1
3

+ uAf (t− τh)
∣∣∣−
√

1

3

)
sin(kjxf )

+
Kτc

γM

(
pBc (t− τc)− pAc (t)

)
sin(kjxc), (10)

U̇Bj +
kj
r
PBj = 0, (11)

ṖBj +
2ζjωj
r

Pj
B − kj

r
UBj

=
WB

r

(√∣∣∣1
3

+ uBf (t− τh)
∣∣∣−
√

1

3

)
sin

(
kjxf
r

)

+
Kτc

γMr

(
pAc (t− τc)− pBc (t)

)
sin

(
kjxc
r

)
, (12)

where ωj = jπ refers to the non-dimensional angular fre-
quency of the jth mode of oscillator A. uf (t − τh) =
u(xf , t − τh) and pc(x, t) = p(xc, t). W is the non-
dimensional heater power given by:

W =
4(γ − 1)Lw

γMc0p0S
√

3
(Tw − T0)

√
πλTCvu0ρ0rw. (13)

The frequency dependent damping, ζj , in Eqs. (10) and
(12) is given by56,63:

ζj =
1

2π

(
c1
ωj
ω1

+ c2

√
ω1

ωj

)
, (14)

where c1 and c2 are the damping coefficients. In the
absence of coupling, varying the control parameters W ,
c1, c2, xf , and τh in the model can result in the occur-
rence of limit cycle oscillations (LCOs) in a Rijke tube
via subcritical Hopf bifurcation36,62. All of the parame-
ters in the model are non-dimensional, unless otherwise
specified. Based on previous theoretical studies36,50,62,
we choose the values of the model parameters as in Ta-
ble I for all the analytical approximations and numerical
simulations in this study. We use ten Galerkin modes
(N = 10) in our simulations since we observe the cou-
pled dynamics to remain the same on inclusion of higher
modes50.

III. RESULTS AND DISCUSSIONS

A. Analysis of two delay coupled identical Rijke tube
oscillators

In this section, we numerically and analytically study
the dynamical behavior of two coupled horizontal Rijke
tube oscillators [see Fig. 1], and compare this behavior
with that of an isolated oscillator.

We first consider the case when both the Rijke tubes
are identical, i.e., lB = lA = l and so r = 1. In contrast
to the study by Thomas et al.50, in the present study, we
set unequal initial conditions in oscillators A and B to
differentiate between the two identical oscillators. This,
in turn, helps us obtain the distinct states of in-phase and
anti-phase synchronization in the coupled Rijke tube os-
cillators, which is otherwise not possible to obtain. We
now investigate how delay coupling influences the inher-
ent bifurcations present in a Rijke tube oscillator.

1. Comparison of bifurcations in isolated and delay
coupled Rijke tube oscillators

The one-parameter bifurcation diagrams in Fig. 2(a)
illustrate the variation of the root-mean-square of the
acoustic pressure signal (prms) on increasing the normal-
ized heater power (W ) for two identical thermoacoustic

TABLE I. Values of parameters kept constant for all numeri-
cal simulations of the model.

Parameter Value Parameter Value
γ 1.4 lA 1 m
M 0.01 xf 0.25
c1 0.1 τh 0.2
c2 0.06 xc 0.5
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FIG. 2. One-parameter bifurcation diagrams between the root-mean-square value of acoustic pressure fluctuations, prms, and
the normalized heater power, W , (a) for an isolated oscillator A, and for two delay coupled oscillators A and B when their

heater powers WA and WB , respectively, are varied together (i.e., W
A

= W
B

= W ) and (b) for delay coupled oscillators A and

B when WB is fixed at a low value (W
B

= −0.21) such that oscillator B is in steady state (i.e., uB = pB = 0) before coupling,

while W
A

is varied until the system exhibits limit cycle oscillations. (c) Temporal variation of acoustic pressure oscillations, p,
of two delay coupled oscillators shows the presence of induced oscillations on coupling an oscillator B that is initially in steady

state (W
B

= −0.21) with another oscillator A exhibiting limit cycle oscillations (W
A

= 0.59). τc = 0.7 and Kτc = 0.1 are fixed
for all the plots.

oscillators when they are isolated and when they are de-
lay coupled to each other. Here, we obtain the normal-
ized heater power by normalizing W by WH , which is
the critical value of heater power at the Hopf point of
the isolated oscillator, i.e., W = W/WH − 1. Therefore,
for an isolated oscillator, W = 0 at the Hopf point.

In Fig. 2(a), the normalized heater powers, W
A

and

W
B

, of the coupled identical Rijke tube oscillators are

varied together (i.e., W
A

= W
B

= W ). On increasing
the value of W , we observe that both the isolated and
the delay coupled identical oscillators undergo subcrit-
ical Hopf bifurcation, wherein the oscillators transition
abruptly from a state of stable fixed point to limit cycle
oscillations. However, we find that the Hopf point of the
oscillators when they are coupled to each other is higher
(W = 0.22) than that of the isolated oscillators (W = 0).
Increasing the value of W beyond the Hopf point of the
isolated or the coupled oscillators leads to a correspond-
ing growth in the amplitude of the limit cycle oscillations
[refer to Fig. 2(a)]. We find the limit cycle oscillations in
the coupled system to be smaller in amplitude as com-
pared to the uncoupled oscillator. In the present study,
we restrict our analysis to when the Rijke tubes individu-
ally exhibit period-1 limit cycle oscillations with the first

mode being dominant. Accordingly, we vary the value of
W upto 0.9 since we observe period-2 oscillations in the
isolated Rijke tube oscillator for W > 0.9.

In another case shown in Fig. 2(b), we consider the
same system of two delay coupled oscillators. However,
here we vary only the normalized heater power of os-

cillator A (W
A

) while the normalized heater power of

oscillator B (W
B

) is fixed at a low value (W
B

= −0.21)
so that it is in steady state prior to coupling. We observe
that the shift in the Hopf point of oscillator A is greater

(W
A

= 0.42) as compared to the case when the normal-
ized heater powers of both the oscillators are equally var-
ied [Hopf point is at W = 0.22 in Fig. 2(a)]. We further
notice that when oscillator A exhibits LCOs, it induces
small amplitude periodic oscillations in oscillator B, even
though oscillator B is always in steady state prior to
coupling. Figure 2(c) illustrates these coupling-induced

periodic oscillations in oscillator B for W
A

= 0.59 and

W
B

= −0.21. Since both the oscillators have similar
natural frequencies, on coupling [at t = 150 in Fig. 2(c)],
oscillator A drives oscillator B close to its resonant fre-
quency. As a result, we observe induced periodic oscilla-
tions of low amplitude in oscillator B, which can also be
seen from the bifurcation plot in Fig. 2(b). On removing
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the coupling [at t = 350 in Fig. 2(c)], the oscillations in
oscillator B die down, while those in oscillator A regain
their original amplitude observed in the uncoupled state.
This further shows that in a system of two delay coupled
Rijke tubes, when one Rijke tube oscillator is in the state
of limit cycle oscillations, another oscillator can never be
in steady state due to coupling-induced low amplitude
periodic oscillations. Note that Figs. 2(a) and (b) illus-
trate only the effect of increasing the heater power on the
Rijke tubes in the forward path (the reverse path is not
shown) for clarity.

2. Amplitude death, phase-flip bifurcation, and hysteresis
in delay coupled identical Rijke tube oscillators

In this subsection, we systematically study the effect
of the following parameters on the interaction of delay
coupled identical Rijke tube oscillators: (i) the normal-
ized heater power (W ), which is a system parameter that
directly affects the amplitude of limit cycle oscillations in
the uncoupled state [as seen in Fig. 2(a)], and coupling
parameters such as (ii) the delay coupling strength (Kτc)
and (iii) the coupling delay (τc). For each combination
of parameter values, we first let both the Rijke tubes ex-
hibit limit cycle oscillations in isolation and after that
we initiate the coupling between them to study their be-
havior. We quantify the suppression of the acoustic pres-
sure oscillations due to coupling as ∆p = prms,0 − prms,
where prms,0 and prms are the root-mean-square values
of the limit cycle oscillations before and after coupling,
respectively. This value of ∆p is then normalized with re-
spect to prms,0 to get the relative amplitude suppression
(∆p/prms,0). When ∆p/prms,0 = 1, the oscillations are
completely quenched, while ∆p/prms,0 = 0 corresponds
to the absence of any suppression in the limit cycle oscil-
lations on coupling.

In Fig. 3(a), we show the two-parameter bifurcation
diagram between Kτc and τc, which illustrates the effect
of varying coupling parameters in two time-delay cou-
pled Rijke tubes exhibiting high amplitude limit cycle
oscillations in their uncoupled state [W = 0.59, refer to
Fig. 2(a)]. We observe three distinct states in the sys-
tem, which are classified as in-phase synchronization (IP)
[Fig. 3(c)], anti-phase synchronization (AP) [Fig. 3(e)],
and amplitude death (AD) [Fig. 3(d)]. The system is
said to be in the state of in-phase synchronization (IP)
when the phase difference between the acoustic pressure
oscillations in oscillators A and B is close to 0 deg. On
the other hand, the phase difference is nearly 180 deg
when the oscillators are in the state of anti-phase syn-
chronization (AP). Analytic signal approach based on
Hilbert transform is utilized to extract the instantaneous
phase of the acoustic pressure signals during the state of
limit cycle oscillations in the two Rijke tubes13. When
the coupled limit cycle oscillations are synchronized, the
relative phase between them fluctuates in time around a
constant value. This constant phase difference (|∆φ|) is

calculated as the arithmetic mean of the absolute differ-
ence between the instantaneous phases of the oscillations
in oscillators A and B. During amplitude death (AD),
both the Rijke tube oscillators approach the same steady
state (or fixed point) upon coupling. The regions of AD
in the bifurcation diagram [Fig. 3(a)] are present around
values of coupling delay τc = 1/2, 3/2, 5/2, . . . , which
approximately correspond to odd-multiples of quarter-
period of the oscillations, such as T/4, 3T/4, 5T/4,. . . ,
where T ≈ 2l/c0 is the time period of the limit cycle
oscillations in the absence of coupling.

In Fig. 3(a), the regions of AD manifest as islands,
except for the first AD region which does not disappear
on increasing the coupling strength to very high values.
These AD regions decrease in size with increase in τc.
The AD regions are surrounded by regions of IP and AP
synchronization, which occur alternately with increasing
τc [depicted by the arrow ‘1’ in Fig. 3(a)]. Away from
the AD regions, the system undergoes abrupt transitions
from IP to AP state or vice-versa on varying τc [depicted
by the arrow ‘2’ in Fig. 3(a)]. Such an abrupt transition
in the phase difference between the oscillators is referred
to as phase-flip bifurcation (PFB)21.

Now, we study how the coupled system transitions
from the state of LCOs to AD or vice-versa on vary-
ing Kτc using a one-parameter bifurcation diagram be-
tween the root-mean-square of the acoustic pressure sig-
nal (prms) and Kτc for a constant τc = 0.7 [depicted in
Fig. 3(b)]. We observe that the coupled system under-
goes fold bifurcation during the transition from LCO to
AD state (in the forward path) and subcritical Hopf bi-
furcation when transitioning from AD to LCO state (in
the reverse path), resulting in hysteresis on variation of
Kτc. Thus, coupled Rijke tube oscillators exhibit ‘explo-
sive’ (first-order) transition64 during the occurrence of
amplitude death.

Recent studies have demonstrated that apart from cou-
pling parameters, system parameters such as the ampli-
tude and the natural frequency of an oscillator also play a
significant role in determining the behavior of mutually
coupled oscillators24,25. Therefore, we next investigate
the effect of system parameters on the coupled behavior
of Rijke tube oscillators. Towards this purpose, we vary
the amplitude of the acoustic pressure oscillations in the
uncoupled state by varying the heater powers (WA,B) in
Eqs. (11) and (12) equally for both the oscillators. Note
that the oscillators exhibit LCOs before the initiation of
coupling.

Figure 4(a) depicts the two-parameter bifurcation dia-
gram between normalized heater power (W ) and coupling
delay (τc) for two time-delay coupled identical Rijke tube
oscillators. For lower values of W , we notice that the
dynamics of the system alternates between in-phase syn-
chronization (IP) and anti-phase synchronization (AP)
via an intermediate state of amplitude death (AD) as τc
is increased [shown by the arrow ‘1’ in Fig. 4(a)]. When
W is sufficiently high, the coupled behavior of the oscil-
lators switches abruptly between IP and AP states by
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FIG. 3. Two-parameter bifurcation diagram between mutual delay coupling strength, Kτc, and coupling delay, τc, for two delay
coupled identical Rijke tube oscillators depicts the occurrence of multiple islands of amplitude death (AD) in the system. The
arrows indicate the two distinct routes through which the system transitions between the states of in-phase synchronization from
anti-phase synchronization: The first route (labelled ‘1’) is via an intermediate state of AD, while the second route (labelled ‘2’)
is through phase-flip bifurcation. (b) One-parameter bifurcation diagram showing the variation of the root-mean-square value
of the non-dimensional acoustic pressure (prms) with Kτc for τc = 0.7 illustrates explosive hysteretic transition to AD. Non-
dimensional acoustic pressure signals (p) of both the oscillators corresponding to the states of (c) in-phase synchronization (IP),
(d) amplitude death (AD), and (e) anti-phase synchronization (AP). The value of W is fixed at 0.59 for both the oscillators.

FIG. 4. (a) Two-parameter bifurcation diagram between the normalized heater power (W ) and the coupling delay (τc) for two
time-delay coupled identical Rijke tube oscillators. The arrows indicate the two routes through which the system transitions
between in-phase synchronization and anti-phase synchronization, as discussed in Fig. 3. (b) One-parameter bifurcation plot
between the root-mean-square value of acoustic pressure oscillations, prms, and W for τc = 0.7 depicts explosive hysteretic
transition to AD. Kτc is fixed at 0.1 in both the plots.

undergoing PFB [shown by the arrow ‘2’ in Fig. 4(a)].

The one-parameter bifurcation diagram in Fig. 4(b) il-
lustrates the variation in the root-mean-square value of
the acoustic pressure oscillations (prms) with W for a
fixed value of τc. We find that the coupled Rijke tube
oscillators undergo fold bifurcation while transitioning
from LCO to AD state when decreasing W in the for-
ward path. On the other hand, the coupled oscillators

undergo subcritical Hopf bifurcation during the transi-
tion from AD to LCO state at a higher value of W in
the reverse path. Thus, the system undergoes explosive
hysteretic transitions between AD and LCO states on
variation of system parameters [refer to Fig. 4(b)] and
also coupling parameters [refer to Fig. 3(b)] when the
Hopf point of the individual oscillators are subcritical in
nature.
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In the present model, the Rijke tube oscillators can
only exhibit subcritical Hopf bifurcation due to the na-
ture of the nonlinearity in the heat release rate fluctu-
ations shown in Eq. (3)62. However, experiments by
Etikyala and Sujith65 show that Rijke tubes can un-
dergo supercritical Hopf bifurcation for low air flow rates.
Hence, in Sec. I of the Supplementary Material, we mod-
ify the nonlinear terms in the model of delay coupled
thermoacoustic oscillators so that the oscillators exhibit
supercritical Hopf bifurcation in isolation66. We observe
that delay coupled thermoacoustic oscillators with super-
critical Hopf points exhibit second-order (i.e., continu-
ous) change in the amplitude of acoustic pressure fluctu-
ations during the transition from LCO to AD state and
vice-versa, without hysteresis. Thus, we confirm that
the nature of the route to AD on variation of system and
coupling parameters for coupled Rijke tube oscillators
depends on the criticality of the bifurcation exhibited by
the constituent oscillators in the uncoupled state.

Next, we take a closer look at how the properties of
the acoustic pressure oscillations change as the system
undergoes phase-flip bifurcations. Towards this purpose,
we plot the variation of the mean phase difference (|∆φ|)
between the LCOs of the two Rijke tubes [see Fig. 5(a)],
the non-dimensional dominant frequency (f) of the syn-
chronized oscillations [see Fig. 5(b)], and the relative sup-
pression (∆p/prms,0) in the amplitude of the oscillations
[see Fig. 5(c)] as a function of the coupling delay τc.
The heater power is set high enough (W = 0.59) so that
the system always exhibits LCOs for all values of τc for
Kτc = 0.1 [see Fig. 4(a)]. On varying the coupling delay
τc [in Figs. 5(a)], we notice a sudden change in the value

of (|∆φ|) from near 0 deg to 180 deg and vice-versa when
the system undergoes PFB. The non-dimensional domi-
nant frequency of the system (f) exhibits an oscillatory
behavior on varying τc [Fig. 5(b)]. It jumps whenever
the system transitions from IP to AP state or vice-versa.
Post the jump, we notice that the value of f falls almost
linearly until it crosses the value of the natural frequency
[f0, shown by the dashed line in Fig. 5(b)]. The frequency
then varies nonlinearly with τc until it again approaches
f0, after which it jumps once again at the next bifurca-
tion point. From Fig. 5(c), we observe that the extent of
suppression of limit cycle oscillations displays an oscilla-
tory behavior where the amplitude suppression increases
as the system approaches the point of PFB and decreases
post PFB. We do not observe hysteresis in the dynamical
properties of the LCOs in the coupled Rijke tube system
around PFB.

In Sec. II of the Supplementary Material, we compare
the results from the model with the corresponding exper-
imental results obtained by Dange et al24. We first com-
pare a portion of Figs. 4(a), 5(a), and 5(b) with the corre-
sponding experimental results in Fig. S2. We also show
the comparison of the trends in amplitude suppression
for different values of coupling strength in Fig. S3. We
observe qualitative similarity between the results from
the model and the experiments on coupled Rijke tube

FIG. 5. Occurrence of phase-flip bifurcation (PFB) on vari-
ation of coupling delay (τc) in two delay coupled identical
Rijke tube oscillators. Variation in (a) the mean phase dif-

ference (|∆φ|) between the acoustic pressure oscillations in
the coupled Rijke tube oscillators A and B, and (b) the non-
dimensional dominant frequency (f) of the synchronized oscil-
lations in the system, and (c) relative amplitude suppression
(∆p/prms,0) as a function of τc for W = 0.59. The non-
dimensional frequency of the oscillations of the uncoupled
system (f0) is shown by the red dashed line in (b), whose
dimensional value is 176 Hz. Kτc = 0.1 is fixed for all plots.
Discontinuous changes in the values of (|∆φ|) and f are de-
noted by arrows.

oscillators.

3. Analytical approximation for delay coupled identical
Rijke tube oscillators

Through numerical simulations, we have so far deter-
mined the effect of system parameters and coupling pa-
rameters on the behavior of delay coupled identical Rijke
tube oscillators. We observed the occurrence of AD and
PFB in the coupled Rijke tube system. We will now
attempt to explain how these phenomena occur in the
system by analytically deriving an approximate solution
of the model.

We start our analysis by combining the governing equa-
tions for identical Rijke tube oscillators [Eqs. (9)-(12)
with r = 1 and WA = WB = W ] into a single set
of second-order delay differential equations in terms of
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UA,Bj [since the acoustic pressure PA,Bj can be expressed

in terms of U̇A,Bj using Eq. (9) and (11)]. Note that
subscripts are used for denoting the oscillators instead
of superscripts for convenience. The frequency depen-
dent damping in the present model preferentially damps
higher modes67. Thus, since the first mode is dominant
in our system, we consider only j = 1 and neglect the
effect of higher modes to simplify the equations67. We
subsequently drop the subscript j to yield the following
delay differential equations for the system of two delay
coupled Rijke tubes:

ÜA,B + 2ζωU̇A,B + k2UA,B +Wk sin(kxf )

×
[√
|1/3 + cos(kxf )UA,B(t− τh)| −

√
1/3
]

= Kτc sin2(kxc)(U̇B,A(t− τc)− U̇A,B). (15)

To determine the stability of the steady state in the sys-
tem, we locate the parameter values where the trivial
solution for acoustic velocity (i.e., U = 0) loses its sta-
bility. We therefore assume small amplitudes for U and
linearize the square-root nonlinearity in Eq. (15) using
Taylor series expansion as we are only interested in how
the system behaves close to the steady state67. The re-
sulting equation is:

ÜA,B + b0U̇A,B + b1UA,B + σUA,B(t− τh)

+Kτc sin2(kxc)(U̇A,B − U̇B,A(t− τc)) = 0, (16)

where b0 = 2ζω = 2πζ, σ = (
√

3/4)Wk sin(2kxf ), and
b1 = k2 = π2.

In order to further simplify the above equation, we em-
ploy the method of averaging8,68, for which we assume
small values for W and Kτc, τc, and τh so that the as-
sumption of slowly varying amplitudes holds true during
the method of averaging. Then, by considering a sym-
metric solution (i.e., identical oscillators exhibit oscilla-
tions of the same amplitude), the method of averaging on
Eq. (16) yields the following slow flow equations for the
amplitude (R) and the phase (φA and φB for oscillator
A and B, respectively) of the oscillations of the coupled
system (refer to Supplementary Material Sec. III for the
complete derivation):

Ṙ =
R

2

[
−Kτc sin2(kxc)(1−| cos(ωτc)|)+

σ

ω
sin(ωτh)−b0

]
,

(17)

φ̇A,B = −ω
2

+
b1
2ω

+
σ

2ω
cos(ωτh)

− Kτc sin2(kxc)

2
sin[ωτc − (φB,A − φA,B)]. (18)

From Eq. (18), by subtracting the equation for φ̇A from

that of φ̇B , we get the slow flow equation for the phase
difference between the oscillators (θ = φB − φA) as fol-
lows:

θ̇ = −Kτc sin2(kxc) cos(ωτc) sin(θ). (19)

Let us first consider the above equation [Eq. (19)] for
the phase difference, θ. We observe the presence of two
principal values of fixed points by setting the time deriva-
tive as zero: 0 and π rad, assuming cos(ωτc) 6= 0. This
indicates that in-phase synchronized oscillations (θ = 0)
and anti-phase synchronized oscillations (θ = π) are
the only possible steady state solutions of the system.
The stability of these fixed points, 0 and π, can be
determined by examining the sign of the derivative69

dθ̇/dθ = −Kτc sin2(kxc) cos(ωτc) cos(θ) for θ = 0 and
θ = π, plotted in Fig. 6(a) as a function of τc. We no-
tice that each of the fixed points become alternately sta-
ble and unstable on varying the mutual coupling delay.
At τc = 1/2, 3/2, 5/2, . . . , the signs of the derivative
changes, indicating that the in-phase synchronized so-
lution loses stability while the anti-phase synchronized
state becomes stable, or vice-versa. This implies the pe-
riodic occurrence of phase-flip bifurcation (PFB), i.e., the
abrupt transition between IP and AP states, on varying
the coupling delay [as already seen in Figs. 3(a), 4(a),
and 5(a)].

To understand how PFB gives rise to frequency jumps
in the system, we consider the slow flow equation for
the phase of each oscillator [Eq. (18)]. The phase of the

oscillator is ωt+ φ and so its angular frequency is ω+ φ̇.
Hence, the frequency of the oscillations of the mutually
delay coupled system is given by f = 1/2π(ω + φ̇) =

1/2 + (1/2π)φ̇, since ω = π for the first mode. Note that
the right-hand side of Eq. (18) has the term φB,A−φA,B ,
which is evaluated according to whether the IP state or
the AP state is stable for that particular value of coupling
delay τc [as shown in Fig. 6(a)]. At τc = 0.5, we notice
that sin(ωτc) = 1. Around this value of coupling delay,
the frequency of the oscillations is minimum for θ = 0,
while the frequency is maximum for θ = π. Hence, while
undergoing PFB, the frequency of the oscillations also
abruptly increases. A similar argument can be made for
τc = 3/2, 5/2, . . .

We also observe from Eq. (18) that for a particular
value of the phase difference, the frequency varies sinu-
soidally with coupling delay. Hence, after the frequency
jumps to a maximum value during PFB, it falls like a
half-sine wave as the coupling delay is increased further.
Once the value of the frequency reaches its minimum,
PFB occurs once again. In this manner, the frequency
of the oscillations of the delay coupled system undergoes
periodic variation with coupling delay. Figure 6(b) il-
lustrates the resulting trends in the frequency, f , of the
oscillations with coupling delay for Kτc = 0.1. We notice
the analytically obtained frequency trends to match well
with the corresponding numerical results in Fig. 5(b). We
have thus modeled the occurrence of PFB in the system
and investigated the underlying mechanism through our
analytical approximations.

To uncover the conditions for amplitude death (AD)
in the delay coupled identical Rijke tube oscillators, we
look into the slow flow amplitude equation [Eq. (17)].
We notice that R = 0 (which corresponds to AD
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FIG. 6. The occurrence of AD and PFB in two mutu-
ally delay coupled Rijke tube oscillators determined using the
method of averaging. (a) Variation in the stability of the
states of in-phase synchronization (θ = 0 rad) and anti-phase
synchronization (θ = π rad) on varying the mutual coupling

delay (τc). PFB occurs when the sign of dθ̇/dθ changes, i.e.,
when the curves cross the horizontal dashed line. (b) Vari-
ation in the frequency of the oscillations (f) in the coupled
system on varying τc. The frequency of the uncoupled oscilla-
tions (f0) is illustrated by the horizontal dashed line. (c) The
two-parameter bifurcation plot between W and τc obtained
numerically is overlaid with the analytically obtained bound-
ary (blue line) demarcating the AD region. Kτc = 0.1 is fixed
for all plots.

state) is the only solution since we linearized the equa-
tions of the model. This solution loses stability when
there is a change in the sign of the coefficient of R.
Hence, the transition from AD to LCO occurs when
Kτc sin2(kxc)(| cos(ωτc| − 1) + (σ/ω) sin(ωτh) − b0 = 0,
which simplifies to the following:

| cos(ωτc)| <
[
1−

(σ
ω

sin(ωτh)− b0
)
/Kτc sin2(kxc)

]
.

(20)
The above equation succinctly illustrates how the inter-

play between system and coupling parameters determines
the dynamical behavior of two delay coupled identical Ri-
jke tube oscillators.

Next, we qualitatively examine the role played by each
of the parameters on the stability of the AD state. We fix
the value of ω at π (which is the non-dimensional angular
frequency of the first mode) and consider a constant value
of τh and xc. We vary the coupling parameters Kτc and
τc. The system parameters involved in Eq. (20) are σ
(which can be varied by varying the heater power, W ),
and b0 (which is indicative of the damping in the model).
AD is possible for a wider range of parameters when the
values of right-hand-side and left-hand-side of Eq. (20)
are high and low, respectively. This is possible for high
coupling strength Kτc, small values of σ, i.e., small values
of heater power W and high damping coefficients (which
would give large value of b0). On the other hand, the
value of | cos(ωτc)| is least when cos(ωτc) = 0, i.e., when
τc = 1/2, 3/2, 5/2,. . . . These are the optimal values of
coupling delay for achieving AD in the system.

In order to unravel the nature of the bifurcation be-
tween AD and LCO states in the coupled identical Rijke
tubes, we include the cubic term in the Taylor series ex-
pansion of the square-root nonlinearity in Eq. (15); this
gives the equation for oscillator B as:

ÜB + b0U̇B + b1UB + σUB(t− τh) + σ2[UB(t− τh)]2

+σ3[UB(t− τh)]3 +Kτc sin2(kxc)
[
U̇B − U̇A(t− τc)

]
= 0,

(21)

where σ2 = − 3
4σ cos(kxf ) and σ3 = 9

8σ cos2(kxf ). The
equation for oscillator A is obtained by interchanging A
and B in the above equation. By using the method of
averaging (the steps are detailed in the Supplementary
Material Sec. III), with the same assumptions as before,
we get the amplitude equation:

Ṙ =
R

2

[σ
ω

sin(ωτh)− b0 −Kτc sin2(kxc)(1 + | cos(ωτc)|)
]

+
3

8ω
σ3 sin(ωτh)R3.

(22)

The equation for the phase difference is the same as be-
fore [Eq. (19)]. The amplitude equation is of the form:

Ṙ = C1(σ − σH)R+ C2R
3, (23)

where C1 = 1
2ω sin(ωτh), σH = (ω/ sin(ωτh))

[
b0 +

Kτc sin2(kxc)(1 − | cos(ωτc)|)
]
, and C2 = 3σ3

8ω sin(ωτh).
This equation is similar to the amplitude equation of the
Stuart-Landau oscillator, which is the normal form of
Hopf bifurcation67,70. Hence, the delay coupled system
undergoes Hopf bifurcation at σ = σH .

The criticality of the Hopf bifurcation is determined by
the sign of the coefficient of the cubic term in Eq. (23).
In our model, the coefficient C2 is always positive and
it is not dependent on coupling parameters. This in-
dicates that the bifurcation is subcritical irrespective of
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whether the oscillators are coupled or not. Thus, the
expression given by Eq. (20) predicts the set of subcrit-
ical Hopf points of the delay coupled system. We jux-
tapose the analytically predicted Hopf points with the
corresponding numerically obtained bifurcation diagram
in Fig. 6(c). We set small initial conditions and couple
the oscillators at the start (before they individually reach
the LCO state) so as to obtain the Hopf points, and not
the fold points, in the numerical result in Fig. 6(c). We
observe an excellent match between the analytical and
the numerical results when our simplifying assumption
of small coupling delay holds true. Recently, Premraj et
al.25 showed that delay coupled Stuart-Landau oscilla-
tors qualitatively display many of the features observed
in the coupled Rijke tube system. This can be explained
by the similarity in the slow flow amplitude equations of
the two systems.

Thus, we have analytically and numerically determined
that varying system and coupling parameters shifts the
Hopf points of the oscillators without altering their criti-
cality. As a result, we observed explosive hysteretic tran-
sitions between LCO and AD states on delay coupling
two Rijke tube oscillators which individually exhibit sub-
critical Hopf bifurcation. Apart from AD, we also analyt-
ically explained the occurrence of phase-flip bifurcation
and its associated frequency trends in the system. Hav-
ing examined the dynamics of the delay coupled system
when both the Rijke tubes have the same length (l) and
thus the same system parameters (i.e., the same natu-
ral frequency and amplitude in the uncoupled state), we
next introduce mismatch in the length of the Rijke tubes
(lA 6= lB) into the model and investigate its influence on
the synchronization and amplitude suppression behavior
of the system.

B. Analysis of non-identical delay coupled Rijke tube
oscillators

From Fig. 4(a) in Sec. III A, we noticed that for low
values of coupling strength, mutual delay coupling is in-
sufficient to completely suppress high amplitude limit cy-
cle oscillations (say, W = 0.59) of the acoustic field in a
pair of identical Rijke tube oscillators. Recently, Dange
et al.24 and Premraj et al.25 demonstrated that such os-
cillations can be quenched by introducing a mismatch in
the system parameters, such as the natural frequencies
and amplitudes of the oscillators in the uncoupled state.
We now introduce a small mismatch in the length of the
Rijke tube oscillators. We keep the length of oscillator
A (lA = l) constant, whereas the length of oscillator B
(lB) is varied (see Fig. 1). Thus, we now consider the
case when r 6= 1 in the governing equations of the delay
coupled Rijke tubes [Eqs. (9)-(12)].

We use the measure α = r − 1 = (lB − lA) /lA, hence-
forth referred to as ‘mismatch parameter’, to quantify the
mismatch in the lengths of the Rijke tubes. A positive
α indicates that Rijke tube B is lengthened with respect

to Rijke tube A, while a negative α implies shortening
of Rijke tube B. By changing the length of an isolated
Rijke tube, we bring about a change in the dimensional
natural frequency and also the amplitude of the LCOs
in it. Increasing the length of a Rijke tube decreases its
dimensional natural frequency and the non-dimensional
heater location (since the dimensional heater location is
constant in the Rijke tube); as a result, this leads to a de-
crease in the amplitude of the limit cycle oscillations57,62.
Thus, in the model of delay coupled non-identical Rijke
tubes, the longer Rijke tube possesses LCOs of smaller
amplitude in its uncoupled state. Next, we investigate
how the introduction of mismatch parameter (α) affects
the amplitude of LCOs in the system.

1. Amplitude death and partial amplitude death in delay
coupled non-identical Rijke tube oscillators

In Figs. 7(a) and 7(b), we examine the effect of vary-
ing the coupling delay (τc) and the mismatch parameter
(α) on the amplitude suppression behavior of oscillator A
and oscillator B, respectively, for constant values of nor-
malized heater power (W ) and coupling strength (Kτc).
Complete suppression (∆p/prms,0 = 1) and a lack thereof
(∆p/prms,0 = 0) are indicated by dark and light zones,
respectively. In the absence of mismatch (α = 0), we
note that the oscillations in both the oscillators are not
quenched for the given values of heater power and cou-
pling strength. However, the addition of finite mismatch
results in better suppression of LCOs in one or both the
oscillators. Following the work by Dange et al.24, de-
pending on whether LCOs in either A, B or both the
oscillators are quenched, we classify the coupled behav-
ior of Rijke tube oscillators into four distinct dynamical
states, which are (i) limit cycle oscillations (LCO), (ii)
amplitude death (AD), (iii) partial amplitude death in
oscillator B (PADB), and (iv) partial amplitude death
in oscillator A (PADA). The two-parameter bifurcation
diagram between α and τc in Fig. 7(c) illustrates the
occurrence of these four states in the delay coupled sys-
tem. The temporal variations of the acoustic pressure
corresponding to these states [marked by points d, e, f,
and g in Fig. 7(c)] are illustrated in Figs. 7(d) to 7(g).

As previously mentioned in Sec. III A, the system is
said to have achieved AD state [depicted in Fig. 7(e)] if
the oscillations in both the Rijke tubes are quenched af-
ter coupling the oscillators. The dynamical state wherein
one of the oscillators exhibits a nearly quenched state (de-
scribed by small-amplitude oscillations) and the other
oscillator of the coupled system exhibits large ampli-
tude oscillations is referred to as partial amplitude death
(PAD)17,19,24. In Sec. III A, we asserted how a Rijke
tube cannot maintain its steady state when it is coupled
to another Rijke tube exhibiting LCOs due to coupling-
induced periodic oscillations [Figs. 2(b) and 2(c)]. Hence,
during the state of partial amplitude death (PAD), the
oscillations in one of the Rijke tubes are greatly sup-
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FIG. 7. Color maps showing the effect of variation in mutual coupling delay (τc) and mismatch parameter (α) on the relative
amplitude suppression (∆p/prms,0) of (a) oscillator A and (b) oscillator B of the system of delay coupled non-identical Rijke
tube oscillators. (c) Two-parameter bifurcation plot between τc and α illustrates the various states of coupled dynamics in the
system. The coupled behavior of the system is asymmetric about the mismatch parameter. The temporal variations of the
non-dimensional acoustic pressure oscillations for both the oscillators A and B are illustrated for the case of (d) LCO, (e) AD,
(f) PADB, and (g) PADA, with the corresponding points marked in (c). W = 0.59 and Kτc = 0.15 are fixed for all plots.

pressed and their amplitude is small as compared to the
LCOs in the other Rijke tube. From Figs. 7(a) and 7(b),
we observe that for large negative values of α, the relative
amplitude suppression (∆p/prms,0) in oscillator A rises
to about 80% while oscillator B still exhibits high ampli-
tude LCOs. We refer to this state as partial amplitude
death in oscillator A (PADA), illustrated in Fig. 7(g).
Similarly, we say that the system is in a state of par-
tial amplitude death in oscillator B (PADB), depicted in
Fig. 7(f), when oscillations in Rijke tube B are quenched
by at least 80% (i.e., ∆p/prms,0 ≥ 80%) while Rijke tube
A exhibits high amplitude LCOs. When the oscillations
in either of the oscillators are not significantly quenched
(∆p/prms,0 < 80% in both the oscillators), we assign the
state as LCO (i.e., limit cycle oscillations). All amplitude
measurements are acquired after a sufficiently long time
such that the transients are negligible.

From the two-parameter bifurcation plot [Fig. 7(c)],
we observe LCOs in both the oscillators for lower mag-
nitudes of mismatch. We note that, on further increas-
ing the magnitude of α, the system attains AD or PAD
state for recurring ranges of coupling delay (τc). Vary-
ing α strongly affects the amplitude of oscillations in Ri-
jke tube oscillator B (whose length is varied). For high
values of α, the oscillations in oscillator B are substan-
tially suppressed regardless of the value of τc. On the

other hand, the suppression of oscillations in oscillator
A (whose length is kept constant) is more affected by
changes in coupling delay than by variation in α. In gen-
eral, we notice that the oscillations in the longer tube
(which has smaller amplitude of LCOs in the uncoupled
state) are quenched better. As a result, we observe large
regions of PADB on the positive side and PADA on the
negative side of α in the bifurcation diagram shown in
Fig. 7(c). We see significantly larger regions of AD for
positive mismatch as compared to negative mismatch.
This matches well with our analytical approximation dis-
cussed towards the end of this section, where we predict
that lengthening oscillator B, i.e., setting α to a posi-
tive value, promotes the occurrence of AD in the delay
coupled system. The occurrence of PADA and PADB in
two coupled non-identical Rijke tubes was experimentally
demonstrated by Dange et al.24 and Sahay et al.53.

2. Different routes between synchronization states and to
AD in delay coupled non-identical Rijke tube oscillators

Having discussed the trends in amplitude suppression,
we will now examine the routes through which the sys-
tem of delay coupled non-identical Rijke tube oscillators
transition between in-phase and anti-phase synchronized
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FIG. 8. Two-parameter bifurcation diagrams between the coupling delay (τc) and the mismatch parameter (α) where the

color maps depict variation in (a) the phase-locking value (PLV) and the (b) the mean phase difference (|∆φ|) between the
oscillations in the system of delay coupled non-identical Rijke tube oscillators. In (b), the arrows indicate the three routes
through which non-identical delay coupled Rijke tube oscillators transition between in-phase and anti-phase synchronized state.
These are (1) via phase-flip bifurcation, (2) via an intermediate state of AD, and (3) via an intermediate state of desynchronized

LCOs. W = 0.59 and Kτc = 0.15 are fixed for both the plots. The black regions denote AD state, where PLV and |∆φ| are
not defined.

states. Towards this purpose, we track the phase locking
value (PLV) and the mean phase difference (|∆φ|) be-
tween the oscillations of the Rijke tubes during LCO and
PAD states as per Fig. 7(c).

Phase-locking value (PLV) measures the level of syn-
chronization between the two Rijke tube oscillators and
is given by the following expression13:

PLV =
1

n

∣∣∣∣∣∣

n∑

j=1

exp(i∆φ)

∣∣∣∣∣∣
, (24)

where n is the length of the acoustic pressure signal and
∆φ is the instantaneous phase difference between the
acoustic pressure signals in the two Rijke tubes. The
value of PLV ranges from 0 to 1, with zero indicating
desynchronization and 1 indicating synchronization of
the oscillators. We do not calculate PLV for the AD
state due to the absence of oscillations in the oscillators,
in which case PLV does not have any physical meaning.

From the bifurcation diagram [Fig. 8(a)], we observe
that for most values of the mismatch parameter (α),
the oscillations are synchronized. However, for around
α < −0.08, the oscillations are desynchronized when they
are in the LCO state. Figure 8(b) shows that the syn-
chronized regions further comprises alternate bands of
in-phase (IP) synchronization and anti-phase (AP) syn-
chronization of oscillators A and B on variation in the τc.
Based on the value of the mismatch parameter, we ob-
serve three distinct routes through which transitions be-
tween IP and AP states occur in the system on variation
of the coupling delay (τc). Firstly, for small magnitudes
of mismatch [marked by the arrow ‘1’ in Fig. 8(b)], the
transitions between IP and AP states are sudden, indi-
cating PFB. The second way of transitioning between IP

and AP states is through an intermediate state of AD.
This route is observed for comparatively larger positive
values of mismatch parameter [depicted by the arrow ‘2’
in Fig. 8(b)]. We examined these two routes previously
in identical delay coupled oscillators in Sec. III A [refer
Figs. 3(a) and 4(a)]. Here, from Figs. 8(a) and 8(b), we
see that non-identical Rijke tube oscillators can also tran-
sition between IP and AP states through a third route,
which is via an intermediate state of desynchrony. This
route is mainly observed for large negative values of mis-
match parameter [around α < −0.08, depicted by the
arrow ‘3’ in Fig. 8(b)]. We find the transition between
synchronized and desynchronized states on variation of τc
to be abrupt, as indicated by the discontinuous change
in color in Fig. 8(a).

Next, we examine the route to AD on variation of
the normalized heater power, W , for delay coupled
non-identical Rijke tube oscillators exhibiting desynchro-
nized LCOs. The one-parameter bifurcation diagrams in
Figs. 9(a) and 9(b) depict how varying W affects the
root-mean-square value of acoustic pressure oscillations
(prms) in coupled oscillators A and B, respectively. The
values of Kτc, τc and α are chosen as 0.15, 0.2 and -0.1,
respectively, so that we get desynchronized limit cycle os-
cillations at high values of W according to Fig. 8(a). We
observe that, on decreasing W in the forward path, the
desynchronized oscillations undergo secondary fold bifur-
cation [denoted as ‘F1’ in Fig. 9(b)], where the amplitude
of oscillator B slightly increases whereas that of oscilla-
tor A drops to a very low value. We refer to this state
as partial amplitude death. We also note from Fig 9(c)
that this sudden change in the amplitude of the acous-
tic oscillations in the forward path is accompanied by a
jump in the PLV between the oscillators to one, indi-



14

FIG. 9. Variation of root-mean-square value of acoustic pressure oscillations, prms, with normalized heater power, W , during
the transition from desynchronized LCO to AD, both in the forward (decreasing W ) and reverse (increasing W ) paths for (a)
oscillator A and (b) oscillator B in a system of two delay coupled non-identical Rijke tube oscillators. (c) The corresponding
variation in the phase-locking value (PLV) with W for the forward path (decreasing W ) shows sudden synchronization of the
limit cycle oscillations during the state of partial amplitude death (PADB), before the system attains amplitude death (AD).
Similar variations of prms and PLV as a function of the coupling strength, Kτc, are presented in (d)-(f). ‘SH’ indicates subcritical
Hopf bifurcation, while ‘F1’ and ‘F2’ indicate fold bifurcations. Region of PAD state is highlighted in yellow. Kτc = 0.15 is
fixed for plots (a)-(c), while W = 0.59 is fixed for plots (d)-(f). α = −0.1 and τc = 0.2 are fixed in all plots.

cating synchronization of the oscillators. Decreasing W
further causes both the oscillators to attain AD through
another fold bifurcation [denoted as ‘F2’ in Figs. 9(a)
and 9(b)]. Thus, on lowering the heater power (a sys-
tem parameter), desynchronized LCOs in delay coupled
non-identical Rijke tube oscillators are quenched to AD
state through an intermediate state of PAD wherein the
oscillations are synchronized. In the reverse path, the
transition from AD to desynchronized LCO state occurs
directly through a subcritical Hopf bifurcation [marked
as ‘SH’ in Figs 9(a) and 9(b)].

Figures 9(d)-9(f) show similar behavior on variation
of the coupling strength, Kτc. Increasing the value of
coupling strength, Kτc first causes desynchronized oscil-
lations to synchronize during the state of PAD. Further
increase in Kτc leads to AD state. On the other hand,
the desynchonized oscillations are restored in the sys-
tem in the reverse path without an intermediate state of
PAD. Interestingly, synchronized limit cycle oscillations
are quenched on decreasing W or increasing Kτc without
an intermediate PAD state, which is similar to the re-
sults of identical oscillators discussed in Figs. 3 and 4 in
Sec. III A. Furthermore, in Fig. 9, we observe hysteresis
between amplitude death and oscillatory states for delay

coupled non-identical Rijke tube oscillators.

3. Analytical approximation for delay coupled
non-identical Rijke tube oscillators

We will now analytically examine the effect of the mis-
match parameter on the occurrence of AD in the system
of delay coupled non-identical Rijke tube oscillators. To-
wards this, we follow a methodology similar to what we
utilized in Sec. III A 3 (detailed in Sec. III of the Supple-
mentary Material) for delay coupled identical oscillators.
Accordingly, we linearize Eqs. (9)-(12) while considering
only the first mode and subsequently use the method of
averaging with an additional assumption of infinitesimal
value of α. Through this analysis, we find the condition
for achieving AD in the system of delay coupled non-
identical oscillators to be the following:

|cos (ωτc)| <
[

1− (σ/ω) sin (ωτh)− b0
Kτc sin2(kxc)

+ α

(
(β + ε)σ/ω sin (ωτh)− εb0

2Kτc sin2(kxc)

)]
, (25)
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where β = 1+2kxf cot(2kxf ), ε = 3/2−kxc cot(kxc) and
other parameters are as given in Eq. (16). In Eq. (25), we
now focus only on the mismatch parameter, α. We see
that increasing the value of α in the positive direction,
i.e., lengthening oscillator A, widens the range of param-
eters over which AD can be achieved [since the right-
hand-side of Eq. (25) increases]. On the other hand, a
negative value of α, i.e., decreasing the length of oscil-
lator A, seems to decrease the range of parameters for
attaining AD. In Sec. III A 3, we found that Eq. (20) is
indicative of the Hopf point of delay coupled identical
oscillators. Similarly, here Eq. (25) determines the Hopf
point of the two delay coupled non-identical oscillators.
Note that, despite the presence of parameter mismatch,
the oscillators share the same Hopf point when they are
delay coupled.

Thus, we analytically infer that the addition of fre-
quency detuning and amplitude mismatch, achieved by
lengthening one Rijke tube oscillator while keeping the
length of the other oscillator constant, in a delay cou-
pled system can result in the occurrence of amplitude
death. This inference matches with our numerical re-
sults in Fig. 7(c) and previous experimental results by
Dange et al.24. In Fig. 7(c), we observe a few small is-
lands of AD for negative values of mismatch. However,
due to the assumption of small coupling delay, our analy-
sis does not capture this trend. A more rigorous analysis
which does not make the simplifying assumptions of small
amplitude and small magnitudes of mismatch parameter
is required to predict the stability of limit cycles and to
completely explain the presence of PAD and desynchro-
nization, which presents a scope for future study.

IV. CONCLUSIONS

In this study, we investigated the occurrence of syn-
chronization and amplitude suppression in a model of
two coupled Rijke tube oscillators. We shed light on how
system parameters (such as the amplitude and the fre-
quency of the oscillations in the uncoupled state) and
coupling parameters (such as the coupling strength and
the coupling delay) affect the dynamical behavior of the
system. Through approximate analytical solutions and
numerical simulations, we demonstrated the occurrence
of synchronization and amplitude death (AD) in two de-
lay coupled identical Rijke tube oscillators. We observed
that the nature of transition to AD for coupled Rijke
tube oscillators is dependent on the criticality of the
bifurcation of the individual oscillators; the transition
is explosive (first-order) for oscillators that individually
exhibit subcritical Hopf bifurcation, while it is contin-
uous (second-order) when the individual oscillators ex-
hibit supercritical Hopf bifurcation. We also observed
two states of synchronized oscillations, i.e., in-phase and
anti-phase synchronization, and the transition between
these states happens either via an intermediate state of
AD or through phase-flip bifurcation (PFB) on increas-

ing the value of coupling delay. We analytically predicted
the critical values of coupling and system parameters for
achieving AD and PFB in Rijke tube oscillators that are
delay coupled. As compared to an isolated Rijke tube
oscillator, we observed that delay coupling shifts forward
the Hopf points of the Rijke tube oscillators without al-
tering their criticality. Furthermore, we showed that os-
cillations can be induced in a damped oscillator by cou-
pling it with another oscillator exhibiting limit cycle os-
cillations (LCOs).

The introduction of the mismatch parameter, i.e., a
small mismatch in the length of the Rijke tubes, causes
a mismatch in the natural frequencies and the ampli-
tudes of the oscillators. We observed the introduction of
mismatch parameter to suppress high amplitude LCOs,
resulting in the occurrence of multiple parametric regions
of partial amplitude death (PAD) and AD in the system
of delay coupled Rijke tube oscillators. We discovered
desynchronized oscillations as an intermediate state be-
tween IP and AP for large negative values of the mis-
match parameter. We further found the transition from
desynchronized oscillations to AD to happen through an
intermediate state of PAD on varying both system and
coupling parameters. The presence of synchronization,
PFB, AD, and PAD in our model corroborates the ex-
perimental observations by Dange et al.24.

We thus examined in detail a model that captures
all of the dynamical phenomena observed experimentally
in coupled thermoacoustic oscillators. We also demon-
strated the important role played by system parameters
in determining the dynamical state of coupled limit cycle
oscillators, and detailed the mechanisms through which
these dynamical changes can occur. The findings in this
study may provide insights into the coupled behavior of
acoustic fields of practical combustion systems, such as
can, can-annular or annular combustors. This could in
turn help us devise control strategies to mitigate ther-
moacoustic instability in these systems, which is a rarely
explored area of research till date. Examples of such
control strategies may include using connecting tubes of
appropriate lengths and diameters to acoustically con-
nect cans of the engine or introducing mismatch in the
length of the coupled combustion chambers. The effec-
tiveness of these control strategies first needs to be rigor-
ously tested experimentally and theoretically in coupled
turbulent systems before their implementation in real en-
gines in the future.
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In this supplementary material, we present additional results that supplement our findings

in the main manuscript. We validate the generality of our findings by illustrating the shift in

the Hopf point due to delay coupling in oscillators exhibiting supercritical Hopf bifurcation.

We also compare some of the numerical results with previous experimental observations by

Dange et al.1. Finally, we present a detailed derivation of the analytical approximation of

the delay coupled Rijke tube oscillators.

I. EFFECT OF DELAY COUPLING ON OSCILLATORS EXHIBITING

SUPERCRITICAL HOPF BIFURCATION

In Fig. 2 of Sec. III A of the main manuscript, we studied how delay coupling shifts

the subcritical Hopf points of Rijke tube oscillators. Subramanian et al.2 explained how

the present model of the Rijke tube can only exhibit subcritical and not supercritical Hopf

bifurcation due to the square-root nonlinearity of the source term. However, experiments by

Etikyala and Sujith3 show that for low flow rates, the Rijke tube undergoes supercritical Hopf

bifurcation. Therefore, in this section, we consider the model of two identical thermoacoustic

oscillators exhibiting supercritical Hopf bifurcation and examine how delay coupling affects

their Hopf points. The governing equations Eqs. (5)-(9) and (11) of the main manuscript

remain the same, apart from maintaining r = 1, while Eqs. (10) and (12) are modified as

below:

ṖA,B
j + 2ζjωjPj

A,B − kjUjA,B

=

√
3

2
W sin(kxf )

(
uA,Bf (t− τh)−

3

4
uA,Bf (t− τh)2 −

9

8
uA,Bf (t− τh)3

)

︸ ︷︷ ︸
Source

+
Kτc

γM
sin(kxc)

(
pB,Ac (t− τc)− pA,Bc (t)

)

︸ ︷︷ ︸
Delay coupling

(S1)

We obtained the source term of Eq. (S1) by expanding the nonlinearity in Eqs. (10) and

(12) of the main manuscript upto the cubic term and then changing the sign of the cubic

term so that the Hopf bifurcation is supercritical in nature2. For our subsequent analysis,

we fix some of the model parameters according to Table 1 in Sec. II.

From the one-parameter bifurcation plot in Fig. S1(a), we observe that the thermoacoustic

oscillator undergoes supercritical Hopf bifurcation atW = 0 in the absence of coupling. Here,

2



FIG. S1. (a) One-parameter bifurcation plot between the root-mean-square value of the acoustic

pressure oscillations, prms, and the normalized heater power, W , shows that delay coupling shifts

the supercritical Hopf point of thermoacoustic oscillators to a higher value of W for τc = 1.3 as

compared to when they are isolated. (b) One-parameter bifurcation plot between prms and coupling

strength, Kτc, depicts continuous (second-order) transition of limit cycle oscillations to amplitude

death (AD) for W = 0.59 and τc = 0.7. (c) Two-parameter bifurcation plot between W and cou-

pling delay, τc, illustrates the variation in the relative suppression of acoustic pressure oscillations

(∆p/prms,0) and the existence of in-phase (IP) and anti-phase (AP) synchronization in two delay

coupled thermoacoustic oscillators that individually exhibit supercritical Hopf bifurcation. Kτc is

fixed at 0.1 in plots (a) and (c)

W is the normalized heater power defined by W = W/WH − 1, where WH = 0.63 is the

heater power corresponding to the Hopf point of the oscillator. We find that delay coupling

two thermoacoustic oscillators shifts forward their Hopf points (from W = 0 to around

W = 0.21), similar to what we observe in Fig. 2(a) in Sec. III A of the main manuscript.

Furthermore, we observe that when the individual thermoacoustic oscillators of the coupled

system exhibit supercritical Hopf bifurcation, the transition between the states of amplitude

3



death (AD) and limit cycle oscillations (LCOs) is of second order and is not hysteretic.

In Fig. S1(b), we plot the variation of the root-mean-square value of the acoustic pressure

fluctuations prms during the transition from LCO to AD as the coupled strength (Kτc) is

varied. We see that varying Kτc results in continuous transition of LCOs to AD when the

thermoacoustic oscillators have supercritical Hopf points in the uncoupled state.

In Fig. S1(c), we present the two-parameter bifurcation diagram between the normalized

heater power W and the coupling delay τc of the system. We observe the LCOs in the

system to be suppressed to the greatest extent when τc is around 1/2, 3/2, 5/2, . . . . We also

observe alternate occurrence of in-phase (IP) and anti-phase (AP) synchronized regions in

the delay coupled system on variation of τc. The amplitude of the oscillations appears to

dip when the system undergoes phase-flip bifurcation (PFB). All of these observations are

similar to what we studied in Sec. III A [Figs. 4(a) and 5(c)] of the main manuscript.
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II. COMPARISON BETWEEN MODEL AND EXPERIMENTS

In this section, we compare some of the results obtained from the model of delay cou-

pled Rijke tube oscillators in the current study with the corresponding experimental results

obtained by Dange et al.1.

In Sec. III A of the main manuscript, we noted the occurrence of AD and PFB in the

FIG. S2. (a) A portion of the bifurcation diagram between the normalized heater power (W ) and

mutual coupling delay (τc) obtained from our model in Fig. 4(a) of the main manuscript. Trends

in (b) the mean phase difference (|∆φ|) and (c) the dimensional dominant frequency (f) of the

coupled oscillations on varying τc. These plots are compared with the experimentally obtained (d)

bifurcation diagram between the root-mean-square value (p0) of the acoustic pressure oscillations

in the uncoupled state and the non-dimensional length of connecting tube (L), and the variation

of (e) |∆φ| and (f) f with L. In both (c) and (f), the red dashed line indicates the frequency of

the oscillations in the uncoupled system. IP and AP indicate in-phase and anti-phase states of

synchronization, respectively. Plots (d)-(f) are reproduced with permission from Dange et al.1.
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system of two mutually delay coupled identical Rijke tube oscillators [see Fig. 4(a) of the

main manuscript]. We observed that any change in W directly corresponds to a change in

the amplitude of the oscillations in the uncoupled state [refer Fig. 2(a)]. Hence, a portion of

the bifurcation diagram [Fig. 4(a)] obtained from our model is presented in Fig. S2(a) and is

qualitatively compared with the experimentally obtained two-parameter bifurcation diagram

[Fig. S2(d)] between the root-mean-square value (p0) of the acoustic pressure oscillations in

uncoupled state and the length of the connecting tube (L = lc/λ, where lc is the length

of the connecting tube and λ is the wavelength of the uncoupled oscillations) by Dange

et al.1. We also compare the corresponding trends in the dominant frequency (f) and the

mean phase difference (|∆φ|) of the coupled system. From Fig. S2, we observe a possible

correlation between the non-dimensional quantities τc and L, which can be described as:

τc = τ̃c/(l/c0),

where τ̃c is the dimensional coupling delay. Since τ̃c is roughly lc/c0,

τc ≈ (lc/c0)/(l/c0)

= lc/l ≈ lc/(λ/2) = 2L, (S2)

where l is the length of the Rijke tube and c0 is the speed of sound. Hence, due to Eq. (S2),

we plot τc/2 on the abscissa while presenting the results from our model. We observe a

qualitative match between the results obtained from experiments and the model. In both

the model and the experiments [refer to Figs. S2(a) and S2(d), respectively], we observe the

occurrence of AD for low amplitudes and phase-flip bifurcation (PFB) for high amplitudes

LCOs in the uncoupled state. Additionally, in both the cases, the dominant frequency, f

[Figs. S2(c) and S2(f)], and the phase difference, |∆φ| [Figs. S2(b) and S2(e)], between the

oscillations in the two Rijke tube oscillators undergo an abrupt change during PFB. The

dominant frequency falls after the occurrence of PFB on increasing the coupling delay in

the model, or correspondingly, the length of connecting tube in the experiment.

Furthermore, we find that when the normalized heater power is low [Figs. S3(a) and

S3(c)], the anti-phase synchronized LCOs are completely suppressed (AD) for a particular

range of τc or L, after which the system transitions to in-phase synchronization. The relative

suppression of such oscillations in the model increases significantly on increasing the delay
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FIG. S3. Comparison of the results obtained from our model with the corresponding experi-

mental results shows possible correlation between the coupling parameters in the model and the

experiments. Relative suppression of the amplitude of acoustic pressure oscillations (∆p/p0) on

varying τc (or L in the experiment) for different values of Kτc in the model (or different values

of connecting tube diameter D in the experiment). (a) W = 0.12 in the model (or p0 = 40 Pa

in the experiment) and (b) W = 0.93 (or p0 = 120 Pa in the experiment). Plots (c) and (d) are

reproduced with permission from Dange et al.1.

coupling strength (Kτc). A similar trend is observed in the experiment when the diameter

of the connecting tube (D) is increased.

For higher values of normalized heater power [Figs. S3(b) and S3(d)], the given limited

range of coupling strength (or diameter in the experiment) is not sufficient for the system to

attain AD irrespective of the value of coupling delay (or correspondingly, the length of the

connecting tube). The relative suppression of oscillations in the model in this case reaches

a maximum at around τc/2 = 0.7, where the system undergoes PFB.

7



III. ANALYTICAL APPROXIMATION FOR DELAY COUPLED

IDENTICAL THERMOACOUSTIC OSCILLATORS

Here, we analytically predict the occurrence of amplitude death (AD) and phase-flip

bifurcation (PFB) in two time-delay coupled identical thermoacoustic oscillators. We start

with the governing equation Eq. (15) of the main manuscript which considers only the first

modes of the oscillators:

ÜA,B + 2ζωU̇A,B + k2UA,B +Wk sin(kxf )

[√∣∣∣1
3

+ cos(kxf )UA,B(t− τh)
∣∣∣−
√

1

3

]

+Kτc sin2(kxc)[U̇A,B − U̇B,A(t− τc)] = 0, (S3)

where the variables are defined as per the main manuscript. Expanding the nonlinear source

term in the above equation as a Taylor series gives:

ÜA,B + b0U̇A,B + b1UA,B + σUA,B(t− τh) + σ2[UA,B(t− τh)]2 + σ3[UA,B(t− τh)]3

+Kτc sin2(kxc)[U̇A,B − U̇B,A(t− τc)] = 0, (S4)

where b0 = 2ζω, b1 = k2 = π2, σ = (
√

3/4)Wk sin(2kxf ), σ2 = −3
4
σ cos(kxf ) and σ3 =

9
8
σ cos2(kxf ). We have neglected higher order terms of the expansion in Eq. (S4), with the

assumption of small amplitudes.

We will now perform the method of averaging on the above equation. Accordingly, we

assume the solution to be of the form4:

UA,B =
1

2
[a(t)A,Be

iωt + a∗A,B(t)e−iωt], (S5)

where aA,B(t) and a∗A,B(t) are complex conjugates of each other and are called the complex

amplitudes of the oscillations. Since a is a complex number and, thus, consists of two

unknowns: the real and imaginary parts, while U is a single unknown, we need a constraint

equation. We use the following constraint equation for convenience4:

ȧA,Be
iωt + ȧ∗A,Be

−iωt = 0. (S6)

Differentiating Eq. (S5) and applying the constraint equation Eq. (S6) yields

U̇A,B =
iω

2
(aA,Be

iωt − a∗A,Be−iωt), (S7)

ÜA,B = iωȧA,Be
iωt − ω2

2
(aA,B(t)eiωt + a∗A,B(t)e−iωt). (S8)
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Substituting Eqs. (S5), (S7) and (S8) into Eq. (S4),

iωȧA,Be
iωt − ω2

2

(
aA,Be

iωt + a∗A,Be
−iωt)+

iω(b0 +Kτc sin2(kxc))

2
(aA,Be

iωt − a∗A,Be−iωt)

+
b1
2

(aA,Be
iωt + a∗A,Be

−iωt) +
σ

2

[
aA,Be

iω(t−τh) + a∗A,Be
−iω(t−τh)

]
+
σ2
4

[
a2A,Be

2iω(t−τh)

+ a∗2A,Be
−2iω(t−τh) + 2aA,Ba

∗
A,B

]
+
σ3
8

[
a3A,Be

3iω(t−τh) + a∗3A,Be
−3iω(t−τh) + 3a2A,Ba

∗
A,B

× eiω(t−τh) + 3aA,Ba
∗2
A,Be

−iω(t−τh)
]
−Kτc sin2(kxc)

iω

2

(
aB,Ae

iω(t−τc) − a∗B,Ae−iω(t−τc)
)

= 0.

(S9)

Here, we have assumed that aA,B(t) varies slowly with time, and the values of τh and τc are

small; so, aA,B(t− τh) and aA,B(t− τc) are nearly equal to aA,B(t)5. Dividing by iωeiωt and

grouping terms,

ȧA,B +
(iω

2
− ib1

2ω

) (
aA,B + a∗A,Be

−2iωt
)

+
b0 +Kτc sin2(kxc)

2

(
aA,B − a∗A,Be−2iωt

)
− iσ

2ω

[
aA,B

e−iωτh + a∗A,Be
−iω(2t−τh)

]
− iσ2

4ω

[
a2A,Be

iω(t−2τh) + a∗2A,Be
−iω(3t−2τh) + 2aA,Ba

∗
A,Be

−iωt
]
− iσ3

8ω

×
[
a3A,Be

iω(2t−3τh) + a∗3A,Be
−iω(4t−3τh) + 3a2A,Ba

∗
A,Be

−iωτh + 3aA,Ba
∗2
A,Be

−iω(2t−τh)
]

− Kτc sin2(kxc)

2

(
aB,Ae

−iωτc − a∗B,Ae−iω(2t−τc)
)

= 0. (S10)

The aim of our calculations is to find the time evolution of the complex amplitude aA,B(t),

which is a slow function of time as compared to the fast oscillations einωt, where n is an

integer. Hence, by averaging Eq. (S10) over one time period of the fast oscillations (say,

from t = 0 to t = 2π/ω), we can get rid of the fast oscillation terms since
∫ 2π/ω

0
einωt = 0.

Thus, we retain only the slow terms which remain nearly constant over the duration of a

time period. Averaging Eq. (S10), we get,

ȧA,B +
[iω

2
− ib1

2ω

]
aA,B +

b0 +Kτc sin2(kxc)

2
aA,B −

iσ

2ω
aA,Be

−iωτh − 3iσ3
8ω

a2A,Ba
∗
A,Be

−iωτh

− Kτc sin2(kxc)

2
aB,Ae

−iωτc = 0. (S11)

Let us derive the condition for attaining amplitude death (AD) for the system of delay

coupled thermoacoustic oscillators. Towards this purpose, we cast Eq. (S11) in matrix form,

ignoring the nonlinear terms:

ȧA
ȧB


 =


−

iω
2

+ ib1
2ω
− b0+Kτc sin

2(kxc)
2

+ iσ
2ω
e−iωτh Kτc sin2(kxc)

2
e−iωτc

Kτc sin2(kxc)
2

e−iωτc − iω
2

+ ib1
2ω
− b0+Kτc sin

2(kxc)
2

+ iσ
2ω
e−iωτh




aA
aB




(S12)
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or concisely written as,

da

dt
= Ja. (S13)

The system attains AD when the fixed point aA = aB = 0 gains stability. The fixed point

is stable if the real parts of the eigenvalues of J are negative6. The eigenvalues of J, λ1,2

are given by:

λ1,2 =
1

2

[
r ∓
√
r2 − 4∆

]
, (S14)

where r and ∆ are the trace and determinant of J, respectively.

λ1,2 = −iω
2

+
ib1
2ω
− b0 +Kτc sin2(kxc)

2
+
iσ

2ω
e−iωτh ∓ Kτc sin2(kxc)

2
e−iωτc

= −b0 +Kτc sin2(kxc)

2
+

σ

2ω
sinωτh ∓

Kτc sin2(kxc)

2
cosωτc + Imaginary terms.

(S15)

Hence, to achieve AD, the real part of the largest eigenvalue must be less than zero, i.e.,

∓Kτc sin2(kxc) cos(ωτc) < b0 +Kτc sin2(kxc)− σ/ω sin(ωτh)

⇒ | cos(ωτc)| <
b0 +Kτc sin2(kxc)− σ/ω sin(ωτh)

Kτc sin2(kxc)
. (S16)

Equation S16 gives the condition for achieving AD in the system. We will now resolve

the complex amplitude into its real magnitude RA,B(t) and phase φA,B(t). Substituting

aA,B = RA,Be
iφA,B into Eq. (S5) gives us

UA,B =
1

2
[RA,Be

iωt+φA,B +RA,B(t)e−iωt−φA,B ]

= RA,B cos(ωt+ φA,B). (S17)

Hence, RA,B(t) and φA,B(t) describe the amplitude and the phase of the oscillations in the

oscillators of the coupled system. Substituting aA,B = RA,Be
iφA,B into Eq. (S11) and dividing

it by eiφA,B yields

ṘA,B + iRA,Bφ̇A,B +RA,B

[iω
2
− ib1

2ω
+
b0 +Kτc sin2(kxc)

2
− iσ

2ω
e−iωτh

]
− 3iσ3

8ω
R3
A,Be

−iωτh

− Kτc sin2(kxc)

2
RB,Ae

−iωτce−i(φB,A−φA,B) = 0.(S18)
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Expressing exponential terms as sines and cosines, and separating the real and imaginary

parts gives us the temporal variation of the amplitude and phase of the oscillators as follows:

ṘA,B +RA,B

[b0 +Kτc sin2(kxc)

2
− σ

2ω
sin(ωτh)

]
− 3σ3

8ω
R3
A,B sin(ωτh)

− Kτc sin2(kxc)

2
RB,A[cos(ωτc) cos(φB,A − φA,B) + sin(ωτc) sin(φB,A − φA,B)] = 0, (S19)

RA,Bφ̇A,B +RA,B

[ω
2
− b1

2ω
− σ

2ω
cos(ωτh)

]
− 3σ3

8ω
R3
A,B cos(ωτh)

+
Kτc sin2(kxc)

2
RB,A[sin(ωτc) cos(φB,A − φA,B)− cos(ωτc) sin(φB,A − φA,B)] = 0. (S20)

On simplifying Eqs. (S19) and (S20) using trigonometric identities, we get

ṘA,B +RA,B

[b0 +Kτc sin2(kxc)

2
− σ

2ω
sin(ωτh)

]
− 3σ3

8ω
R3
A,B sin(ωτh)

− Kτc sin2(kxc)

2
RB,A cos[ωτc − (φB,A − φA,B)] = 0, (S21)

φ̇A,B +
[ω

2
− b1

2ω
− σ

2ω
cos(ωτh)

]
− 3σ3

8ω
R2
A,B cos(ωτh)

+
Kτc sin2(kxc)RB,A

2RA,B

sin[ωτc − (φB,A − φA,B)] = 0. (S22)

Let us denote the phase difference between the oscillators, φB−φA, as θ. Using Eq. (S22),

we derive the equation for θ̇ = φ̇B − φ̇A as below:

θ̇ − 3σ3
8ω

(R2
B −R2

A) cos(ωτh) +
Kτc sin2(kxc)

2

[RA

RB

sin(ωτc + θ)− RB

RA

sin(ωτc − θ)
]

= 0.

(S23)

Assuming that the oscillators have similar amplitudes, i.e., RA = RB = R, the above

equation simplifies to the following:

θ̇ = −Kτc sin2(kxc) cos(ωτc) sin(θ). (S24)

Consequently, simplifying Eqs. (S21) and (S22) using the same assumption of similar am-

plitude, we get the following slow flow equations:

Ṙ = R
[ σ

2ω
sin(ωτh)−

b0
2
− Kτc sin2(kxc)

2
(1 + | cos(ωτc)|)

]
+

3σ3
8ω

R3 sin(ωτh), (S25)

φ̇A,B = −ω
2

+
b1
2ω

+
σ

2ω
cos(ωτh) +

3σ3
8ω

R2 cos(ωτh)−
Kτc sin2(kxc)

2
sin(ωτc). (S26)

Equation S25 predicts the occurrence of subcritical Hopf bifurcation since the coefficient

of the cubic nonlinearity is positive. To approximately determine the frequency f of the
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oscillations in the coupled system, we ignore the amplitude dependent term in Eqs. (S26)

and compute ω + φ̇A,B. To predict the occurrence of amplitude death in delay coupled

non-identical oscillators, we consider the governing equations Eqs. (18) and (19) of the

main manuscript and follow the steps as outlined by Eqs. (S3)-(S16) with the additional

assumption of small values of mismatch parameter α (i.e., 1/(1+α) ≈ 1−α, sin(kxα) ≈ kxα

and cos(kxα) ≈ 1). This gives us the condition for amplitude death in delay coupled non-

identical Rijke tube oscillators as:

|cos (ωτc)| <
[

1− (σ/ω) sin (ωτh)− b0
Kτc sin2(kxc)

+ α

(
(β + ε)σ/ω sin (ωτh)− εb0

2Kτc sin2(kxc)

)]
, (S27)

where β = 1 + 2kxf cot(2kxf ) and ε = 3/2− kxc cot(kxc).
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