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Abstract— In recent years, researchers have proposed to

introduce statistical shape knowledge into level set based

segmentation methods in order to cope with insufficient

low-level information. While these priors were shown to

drastically improve the segmentation of familiar objects,

so far the focus has been on statistical shape priors

which are static in time. Yet, in the context of tracking

deformable objects, it is clear that certain silhouettes (such

as those of a walking person) may become more or less

likely over time. In this paper, we tackle the challenge

of learning dynamical statistical models for implicitly

represented shapes. We show how these can be integrated

as dynamical shape priors in a Bayesian framework for

level set based image sequence segmentation. We assess the

effect of such shape priors “with memory” on the tracking

of familiar deformable objects in the presence of noise and

occlusion. We show comparisons between dynamical and

static shape priors, between models of pure deformation

and joint models of deformation and transformation, and

we quantitatively evaluate the segmentation accuracy as

a function of the noise level and of the camera frame

rate. Our experiments demonstrate, that level set based

segmentation and tracking can be strongly improved by

exploiting the temporal correlations among consecutive

silhouettes which characterize deforming shapes.

I. INTRODUCTION

In 1988, Osher and Sethian [21] introduced

the level set method1 as a means to implicitly

propagate hypersurfaces C(t) in a domain Ω ⊂ R
n

by evolving an appropriate embedding function

φ : Ω × [0, T ] → R, where:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

The ordinary differential equation propagating ex-

plicit boundary points is thus replaced by a partial

differential equation modeling the evolution of a

higher-dimensional embedding function. The key

advantages of this approach are well-known: Firstly,
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the implicit boundary representation does not de-

pend on a specific parameterization, during the

propagation no control point regridding mechanisms

need to be introduced. Secondly, evolving the em-

bedding function allows to elegantly model topolog-

ical changes of the boundary such as splitting and

merging. In the context of statistical shape learning,

this allows to construct shape dissimilarity measures

defined on the embedding function which can han-

dle shapes of varying topology. Thirdly, the implicit

representation naturally generalizes to hypersurfaces

in three or more dimensions. To impose a unique

correspondence between a shape and its embedding

function one can constrain φ to be a signed distance

function, i.e. |∇φ|=1 almost everywhere, with φ>0
inside and φ<0 outside the shape.

The first applications of level set methods to

image segmentation were pioneered in the early

90’s by Malladi et al. [17], by Caselles et al.

[4], by Kichenassamy et al. [13] and by Paragios

and Deriche [23]. Level set implementations of the

Mumford-Shah functional [19] were proposed by

Chan and Vese [5] and by Tsai et al. [30].

In recent years, researchers have successfully

introduced prior shape information into level set

based segmentation schemes. Leventon et al. [15]

proposed to model the embedding function by prin-

cipal component analysis (PCA) of a set of training

shapes and to add appropriate driving terms to

the level set evolution equation, Tsai et al. [31]

performed optimization directly within the subspace

of the first few eigenmodes. Rousson et al. [27],

[28] suggested to introduce shape information on

the variational level, while Chen et al. [6] imposed

shape constraints directly on the contour given by

the zero level of the embedding function. More re-

cently, Riklin-Raviv et al. [25] proposed to introduce

projective invariance by slicing the signed distance

function at various angles. Models to simultaneously

impose shape knowledge about multiple objects

were proposed by Cremers et al. [10].
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In the above works, statistically learned shape

information was shown to cope for missing or

misleading information in the input images due to

noise, clutter and occlusion. The shape priors were

developed to segment objects of familiar shape in a

given image. However, although they can be applied

to tracking objects in image sequences [8], [18], [9],

they are not well-suited for this task, because they

neglect the temporal coherence of silhouettes which

characterizes many deforming shapes.

When tracking a three-dimensional deformable

object over time, clearly not all shapes are equally

likely at a given time instance. Regularly sampled

images of a walking person, for example, exhibit a

typical pattern of consecutive silhouettes. Similarly,

the projections of a rigid 3D object rotating at

constant speed are generally not independent sam-

ples from a statistical shape distribution. Instead,

the resulting set of silhouettes can be expected to

contain strong temporal correlations.

In this paper, we develop temporal statistical

shape models for implicitly represented shapes. In

particular, the shape probability at a given time

depends on the shapes observed at previous time

steps. The integration of such dynamical shape

models into the segmentation process can be ele-

gantly formulated within a Bayesian framework for

level set based image sequence segmentation. The

resulting optimization problem can be implemented

by a partial differential equation for the level set

function. It models an evolution of the interface

which is driven both by the intensity information

of the current image as well as by a dynami-

cal shape prior which relies on the segmentations

obtained on the preceding frames. Experimental

evaluation demonstrates that – in contrast to ex-

isting approaches to segmentation with statistical

shape priors – the resulting segmentations are not

only similar to previously learned shapes, but they

are also consistent with the temporal correlations

estimated from sample sequences. The resulting

segmentation process can cope with large amounts

of noise and occlusion because it exploits prior

knowledge about temporal shape consistency and

because it aggregates information from the input

images over time (rather than treating each image

independently).

The development of dynamical models for im-

plicitly represented shapes and their integration into

image sequence segmentation on the basis of the

Bayesian framework draws on much prior work in

various fields. The theory of dynamical systems and

time series analysis has a long tradition in the lit-

erature (see for example [22], [16]). Autoregressive

models were developed for explicit shape represen-

tations among others by Blake, Isard and coworkers

[2], [3]. In these works, successful tracking results

were obtained by particle filtering based on edge-

information extracted from the intensity images.

Although our dynamical shape representations were

inspired by the above works, our method differs

from these in three ways:

• We propose dynamical models for implicitly

represented shapes. As a consequence, our dy-

namical shape model can automatically handle

shapes of varying topology. Our model trivially

extends to higher dimensions (e.g. 3D shapes),

since we do not need to deal with the combina-

torial problem of determining point correspon-

dences and issues of control point regridding

associated with explicit shape representations.

• Our method integrates the intensity information

of the input images in a statistical formulation

inspired by [19], [32], [5]. This leads to a

region-based tracking scheme rather than an

edge-based one. The statistical formulation im-

plies that – with respect to the assumed inten-

sity models – our method optimally exploits the

input information. It does not rely on a precom-

putation of heuristically defined image edge

features. Yet, the assumed probabilistic inten-

sity models are quite simple (namely Gaussian

distributions). More sophisticated models for

intensity, color or texture of objects and back-

ground could be employed. But this is not the

focus of the present paper.

• The Bayesian aposteriori optimization is solved

in a variational setting by gradient descent

rather than by stochastic sampling techniques.

While this limits our algorithm to only track the

most likely hypothesis (rather than multiple hy-

potheses), it facilitates an extension to higher-

dimensional shape representations without the

drastic increase in computational complexity

inherent to sampling methods. While there

exist algorithms to efficiently compute global

minima of a certain class of cost functionals

[14], the functional derived in this work does

not fall within this class.
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Recently, Goldenberg et al. [12] successfully ap-

plied PCA to an aligned shape sequence to classify

the behavior of periodic shape motion. Though

this work is also focused on characterizing moving

implicitly represented shapes, it differs from ours

in that shapes are not represented by the level set

embedding function (but rather by a binary mask),

it does not make use of autoregressive models, and

it is focused on behavior classification of preseg-

mented shape sequences rather than segmentation

or tracking with dynamical shape priors.
The paper is structured as follows. In Section

II, we introduce a Bayesian formulation for level

set based image sequence segmentation and specify

which assumptions we make in order to end up

with a computationally feasible problem. In Section

III, we introduce dynamical models which allow

to learn dynamical statistical priors for implicitly

represented shapes. In Section IV, we show how the

Bayesian inference can be computed by energy min-

imization and derive appropriate partial differential

equations. In Section V, we provide experimental

results aimed at evaluating several properties of our

method: We show that the dynamical prior can cope

with large amounts of noise, while a static shape

prior – even with moderate amounts of noise –

gets stuck in a local minimum after the first few

frames. We quantify the segmentation accuracy for a

dynamical shape prior, trained on a specific walking

sequence, when applied to sequences of different

walking speed. And finally, we show how dynam-

ical priors which capture the joint distribution of

deformations and transformations outperform purely

deformation-based dynamical priors, when dealing

with occlusions.
A preliminary version of this work was published

in [7].

II. LEVEL SET BASED TRACKING

AS BAYESIAN INFERENCE

In this section, we will introduce a Bayesian

formulation for level set based image sequence seg-

mentation. We first treat the general formulation in

the space of embedding functions and subsequently

propose a computationally efficient formulation in

a low-dimensional subspace.

A. General Formulation

In the following, we define as shape a set of

closed 2D contours modulo a certain transformation

group, the elements of which are denoted by Tθ with

a parameter vector θ. Depending on the application,

these may be rigid-body transformations, similarity

or affine transformations or larger transformation

groups. The shape is represented implicitly by an

embedding function φ according to equation (1).

Thus objects of interest will be given by φ(Tθ x),
where the transformation Tθ acts on the grid, leading

to corresponding transformations of the implicitly

represented contour. We purposely separate shape

φ and transformation parameters θ since one may

want to use different models to represent and learn

their respective temporal evolution.
Assume we are given consecutive images It :

Ω → R from an image sequence, where I1:t de-

notes the set of images {I1, I1, . . . , It} at different

time instances. Using the Bayesian formula (with

all expressions conditioned on I1:t−1), the problem

of segmenting the current frame It can then be

addressed by maximizing the conditional probability

P(φt, θt|I1:t)=
P(It|φt, θt, I1:t−1)P(φt, θt|I1:t−1)

P(It|I1:t−1)
, (2)

with respect to the embedding function φt and

the transformation parameters θt.
2 For the sake of

brevity, we will not delve into the philosophical

interpretation of the Bayesian approach. We merely

point out that the Bayesian framework can be seen

as an inversion of the image formation process in a

probabilistic setting.
The denominator in (2) does not depend on the

estimated quantities and can therefore be neglected

in the maximization. Moreover, the second term in

the numerator can be rewritten using the Chapman-

Kolmogorov equation [22]:

P(φt, θt|I1:t−1) =

∫

P(φt, θt |φ1:t−1, θ1:t−1)

· P(φ1:t−1, θ1:t−1|I1:t−1 )dφ1:t−1dθ1:t−1

(3)

In the following, we will make several assump-

tions which are aimed at simplifying expression

(2), leading to a computationally more feasible

estimation problem:

• We assume that the images I1:t are mutually

independent:

P(It |φt, θt, I1:t−1) = P(It |φt, θt). (4)

2Modeling probability distributions on infinite-dimensional spaces

is in general an open problem, including issues of defining appropriate

measures and of integrability. Therefore the functions φ may be

thought of as finite-dimensional approximations obtained by sampling

the embedding functions on a regular grid.
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• We assume that the intensities of the shape of

interest and of the background are independent

samples from two Gaussian distributions with

unknown means µ1, µ2 and variances σ1, σ2.

As a consequence, the data term above can be

written as:

P(It |φt, θt) =
∏

x
φt(Tθt

x)≥0

1√
2πσ1

e
−

(It(x)−µ1)2

2σ2
1

·
∏

x
φt(Tθt

x)<0

1√
2πσ2

e
−

(It(x)−µ2)2

2σ2
2

(5)

where we have introduced the Heaviside step

function Hφ ≡ H(φ) to denote the areas where

φ is positive (Hφ = 1) or negative (Hφ = 0).

Related intensity models have been proposed

among others in [19], [32], [5]. The model

parameters µi and σi are estimated jointly with

the shape φt and the transformation θt. Their

optimal values are given by the means and

variances of the intensity It inside and outside

the current shape:

µ1 =

∫

ItHφtdx
∫

Hφt dx
, σ2

1 =

∫

(It−µ1)
2Hφtdx

∫

Hφt dx
, (6)

and similarly for µ2 and σ2 with Hφt replaced

by (1−Hφt). To keep the notation simple, we

do not display these parameters as part of the

dynamic variables.

• To avoid the computational burden of consid-

ering all possible intermediate shapes φ1:t−1

and transformations θ1:t−1 in equation (3), we

assume the distributions of previous states to

be strongly peaked around the maxima of the

respective distributions:

P(φ1:t−1, θ1:t−1 | I1:t−1)

≈ δ
(

φ1:t−1 − φ̂1:t−1

)

δ
(

θ1:t−1 − θ̂1:t−1

)

,
(7)

where (φ̂i, θ̂i) = arg maxP(φi, θi | I1:i−1) are

the estimates of shape and transformation ob-

tained for the past frames, and δ(·) denotes the

Dirac delta function. An alternative justification

for this approximation is the following: As-

sume that due to memory limitations, the track-

ing system cannot store the acquired images,

but that it merely stores the past estimates of

shape and transformation. Then the inference

problem at time t reduces to that of maximizing

the conditional distribution

P(φt, θt | It, φ̂1:t−1, θ̂1:t−1)

∝ P(It |φt, θt) P(φt, θt | φ̂1:t−1, θ̂1:t−1)
(8)

with respect to the embedding function φt

and the transformation parameters θt. This is

equivalent to the original inference problem (2)

subject to the approximation (7).

• A central contribution of this paper is to model

the joint prior on shape φt and transformation

θt conditioned on previous shapes and trans-

formations. To this end, we will consider two

approximations:

In a first step, we will assume that

shape and transformation are mutually

independent, i.e. P(φt, θt |φ1:t−1, θ1:t−1) =
P(φt |φ1:t−1) P(θt | θ1:t−1), and assume

a uniform prior on the transformation

parameters, i.e. P(θt | θ1:t−1) = const. This is

complimentary to the recent work of Rathi

et al. [24] who proposed a temporal model

for these transformation parameters, while not

imposing any specific model on the shape.

In a second step, we will then consider

the more general case of a joint distribution

P(φt, θt |φ1:t−1, θ1:t−1) of shape and transforma-

tion parameters, taking into account couplings

between shape and transformation. Experimen-

tal results demonstrate that this leads to supe-

rior performance in dealing with occlusions.

B. Finite-dimensional Formulation

When estimating the conditional probability

P(φt, θt| φ̂1:t−1, θ̂1:t−1) in (8) from sample data, one

needs to revert to finite-dimensional approximations

of the embedding function. It is well-known that

statistical models can be estimated more reliably if

the dimensionality of the model and the data are

low. We will therefore recast the Bayesian inference

in a low-dimensional formulation within the sub-

space spanned by the largest principal eigenmodes

of a set of sample shapes. We therefore exploit

the training sequence in a twofold way: Firstly,

it serves to define a low-dimensional subspace in

which to perform estimation. And secondly, within

this subspace we use it to learn dynamical models

for implicit shapes.
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Fig. 1. Low-dimensional approximation of a set of training silhou-

ettes. The silhouettes (above) are approximated by the first 6 principal

components of their embedding functions (below) – see equation (9).

Let {φ1, . . . , φN} be a temporal sequence of

training shapes.3 Let φ0 denote the mean shape and

ψ1, . . . , ψn the n largest eigenmodes with n ≪ N .

We will then approximate each training shape as:

φi(x) = φ0(x) +
n

∑

j=1

αij ψj(x), (9)

where

αij = 〈φi − φ0, ψj〉 ≡
∫

(φi − φ0)ψj dx. (10)

Such PCA based representations of level set func-

tions have been successfully applied for the con-

struction of statistical shape priors in [15], [30],

[28], [26]. In the following, we will denote the vec-

tor of the first n eigenmodes as ψ = (ψ1, . . . , ψn).
Each sample shape φi is therefore approximated by

the n-dimensional shape vector αi = (αi1, . . . , αin).
Similarly, an arbitrary shape φ can be approximated

by a shape vector of the form

αφ = 〈φ− φ0,ψ〉. (11)

Figure 1 shows a set of silhouettes from a sequence

of a walking person and their approximation by

the first 6 eigenmodes. While this approximation is

certainly a rough approximation lacking some of the

details of the shape, we found it sufficiently accurate

for our purpose.

3We assume that all training shapes φi are signed distance func-

tions. Yet an arbitrary linear combination of eigenmodes will in

general not generate a signed distance function. While the proposed

statistical shape models favor shapes which are close to the training

shapes (and therefore close to the set of signed distance functions),

not all shapes sampled in the considered subspace will correspond to

signed distance functions.

In analogy to the derivation presented in the

previous section, the goal of image sequence seg-

mentation within this subspace can then be stated as

follows: Given consecutive images It : Ω → R from

an image sequence, and given the segmentations

α̂1:t−1 and transformations θ̂1:t−1 obtained on the

previous images I1:t−1, we need to maximize the

conditional probability

P(αt, θt | It, α̂1:t−1, θ̂1:t−1)

=
P(It |αt, θt) P(αt, θt | α̂1:t−1, θ̂1:t−1)

P(It | α̂1:t−1, θ̂1:t−1)
,

(12)

with respect to the shape parameters αt and the

transformation parameters θt. The key contribution

of this work, is to model the conditional probability

P(αt, θt | α̂1:t−1, θ̂1:t−1), (13)

which constitutes the probability for observing a

particular shape αt and a particular transformation

θt at time t, conditioned on the parameter estimates

for shape and transformation obtained on previous

images.

III. DYNAMICAL STATISTICAL SHAPE MODELS

Abundant theory has been developed to model

temporally correlated time series data. Applications

of dynamical systems to model deformable shapes

were proposed among others in [3]. In our context,

we intend to learn dynamical models for implicitly

represented shapes. To simplify the presentation,

we will first focus on dynamical models of shape

deformation. In other words, we will assume a

uniform distribution on the transformation param-

eters and merely model the conditional distribution

P(αt | α̂1:t−1).

A. Dynamical Models of Deformation

In the following, we propose to learn the temporal

dynamics of a deforming shape by approximating

the shape vectors αt ≡ αφt
of a sequence of level

set functions by a Markov chain (cf. [20]) of order

k, i.e.:

αt = µ+A1α̂t−1+A2α̂t−2+. . .+Akα̂t−k+η, (14)

where η is zero-mean Gaussian noise with covari-

ance Σ. The probability of a shape conditioned

on the shapes observed in previous time steps is
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Original evolution Synthesized evolution

Fig. 2. Synthesized Shape Modes. The plots show the temporal evolution of the first, second and sixth shape eigenmode. The original

shape sequence (left) and the sequence synthesized by a statistically learned second order Markov chain (right) exhibit similar oscillatory

behavior and amplitude modulation.

therefore given by the corresponding autoregressive

model of order k:

P(αt | α̂1:t−1) ∝ exp

(

−1

2
v⊤ Σ−1 v

)

, (15)

where

v ≡ αt −µ−A1α̂t−1 −A2α̂t−2 . . .−Akα̂t−k (16)

Various methods have been proposed in the liter-

ature to estimate the model parameters given by

the mean µ ∈ R
n and the transition and noise

matrices A1, . . . , Ak,Σ ∈ R
n×n. We applied a

stepwise least squares algorithm proposed in [20].

Different tests have been devised to quantify the ac-

curacy of the model fit. Two established criteria for

model accuracy are Akaike’s Final Prediction Error

[1] and Schwarz’s Bayesian Criterion [29]. Using

dynamical models up to an order of 8, we found

that according to Schwarz’s Bayesian Criterion, our

training sequences were best approximated by an

autoregressive model of second order.

From a training sequence of 151 consecutive

silhouettes, we estimated the parameters of a sec-

ond order autoregressive model. We subsequently

validated that the residuals of all shape modes are

essentially uncorrelated by computing their autocor-

relation functions. For the first two shape modes, the

autocorrelation functions are plotted in Figure 3.

In addition, the estimated model parameters allow

us to synthesize a walking sequence according to

1st mode 2nd mode

Fig. 3. Autocorrelation functions for the first two shape modes.

(14).4 Figure 2 shows the temporal evolution of

the first, second and sixth eigenmode in the input

sequence (left) and in the synthesized sequence

(right). Clearly, the second order model captures

some of the key elements of the oscillatory behavior.

While the synthesized sequence does capture the

characteristic motion of a walking person, Figure

4 shows that the individual synthesized silhouettes

do not in all instances mimic valid shapes. We

believe that such limitations can be expected from

a model which strongly compresses the represented

input sequence: Instead of 151 shapes defined on a

256 × 256 grid, the model merely retains a mean

shape φ0, 6 eigenmodes ψ and the autoregressive

model parameters given by a 6-dimensional mean

and three 6 × 6 matrices. This amounts to 458851
instead of 9895936 parameters, corresponding to a

compression to 4.6% of the original size.

4To remove the dependency on the initial conditions, the first

several hundred samples were discarded.
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Fig. 4. Synthetically generated walking sequence. Sample silhouettes generated by a statistically learned second order Markov model on

the embedding functions – see equation (14) and Figure 5. While the Markov model captures much of the typical oscillatory behavior of a

walking person, not all generated samples correspond to permissible shapes – cf. the last two silhouettes. Yet, as we shall see in Section V,

the model is sufficiently accurate to appropriately constrain a segmentation process.

While the synthesis of dynamical shape models

using autoregressive models has been studied before

(cf. [3]), we want to stress the fact that in this work

we are synthesizing shapes based on an implicit

representation. To further clarify this key idea of

our paper, we show in Figure 5 a sequence of

statistically synthesized embedding functions and

the induced contours given by the zero level line

of the respective surfaces. In particular, this implicit

representation allows to synthesize shapes of vary-

ing topology. The silhouette on the bottom left of

Figure 5, for example, consists of two contours.

B. Dynamics of Deformation and Transformation

In the previous section, we introduced autoregres-

sive models to capture the temporal dynamics of

implicitly represented shapes. To this end, we had

removed the degrees of freedom corresponding to

transformations such as translation and rotation be-

fore performing the learning of dynamical models.

As a consequence, the learning only incorporates

deformation modes, neglecting all information about

pose and location. The synthesized shapes in Figure

4, for example, show a walking person which is

walking “on the spot”.

In general, one can expect the deformation pa-

rameters αt and the transformation parameters θt

to be tightly coupled. A model which captures the

joint dynamics of shape and transformation would

clearly be more powerful than one which neglects

the transformations. Yet, we want to learn dynamical

shape models which are invariant to translation, ro-

tation and other transformations. To this end, we can

make use of the fact that the transformations form

a group which implies that the transformation θt at

time t can be obtained from the previous transforma-

tion θt−1 by applying an incremental transformation

△θt: Tθt
x = T△θt

Tθt−1x. Instead of learning models

of the absolute transformation θt, we can simply

learn models of the update transformations △θt

(e.g. the changes in translation and rotation). By

construction, such models are invariant with respect

to the global pose or location of the modeled shape.

To jointly model transformation and deformation,

we simply obtain for each training shape in the

learning sequence the deformation parameters αi

and the transformation changes △θi, and fit the

autoregressive models given in equations (15) and

(16) to the combined vector

α̃t =

(

αt

△θt

)

. (17)

In the case of the walking person, we found that – as

in the stationary case – a second order autoregres-

sive model gives the best model fit. Synthesizing

from this model allows to generate silhouettes of

a walking person which are similar to the ones

shown in Figure 4, but which move forward in

space, starting from an arbitrary (user-specified)

initial position.

IV. DYNAMICAL SHAPE PRIORS IN

VARIATIONAL SEQUENCE SEGMENTATION

Given an image It from an image sequence and

given a set of previously segmented shapes with

shape parameters α1:t−1 and transformation param-

eters θ1:t−1, the goal of tracking is to maximize the

conditional probability (12) with respect to shape

αt and transformation θt. This can be performed by

minimizing its negative logarithm, which is – up to

a constant – given by an energy of the form:

E(αt, θt) = Edata(αt, θt) + ν Eshape(αt, θt). (18)

The additional weight ν was introduced to allow

a relative weighting between prior and data term.

In particular if the intensity information is not

consistent with the assumptions (Gaussian intensity

distributions of object and background), a larger
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Fig. 5. Synthesis of implicit dynamical shapes. Statistically generated embedding surfaces obtained by sampling from a second order

autoregressive model, and the contours given by the zero level lines of the synthesized surfaces. The implicit formulation allows the

embedded contour to change topology (bottom left image).

weight of ν is preferable. Following (5), the data

term is given by:

Edata(αt, θt) =

∫
(

(It−µ1)
2

2σ2
1

+log σ1

)

Hφαt,θt
dx

+

∫
(

(It−µ2)
2

2σ2
2

+log σ2

)

(

1−Hφαt,θt

)

dx, (19)

where, for notational simplicity, we have introduced

the expression

φαt,θt
≡ φ0(Tθt

x) +α⊤
t ψ(Tθt

x), (20)

to denote the embedding function of a shape gen-

erated with deformation parameters αt and trans-

formed with parameters θt.

Using the autoregressive model (15), the shape

energy is given by:

Eshape(αt, θt) =
1

2
v⊤ Σ−1 v (21)

with v defined in (16). To incorporate the joint

model of deformation and transformation introduced

in Section III-B, the above expression for v needs

to be enhanced by the relative transformations △θ:

v ≡
(

αt

△θt

)

− µ−
k

∑

i=1

Ai

(

α̂t−i

△θ̂t−i

)

, (22)

where µ and Ai denote the statistically learned

mean and transition matrices for the joint space

of deformations and transformations, and k is the

model order. In our experiments, we chose a model

order of k = 2. One can easily show that a second

order autoregressive model can be interpreted as a

stochastic version of a time-discrete damped har-

monic oscillator. As a consequence, it is well-suited

to model essentially oscillatory shape deformations.

However, we found that higher-order autoregressive

models provide qualitatively similar results.

Tracking an object of interest over a sequence

of images I1:t with a dynamical shape prior can

be done by minimizing energy (18). In this work,

we pursue a gradient descent strategy, leading to

the following differential equations to estimate the

shape vector αt:

dαt(τ)

dτ
= −∂Edata(αt, θt)

∂αt

− ν
∂Eshape(αt, θt)

∂αt

where τ denotes the artificial evolution time, as

opposed to the physical time t. The data term is

given by:

∂Edata

∂αt

=

∫

ψ(x) η(x) dx,
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with the abbreviation

η(x) ≡ δ(φαt
)

(

(It−µ1)
2

2σ2
1

− (It−µ2)
2

2σ2
2

+ log
σ1

σ2

)

,

and the shape term is given by:

∂Eshape

∂αt

=
∂v

∂αt

Σ−1 v =

(

1n 0
0 0

)

Σ−1 v, (23)

with v given in (22) and 1n being the n-dim.

unit matrix modeling the projection on the shape

components of v, where n is the number of shape

modes. These two terms affect the shape evolution

in the following manner: The first term draws the

shape to separate the image intensities according to

the two Gaussian intensity models. Since variations

in the shape vector αt affect the shape through the

eigenmodes ψ, the data term is a projection onto

these eigenmodes. The second term induces a relax-

ation of the shape vector αt toward the most likely

shape, as predicted by the dynamical model based

on the shape vectors and transformation parameters

obtained for previous time frames.

Similarly, minimization with respect to the trans-

formation parameters θt is obtained by evolving the

respective gradient descent equation given by:

dθt(τ)

dτ
= −∂Edata(αt, θt)

∂θt

− ν
∂Eshape(αt, θt)

∂θt
(24)

where the data term is given by

∂Edata(αt, θt)

∂θt

=

∫

∇ψ(x)
d(Tθt

x)

dθt

η(x) dx (25)

and the driving term from the prior is given by:

∂Eshape

∂θt

=
∂v

∂θt

Σ−1v=
d(△θt)

dθt

(

0 0
0 1s

)

Σ−1v, (26)

where, as above, the shape prior contributes a driv-

ing force toward the most likely transformation pre-

dicted by the dynamical model. The block diagonal

matrix in (26) simply models the projection onto the

s transformation components of the joint vector v

defined in (22).

V. EXPERIMENTAL RESULTS

A. Dynamical versus Static Statistical Shape Priors

In the following, we will apply the dynamical sta-

tistical shape prior introduced above for the purpose

of level set based tracking.

To construct the shape prior, we hand-segmented

a sequence of a walking person, centered and bina-

rized each shape. Subsequently, we determined the

set of signed distance functions {φi}i=1..N associ-

ated with each shape and computed the dominant

6 eigenmodes. Projecting each training shape onto

these eigenmodes, we obtained a sequence of shape

vectors {αi ∈ R
6}i=1..N . We fitted a second order

multivariate autoregressive model to this sequence

by computing the mean vector µ, the transition

matrices A1, A2 ∈ R
6×6 and the noise covariance

Σ ∈ R
6×6 shown in equation (15). Subsequently,

we compared segmentations of noisy sequences

obtained by segmentation in the 6-dimensional sub-

space without and with the dynamical statistical

shape prior. The segmentation without dynamical

prior corresponds to that obtained with a uniform

prior in the subspace of the first few eigenmodes,

as proposed in [30]. While there exist alternative

models for static shape priors (for example the

Gaussian model [15] or non-parametric statistical

models [9], [26]), we found that all of these exhibit

a qualitatively similar limitation when applied to

image sequence segmentation (see Figure 8): they

tend to get stuck in local minima because they do

not exploit temporal shape correlations.

Figure 6 shows a sample input frame from a

sequence with 25%, 50%, 75%, and 90% noise.5

Figure 7 shows a set of segmentations obtained with

a uniform static shape prior on a sequence with 25%
noise. While this segmentation without dynamical

prior is successful in the presence of moderate noise,

Figure 8 shows that it eventually breaks down when

the noise level is increased. Since static shape priors

do not provide for predictions in time, they have

a tendency of getting stuck to the shape estimate

obtained on the previous image.

Figure 9 shows segmentations of the same se-

quence as in 8 obtained with a dynamical statistical

shape prior derived from a second order autoregres-

sive model. Figures 10 and 11 show that the statis-

tical shape prior provides for good segmentations,

even with 75% or 90% noise. Clearly, exploiting

the temporal statistics of dynamical shapes allows

to make the segmentation process very robust to

missing and misleading information.

5
90% noise means that 90% of all pixels were replaced by a

random intensity sampled from a uniform distribution. Note that

our algorithm easily handles uniform noise, although its probabilistic

formulation is based on the assumption of Gaussian noise.
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25% noise 50% noise 75% noise 90% noise

Fig. 6. Images from a sequence with increasing amount of noise.5

Fig. 7. Static shape prior at 25% noise: Constraining the level set evolution to a low-dimensional subspace allows to cope with some noise.

Fig. 8. Static shape prior at 50% noise: The segmentation with a static prior gets stuck in a local minimum after the first few frames.

Fig. 9. Dynamical shape prior at 50% noise: In contrast to the segmentation with a static prior shown in Figure 8, the dynamical prior

(using a second-order autoregressive model) imposes statistically learned information about the temporal dynamics of the shape evolution to

cope with missing or misleading low-level information.

Fig. 10. Dynamical shape prior at 75% of noise: The statistically learned dynamical model allows to disambiguate the low-level information.
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Fig. 11. Dynamical shape prior at 90% noise. Quantiative comparison with the ground truth, shown in Figure 12, left side, indicates that

our tracking scheme can compete with the capacities of human observers, providing reliable segmentations where human observers fail. The

segmentation of the first three or four frames is inaccurate, since the segmentation process accumulates image information over time.

Fig. 12. Quantitative evaluation of the segmentation accuracy. The relative segmentation error is plotted for increasing amounts of noise

(left) and for varying walking speed (right). Even for 100% noise the segmentation error remains below 1 because the process integrates a

good estimate of the initial position and a model of the translational motion. The plot on the right shows that for walking speeds v slower

than the learned one v0, the segmentation error (with 70% noise) remains low, whereas for faster walking sequences, the accuracy slowly

degrades. Yet, even for sequences of 5 times the learned speed,the a dynamical shape prior outperforms the static one.

B. Quantitative Evaluation of the Noise Robustness

In order to quantify the accuracy of segmentation,

we hand segmented the original test sequence. Sub-

sequently, we defined the following error measure:

ǫ =

∫

(Hφ(x) −Hφ0(x))
2 dx

∫

Hφ(x) dx +
∫

Hφ0(x) dx
, (27)

where H is again the Heaviside step function, φ0

is the true segmentation and φ the estimated one.

This error corresponds to the relative area of the set

symmetric difference, i.e. the union of both shapes

minus its intersection, divided by the sum of the

areas. We decided for this measure, because it takes

on values within the range 0 ≤ ǫ≤ 1, where ǫ= 0
corresponds to the perfect segmentation.

Figure 12, left side, shows the segmentation error

averaged over a test sequence as a function of

the noise level. We used a dynamical shape prior

of deformation and transformation (Section III-B),

initializing the segmentation process with a an esti-

mate of the initial location. The plot shows several

things: Firstly, the error remains fairly constant

for noise levels below 60%. The residual error

of around 5% can be ascribed to the discrepancy

between the estimated dynamical model and the

true sequence, accumulating errors introduced by

the principal component approximation and the

approximation by autoregressive models. Secondly,

as can be expected, the error increases for larger

values of noise. The deviation from monotonicity

(in particular at 90% noise) is probably an effect of

statistical fluctuation.
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C. Robustness to Frequency Variation

Assume that we have learned a dynamical model

of a walking person from a sequence of a fixed

walking speed v0. Clearly, the estimated model

will be tuned to this specific walking speed. Yet,

we cannot guarantee that the person in the test

sequence will be walking at exactly the same speed.

Equivalently, we may not be sure – even if the

walking speed is identical – that the camera frame

rate is the same. In order to be practically useful,

the proposed prior must be robust to variations in

the walking frequency and frame rate.

To validate this robustness, we synthetically gen-

erated test sequences of different walking speed by

either dropping certain frames (in order to speed up

the gait) or by replicating frames (thereby slowing

down the gait). Figure 12, right side, shows the

segmentation error ǫ, defined in (27), averaged over

test sequences with 70% noise and speeds which

vary from 1/5 the speed of the training sequence

to 5 times the original speed. While the accuracy

is not affected by slowing down the sequence, it

degrades gradually once the speed is increased. Yet,

the segmentation process is quite robust to such

drastic changes in speed. The reason for this robust-

ness is twofold: Firstly, the Bayesian formulation

allows to combine model prediction and input data

in a way that the segmentation process constantly

adapts to the incoming input data. Secondly, the

autoregressive model only relies on the last few

estimated silhouettes to generate a shape probability

for the current frame. It does not assume long range

temporal consistency and can thus handle sequences

with varying walking speed. Our experiments show

that even for sequences of 5 times the original walk-

ing sequence segmentation with a dynamical model

is superior to segmentation with a static model. This

is not surprising: In contrast to the static model, the

dynamical model does provide a prediction of the

temporal shape evolution. Even if this prediction is

suboptimal for strongly differing walking speeds, it

still allows to enhance the segmentation process.

D. Dynamics of Deformation and Transformation

In Section III-B, we introduced dynamical models

to capture the joint evolution of deformation and

transformation parameters. On the tasks we have

shown so far, we found pure deformation models

and joint models of deformation and transformation

to provide similar segmentation results. While the

joint model provides a prior about the transforma-

tion parameters which are most likely at a given

time instance, the pure-deformation model requires

these parameters to be estimated solely from the

data.

As a final example, we generated a segmentation

task where the transformation parameters cannot be

reliably estimated from the data due to a prominent

occlusion. The test sequence shows a person walk-

ing from right to left and an occluding bar moving

from left to right, corrupted by 80% noise. Figure

13, top row, shows segmentations obtained with a

dynamical shape prior capturing both deformation

and transformation. Even when the walking silhou-

ette is completely occluded, the model is capable of

generating silhouettes walking to the left and adapts

to the image data, once the figure reappears.

The bottom row of Figure 13, on the other

hand, shows the segmentation of the same frames

with a dynamical model which only incorporates

the shape deformation. Since no knowledge about

translation is assumed, the segmentation process

needs to rely entirely on the image information in

order to estimate the transformation parameters. As

a consequence, the segmentation process is mislead

by the prominent occlusion. When the figure reap-

pears from behind the bar, the process integrates

contradictory information about translation provided

by the person walking to the left and by the bar

moving to the right. Once the figure of interest is

lost, the prior simply “hallucinates” silhouettes of a

person walking “on the spot” — see the last image

on the bottom right. Although a “failed” experiment,

we believe that this result illuminates best how the

dynamical model and the image information are

fused within the Bayesian formulation for image

sequence segmentation.

VI. CONCLUSION

In this work, we introduced dynamical statisti-

cal shape models for implicitly represented shapes.

In contrast to existing shape models for implicit

shapes, these models capture the temporal corre-

lations which characterize deforming shapes such

as the consecutive silhouettes of a walking person.

Such dynamical shape models account for the fact

that the probability of observing a particular shape

at a given time instance may depend on the shapes

observed at previous time instances.
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Segmentation with a dynamical prior of joint deformation and transformation.

Segmentation with a dynamical prior on the deformation only.

Fig. 13. Tracking in the presence of occlusion. The input sequence shows a person walking to the left occluded by a bar moving to

the right. While the top row is generated with a dynamical prior integrating both deformation and transformation, the bottom row uses a

dynamical prior which merely captures the deformation component. Since the latter does not provide predictions of the translational motion,

the estimation of translation is purely based on the image data. It is mislead by the occlusion and cannot recover, once the person reappears

from behind the bar.

For the construction of statistical shape models,

we extended the concepts of Markov chains and

autoregressive models to the domain of implicitly

represented shapes. The resulting dynamical shape

models therefore allow to handle shapes of varying

topology. Moreover, they are easily extended to

higher-dimensional shapes (i.e. surfaces).

The estimated dynamical models allow to syn-

thesize shape sequences of arbitrary length. For the

case of a walking person, we validated the accuracy

of the estimated dynamical models, comparing the

dynamical shape evolution of the input sequence

to that of synthesized sequences for various shape

eigenmodes, and verifying that the residuals are

statistically uncorrelated. Although the synthesized

shapes do not in all instances correspond to valid

shapes, one can nevertheless use the dynamical

model to constrain a segmentation and tracking

process in such a way that it favors familiar shape

evolutions.

To this end, we developed a Bayesian formulation

for level set based image sequence segmentation,

which allows to impose the statistically learned

dynamical models as a shape prior for segmentation

processes. In contrast to most existing approaches

to tracking, autoregressive models are integrated as

statistical priors in a variational approach which can

be minimized by local gradient descent (rather than

by stochastic optimization methods).

Experimental results confirm that the dynamical

shape priors outperform static shape priors when

tracking a walking person in the presence of large

amounts of noise. We provided quantitative eval-

uation of the segmentation accuracy as a function

of noise. Moreover, we validated that the model-

based segmentation process is quite robust to large

(up to a factor of 5) variations in frame rate and

walking speed. Finally, we showed that a dynam-

ical prior in the joint space of deformation and

transformation outperforms a purely deformation-

based prior, when tracking a walking person through

prominent occlusions. Future research is focused on

developing nonlinear dynamical models for implicit

shapes in order to account for more complex shape

deformations.
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fruitful discussions. We thank Alessandro Bissacco

and Payam Saisan for providing the image sequence

data used in the experiments. This research was sup-

ported by the German National Science Foundation

(DFG), grant #CR-250/1-1.

REFERENCES

[1] H. Akaike. Autoregressive model fitting for control. Ann. Inst.

Statist. Math., 23:163–180, 1971.

[2] A. Blake, B. Bascle, M. Isard, and J. MacCormick. Statistical

models of visual shape and motion. Philos. Trans. Roy. Soc.

London, A, 356:1283–1302, 1998.



14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, X 2006. TO APPEAR.

[3] A. Blake and M. Isard. Active Contours. Springer, London,

1998.

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active

contours. In Proc. IEEE Intl. Conf. on Comp. Vis., pages 694–

699, Boston, USA, 1995.

[5] T.F. Chan and L.A. Vese. Active contours without edges. IEEE

Trans. Image Processing, 10(2):266–277, 2001.

[6] Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson,

K. S. Gopinath, R. W. Briggs, and E. Geiser. Using shape

priors in geometric active contours in a variational framework.

Int. J. of Computer Vision, 50(3):315–328, 2002.

[7] D. Cremers and G. Funka-Lea. Dynamical statistical shape

priors for level set based tracking. In N. Paragios et al., editors,

Intl. Workshop on Variational and Level Set Methods, volume

3752 of Lect. Not. Comp. Sci., pages 210–221. Springer, 2005.

[8] D. Cremers, T. Kohlberger, and C. Schnörr. Nonlinear shape
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