PHYSICAL REVIEW D 70, 015010(2004

Dynamical symmetry breaking in gauge-Higgs unification on an orbifold
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We study the dynamical symmetry breaking in the gauge-Higgs unification of the five-dimensional theory
compactified on an orbifolds'/Z,. This theory identifies Wilson line degrees of freedom as “Higgs doublets.”
We considelSU(3). X SU(3)y andSU(6) models with the compactification scale of order of a few TeV. The
gauge symmetries are reduced3tJ(3). X SU(2) X U(1)y and SU(3). X SU(2), XU(1)yxU(1), respec-
tively, through the orbifolding boundary conditions. We estimate the one loop effective potential of “Higgs
doublets,” and find that the electroweak breaking is realized through the radiative corrections when there are
suitable numbers of bulk fields possessing the suitable representations. The masses of “Higgs doublets” are
O(100 GeV in this scenario.
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[. INTRODUCTION effective potential of “Higgs doublets,” and find that the
electroweak breaking is realized through the radiative correc-
Much attentions have been paid to gauge theories iiions when there are suitable numbers of bulk fields possess-
higher dimension$1-5]. [See, for examples, grand unified ing the suitable representations. The masses of “Higgs dou-
theories(GUTS) in higher dimensions on orbifoldsOne of ~ blets” areO(100) GeV in this scenario. The suitable value of
the strongest motivations of the higher dimensional gaug&i* éw and the gauge coupling unification are assumed to be
theory is based on the very attractive idea that the gauge arf@@lized by the effects of wall-localized kinetic terms, which
the Higgs fields can be unified in higher dimensigfs7]. ~ May not respect the bulk symmetryve should also assume

Recently, this possibility has been revisited in Refs.t® Paryon number symmetry to avoid rapid proton decay in

[8—15,26. In these scenarios the Higgs doublets are identiiNe TeV scale compactification.

fied with the extra-dimensional components of the gauge .
fields in higher dimensions. The masses of “Higgs fields” Il. GAUGE-HIGGS UNIFICATION ON  SY/Z,

are fgrbidden by the higher (_Jlimen_sional gauge invariance. \nie will consider 5D SU(N) gauge theory ons'/z,
This is the reason why the “Higgs fields” have at most only ¢ \4. The gauge fields propagate in the bulk. The fifth di-
finite masses of the order of the compactification scale inmensional coordinatéy) is assumed to be compactified on
these scenarios. The gauge group in higher dimensions mugh S'/z, orbifold. Under the parity transformation &,
be larger than the standard mod®M) gauge group in order which transformsy— —y, the gauge fieldAy(x*,y) [M

to obtain the “Higgs doublets” from the gauge fields in =, (=0-3),5 in the 5D space—time transforms as
higher dimensions. The gauge symmetries are reduced by the

orbifolding boundary conditions of extra dimensions. The AL (x*,—y)=PA,(x*y)PT, (1)
identification of “Higgs fields” as a part of gauge super- .
multiplet has been considered in five-dimensiot&D) N As(xH,—y)=—PAg(x*,y)P", (2

=1 supersymmetri¢cSUSY) gauge theory whose fifth coor- . .
dinate ?s cgmpactif?esd orT)tr?ﬁllgz orbifo)I/d [9—13, which whereP is the ope;rator onz transformation. Two.walls at
corresponds to the four-dimensioridD) N=2 SUSY gauge y=0'and77R are fixed points under, transformathn. The
theory. Also it is considered in six-dimension@D) N=2 pr11y5|cal space can be taken ts<g<=R. Considering the
SUSY gauge theory, whose fifth and sixth coordinates are Poundary condition,
compactified on th@?/(Z,x Z}) orbifold [10], which corre-
sponds to the 4IN=4 SUSY gauge theory.

In this paper, we consider 5D non-SUSY ader 1 SUSY  the reflection aroung = =R, Z}, is given by
theories compactified on an orbifol&/Z,, where Wilson
line degrees of freedom are identified as “Higgs doublets.” P =TP.
Quarks and leptons are assumed to be localized on the 4D
wall. We considerSU(3).XSU(3)y and SU(6) models The gauge fieldA\y(x*,y) transforms
with the compactification scale being a few TeV. The gauge
symmetries are reduced ®U(3),xSU(2) xU(1)y and
SU(3) X SU(2) XU(1)yxU(1), respectively, through the  For other possibilities, the power law unificatifh6] or the ac-
orbifolding boundary conditions. We estimate the one loopcelerated unificatiof17] might be useful.

Ap(x*,y+27R)=TAy (X" y) T,
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—v)=p’ 1t _ _ NN
A, (x*, TR—y)=P'A ,(x*,TR+y)P'", (3) V=(A*N), S=(a+iA5\),

As(x*, mR—y)=—P'Ag(x*,mR+Yy)P'T, . . _
(4) respectively. Then, in the SUSY case, the gauge multiplet

transforms as
under the parity transformation @, . It should be noticed
that the signs of parities o&s are opposite to those &, .

: : . i , VX, =y)| [ V(X*y) ) s
According to eigenvalueg*, *), of parities, P,P’), the u = . P (9)
field A, (x*,y) is divided into four eigenfunctions as 2(x*,=y) —2(x1y)
N — T +>C°5<n_y ) VOETR=Y) | g, [ VO TREY)
g ' 2n07RA=0 " ' R S(x*,mR—y) | =3 (x*,mR+Yy) :
(10)
(n+ 1/2)y)
AL (XH, —_— AM(XH) 4 cos(— ,
WY - \/ Z Ko R corresponding to Eqg1)—(4).
(6)
1 = (n+1/2)y . SU(3):XSU(3),y MODEL
A#(x“,y)(,’H:—E (n)(XM)( +)Sin —) - :
VaRn=0 R Let us study the possibility of the dynamical symmetry
(7) breaking in theSU(3).X SU(3)y, model, where the Higgs
doublets can be identified as the zero mode components of
1 [(n+1)y As [9-11]. We take
AM(X‘M,y)(_’_)z\/TnZO Afun)(XM)(_’_)Sln R

(8) P=P’'=diag1,—1,—1) (12)

The expansion ofAg(x*,y) is done in the same way. The

parity eigenvalue of the fields(x*,y), is opposite to that of in the base oB8U(3),,.? Then, they divideA, andAs as
A, . The massless states surviving in the low energy are zero

mode components with parity transformatioR,P’)=(+,

+). This paper will consider the situation that zero modes of (++) (=) (=)

As are (1, 2, 1/2) or (1, 2, —1/2) underSU(3)_c>< SU(2), A=| (=) (+.4) (+,1)], (12)
XU(1)y. We regard these components as “Higgs doublets,”

then we call this theory gauge-Higgs unification. Here the (=) (+.4) (+.4)

local gauge invariance in the 5D guarantees the masslessness

of the “Higgs field,” so the Higgs mass should be finite after (= =) (+.4) (+.4)

the radiative corrections. We will study two models in the ' ' '

following sections. In Sec. Ill, we consideBU(3), As=| (+,+) (=,—) (=,7)], (13

X SU(3) gauge theory, where the nontrivial parity opera- (+,4) (=,=) (—=,—)

tors, P=P’=diag(1,1;- 1) realizes the gauge reduction of

SU(3)w—SU(2), X U(1)y as well as the “Higgs doublets”

appear as the zero modesAg [9-11]. In Sec. IV, we will  which suggest SU(3),, is broken down to SU(2),
consider the 505U(6) theory with theZ, parity operators, XU(1)y, and there appear one “Higgs doublet’Aq as the
P=diag(1,1,1,1+1,—1) and P'=diag(1-1,—1,—1,—1, zero modée We assume that the compactification sc&le?,
—1) [10,11]. In both models, we estimate the one loop ef-as a few TeV.

fective potential of the “Higgs doublets” including the ef-  The VEV of Ag is written as

fects of Kaluza-Klein(KK) [18] modes and bulk matter
fields. And we study the vacuum structure of the models and
calculate the mass of the “Higgs fields.” We will also study
the SUSY version, wher@g becomes the imaginary part of
an adjoint chiral superfield after dimensional reduction as
follows. Since the 5IN=1 SUSY theory corresponds to 4D
N=2 SUSY theory, the 5D gauge multiplet, and we can always take VEV as

1 Na
(Rs)= gr 2 Ba (14)

V=AM \\',0),
2As for SU(3),, we takeP=P'=I.
is decomposed to a vector superfield and an adjoint chiral®in SUSY case, there appear two “Higgs doublets” as the zero
superfield as modes.
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a;=a, means that the stationary points exist at least-ad anda
=12 The difference of the heights between two points is
anda;=0 fori#1 by using the residu8U(2)xU(1) glo-  given by
bal symmetry. The effective potential 8§ is given by[9]

3 41 —0)— -
vgg”ge:—icz —s[cog2mna) +2 cogmna], Ver(@a=0)—Veg(a=1)
n=1

(15) =2[4(Ng" =N
whereC=23/(64r'R®). This means that the point at=0 is +2(Nf =N ™)
the minimum inVg3“%°, which suggestSU(2), XU (1)y is % 1
not broken. —~(N{P=N{HY-31C>Y ——=. (20

Then, in order to realize the electroweak symmetry break- =1 (2n—1)°
ing, let us introduce extra fields in the bulk, which aJg
numbers of complex scalargs, and Ny (N,) numbers of

Dirac fermions, (42), of the fundamentajadjoint repre- This means that the symmetric point @=0 becomes

sentation. They transform deeper as the number of bulk scalars wijth’ = + and bulk
fermions with %’ = — increase. On the other hand, the ef-
fects of scalars withnn'=— and fermions with '
d(X,—y)=nPp(X,y), =+ make the height oh=1 decrease. Whea=1 point
becomes the vacuum, the Wilson loop becomes
d(X, TR—y)=n"P' d(x,7R+Y), (16
27R 1 A 1A\
X,—Y)=nPy2¥(X,y), = ' —at= ig— %
P(X,—y) =Py (X.y) We EXP('QJO dnga2 exr<|ggR 5 277R)
D’ -1
P(x,mR=y)=7'P'y’y(x,7R+y), (17)
= -1 , (21

PA(x,—y) = 7Py yA(x,y)PT,

which suggestSU(2), X U(1)y is broken down tdJ(1)em
1 X U(1). Since the VEV isO(R™ 1), which is a few TeV, this
(18) case cannot reproduce the correct weak scale VEV.

under parities, respectively. Heng ' =+, and the effec- In _order to reali-ze the suitable electroweak symmetry
tive potential induced from these bulk fields strongly de-Preaking, we must find another vacuum at(Ya<1. In this
pends on the sign of the producty’. Appendix B shows C€aseSU(2) X U(1)y is broken down toU(1)em. Seeing
the bulk fields’ contributions to the effective potential, Veir=Veg o+ Vg in Egs. (15) and (19), we notice thatn
=1 (of the summation ofi) has dominant contributions for
the form of the effective potential. Thus, we can obtain the
“ 1 suitable value ot (a<1), by introducing bulk fields which
VE=C> ﬁ[ZN(a“cos(zwna) induce large coefficients of-cosgmna) and/or cosfn(a
n=t —1)), and smallbut nonzero coefficients of cos(zna) and
—cos(2m(a—1/2)). We show an example which satisfies
the above condition, that idN{"~’'=2, N{")=8, N{")=4,
N{ =2, andN{’=N{")=0. Figure 1 shows th¥. in the
+ (4N =N+ 2N cog rna) region of 0<a<1 and O<a<0.1. The minimum exists at
a=0.058, which is around the suitable magnitude of the
+(4NS) =N+ 2N ) cog mn(a— 1))}_ (19  Weak scale in TeV scale compactification. To be more pre-
cise, the kinetic term of the “Higgs field” is obtained from
the 5D gauge kinetic term,

JAx, TR—Yy)=7'P' ¥ y3(x,mR+y)P'T,

1
a3

+2N(a_)cos(27rn

The index(*) indicates the sign ok’ in Egs.(16)—(18).
Here we denoteNs=N{"+N{, N;=N{"+N{"), and

N,=N{7+N{) . Seeing the first derivative of g=V35"%° “The potential has the symmetV.i(—a)=Vei(a), so that we
+ Vg, each term ofdVey/da has a factor singna), which  should only check the region of<fa<1.

015010-3



HABA et al.

15

10

.972
.974
.976
.978

.982
.984

FIG. 1. The effective potential in the case Wf"=2, N{~)
=8, N{"'=4, N{?=2, and N{)=N{")=0. The unit is C
=3/647'R®. The horizontal line shows$9a<1 and 0<a<0.1.

1 1
2 [ dy g FLaF*e- f 0y (3,3 +igTEALAD)?

WhereH = \27R((Ai+iA2)/vV2, (A2+iAZ)/v2)T is the 4D
“Higgs doublet,” andg, is the 4D gauge coupling constant
defined agg,=g/V27R. This yields too large sif, and it

2

a

,
d +|g4W

B,
|\fg42
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9V
2 _ 2 eff
my =(gR)* ——
° Ja a=0.058
3gs  P(Ver/(Cm?)|

~327°R? 9aZ

(22)

|a=0.058

By using the approximation formula,

o0 2
Z M_§(3)+( é) In(q-rg)——(7'r§)2 (23
o0 2
3 Mf_l)) 2g(3)+( " 2, (24
for a small¢, the “Higgs” mass becomes
2
miGN(O.OSIM) ~ (13052 GeV)?, (25)

whereg,=0O(1).

Now let us consider the SUSY case. Since the effective
potential is zero when SUSY remains, we adopt Scherk-
Schwarz(SS SUSY breakind19—22,° where the mode ex-
pansions are given in Rdf4]. The effective potential in the
SUSY version is given by

seems hard to reconcile it with the experimental value
through the renormalization group effect. However, as dis-

cussed in Refl11], 4D gauge couplings can be also affected

by wall-localized gauge kinetic terms, such &®)\oF#"2,

which do not respect the bulk symmetry. When these cou-

plings dominate bulk gauge couplingsye can expect to

V3auoe 2c2 (1—cog2mnpB))[cog2mna)

+2 cogmna)], (26)

have the suitable gauge couplings in the low energy. In this
case, the normalization of the low energy gauge fields mighivhere 8 parametrizes SS SUSY breaking. We take 0.1,

be changed as W,.,B,)—(92/94W,.,9v/(v304)B,),
which yields the usual Higgs kinetic term. Thus, we set

a
V27R(AY)=——~246 GeV.
94R
The mass squared of the “Higgs field” is given by

SFor this situation, we need two assumptions. One is that the
wall-localized Higgs kinetic term is negligibly small compared to —

since the soft mass is given by/R [4]. Since (1
—cos(2mnB))=0, Eq.(26) means thaa=0 is the minimum
point in the effective potential. Therefore, theU(2)_
XU(1)y is not broken as in the non-SUSY case.

What is going on if the extra fields exist in the bulk? We
take the bulk fields oN; andN, species of hypermultiplets
of fundamental(¥) and adjoint ?) representations, re-

spectively. The bulk hypermultiplets¥ = (¢, ", b, ¢

and W= (g2, 2T, $2, $2°"), which are decomposed into

chiral superflelds asP=(¢,¢), ®2=(4%4?), and ®°
=(¢°,¢°), P2= (42, $2°), whered (d?) and d° (D29

the bulk Higgs kinetic term. The other is that the bulk inducedhave conjugated transformation under the gauge group. They
gauge coupling should be larger than wall-localized “gauge couiransform

pling” as, g4>)\0l Thus, we should takg,=1, since the wall-
localized “gauge couplings,” such as,, can mainly reproduce the
magnitudes of low energy gauge couplings ®f(2), XxU(1)y,
(92,9y), under this situation. And we simply assume=O(1) in
the following discussions.

SFor the effective potential in other SUSY breaking, the calcula-
tion has been done in the case of tBecompactification in Ref.
[23].
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O(xH,=y) | d(x*,y)
(@”(xﬂ,—y))"’P(—dﬂ*(xﬂ,y) * @7 2
1
d(x*,7R-y) | [ PX,7TR+Y)
ot (x#, mR—y)) ~ 7 P —d°T(x*, wR+y) )’ (28) 0.2 0 0.6 0.8 1
-1
DA(x*,—y) DA(x",y)
(q)act(xp,’_y) =7 —(I)aCT(X'“,y) P (29 -2
-2.143
O(x*,mR-y) | [ O} x*,7R+y) o+
2T 7R—y)| =7 P —actxu, xRy | P (B0 -2 144
under the parities, respectively. According to the sigmgf T2.14e
we denoteN;=N{"+N{) and N,=N{P+N() . We al- 2146
ways take even number N( ) to av0|d the gauge anomaly.
Appendix B suggests that the extra matter contributions for 0.02 0.04 0.06 0.08 0.1

the effective potential are given by ) o N B
FIG. 2. The effective potential in the case Nf"'=N{"’=2,

N{) =4, N{")=0 with B=0.1. The unit isC=3/647'R>. The
horizontal line shows &a<1 and O<a<0.1.

ch 5(1 cog2mnp))

As the non-SUSY case, in order to obtain the suitable

1 value ofa (a<1), we should introduce bulk hypermultiplets
% Ng+)003277na)+Ng)co5<277n a—— ) which induce large coefficients of-cos@mna) and/or
2 cos@n(a—1)) and small (but nonzerp coefficients of

NP cos(2ma) and —cos(2m(a—1/2)). We show an example
NG+ fT) cogmna) which satisfies the above condition, thati,”)=N{ =2,
N{)=4, N{)'=0 (Fig. 2. In this case with3=0.1, the
minimum exists aa=0.047, and the “Higgs” mass squared
is given by

+2

N{™)
+2 Ng>+7)cos(7m(a— 1))}. (31)

As the non-SUSY case, the first derivative \8fs=VIg"%° 0.025. 2

o has the factor sintna), which means the stationary mf\ ~( i 534) ~(13(1331 GeV)?, (33)
points exist a=0 anda=1. The difference of the heights ° R
between two points is given by

where g,=0(1). It should be noticed that the numerical
Ver(a=0) = Veg(a=1) analysis shows that the value afdepends on that g8.

o (NFP=NET)

=8 1-(N;"'=N ) - ———— IV, SU(6) MODEL

2 We study the vacuum structure of tl&U(6) GUT, in

xC )5 (1-cog2m(2n—1)B)). which the Higgs doublets can be identified as the zero mode

components ofA; [10,11]. We take
(32 ’

This means that the height of the pointeat 0 becomes high P=diag1,1,1,1-1,—1), (34
(low) as increasing the number of{") (N{) and N{")

(N§_)). Equation(32) is consistent with the results in Ref.

[5]. As for the case oN{"=1, N{")=N{")=N{")=0, the P'=diag1,—-1,-1,—1,—1,—1), (35
effective potential vanishes &3=0, since this case has 5D

N=2 SUSY and there is the residual SUSY after the SS

SUSY breakind 24]. which divide A, andAs as
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(+.+) (+.=) (+,—) (+.=) (==) (=.,7)
(+.7) () (+.+) (+.+) (1) (=.F)
(+.=) (+,+) (+.+) (+£,+) (=+) (=)

ML ) () () () () (—0) | (%9
_l_) (_i+) (_l+) (_i+) (+!+) (+1+)
=) (=) (=+) (=+) (+,+) (+,+)
(==) (=+) (=+) (=,+) (+,+) (+,+)
(_!+) (_!_) (_1_ (_!_) (+1_) (+;_)
(—+) (=) (=) (=) (+,7) (+,7)
A= . @37

(=+) (=) (=) (=) (=) (+.,7)
(+.+) (+,=) (+,=) (=) (==) (=~
(+.+) (+,=) (+.=) (=) (=.=) (=.,7)

They suggest that? and P’ make SU(6) broken to The numerical calculation of the effective potential shows us
SU(3):XSU(2), XU(1)yxU(1). Also, there appears to be thata=1 (a=0) point is the globallocal) minimum. The
one “Higgs doublet” in A; as the zero mode. As in the vacuum ata=1 has the Wilson loop

preceding section, the compactification scale is assumed to

be of order a few TeV. The VEV ofg is written in the

similar way as Eq(14) as

1 A p( LY
16 =eX |g__ o
=_—a— R 2
-1
1
by using the residuabU(2)xU(1) global symmetry. The 1

calculation in Appendix A suggests the gauge part of the 1 , (41
effective potential in th&sU(6) model as

1

which suggests thaSU(2), XxU(1)y is broken down to
vgauge. —CE 5[6 cog mn(a—1)) U(1)emXU(1). This means that the vacuum at 1 is not
suitable, since the weak scale becomes too large. It can be
possible to assume that we existat 0 in the early uni-
verse, and the lifetime of this false vacuum is longer than the
universe history4]. However, the suitable electroweak sym-
From this equation, we can easily show that metry breaking cannot be realized, anyway.
Then, let us introduce the extra fields in the bulk for the
suitable dynamical symmetry breaking $0J(2), X U(1)y.
We introduce the bulk fields dfl; numbers of complex sca-
lars, ¢, andN; (N,) numbers of Dirac fermionsj (4?), of

+2cogmna)+cog2wna)]. (39

Vi %la=0)—-Vdi Na=1) the fundamental(adjoint representation. The transforma-
tions under parities are the same as Efj§)—(18). Appendix
12CE 5>0 (40) B suggests that the effective potential induced from the bulk

fields is given by

015010-6
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o1
VI=CY, —|2N(Y cog2mna) "
n=1 n 10
() 1 5
+2N, ’cog 2mn a3
0.2 0.4 0.6 0.8 1
+ (4N + 12N+ 2NE — N )Y cog rna) -5
+(12NGP + 4N+ 2N ) e
—N{)cog mn(a— 1))}. (42 -1.0836
-1.0838 /
The index(%) shows the numbers of bulk fields with the 0.02 04 0.06 0.08 Jo.1
sign of %’ in Egs. (16)—(18). We denote asNS=N§+) -1.0842
+N{ L Np=N{+NE) | andN, =N+ NS . As in the 1 osas

preceding section, the first derivative ®f=V25"9% Vk
suggests that the stationary points existatO0 anda=1.

> i i . FIG. 3. The effective potential in the case Kf")=N{")=2,
The difference of the heights between two points is P L '

and others being zero. The unit @=3/647'R°. The horizontal

given by line shows Gsa<1 and 0<a<0.1.
Vef(a=0)—Vvefi(a=1) Ve “Ta=0) - Vg a=1)
—oTa— (+)_ ) ~ 1
2[6 8(Na Na ) =16CE (zn_l)S
+2(N{Y=N{ ) "
B X(1—cog2m(2n—1)8))>0,  (46)

1
(N N -
(NS NS )]anl (2n_1)5

(43

and the numerical calculation really shoass 1 is the global
The Symmetric point ofa=0 becomes deepdr"ghel) as minimum. Then, in order to realize the suitable electroweak
NEP L NG, NG (NG NG NEYY) increase. symmetry breaking, we introduce the extra hypermultiplets

As in the preceding section, in order to obtain the suitabldn the bulk as in the preceding section. We introdbigeN,)

value ofa (a<1), we should introduce bulk fields which humbers of fundamentaladjoint hypermultiplets, which
induce large coefficients of-cos@mna) and/or cosgn(a transform Eqs(27) and(28) [Egs.(29) and(30)] under pari-
—1)) and small(but nonzerd coefficients of cos(zna) and  ties with »»’==. Appendix B shows that the bulk fields
—cos(2m(a—1/2)). We show an example which satisfies induce the effective potential,
the above condition, that i&y{")=N{")=2, and others be-
ing zero (Fig. 3). In this case, the minimum exists at
=0.072, and the “Higgs” mass squared is given by

1
Vi=2C>, —s(1—cog2mnp)) N{") cog2mna)
n=1

0.038y,\2
2 N 2 2
M3, ( = ) (13095 GeV)?, (44) +Ng_)cos(27m a_% )
whereg,=0(1). +(2N{P + 6N+ N cog rna)

The effective potential in the SUSY case is given by

B + (NS +2NS )+ N ) cog mn(a— 1))}. (47)

1

V3WE _oCc > _5(1-cog2mnp))
n=1

X[6 cog mn(a—1))+2 cog wna) We can show that thia effec:cive potential vanishes in the case
of N{V=1, N{" ) =N{=N{=0 due to the residual SUSY
+cog2mna)] (45 [24]. The first derivative ol ¢;=VI2% V™ suggests that
the stationary points exist at=0 anda=1. The difference
from the calculation of Appendix A. This shows of the heights between two points is given by
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loop effective potential of “Higgs doublets,” and find that
the electroweak symmetry breaking is realized through the

4 radiative corrections when there are suitable numbers of bulk
fields possessing the suitable representations. The masses of
“Higgs doublets” areO®(100) GeV in this scenario.

Although the compactification scale is a few TeV, the con-
tributions from the higher dimensional operators to the one
loop effective potential are suppressed enough in this model.
-4 It is becausay,= O(1) suggests that the cutoff scalecan
be larger than the compactification scaleR,1enough to
satisfy (RM)<47-r where gauge interaction is still perturba-
tive as a= g4/477<1 Thus, there appears the suppression
—4.226 factor, O(1/RM), for the higher dimensional operators in the
effective potential. As for the contributions of them to the
-4.227 tree-level scalar potential, they vanish as long as fields other

than Wilson line phases do not acquire VEVs. We analyze
0.0z ~q_ 04 0706 0.08 0.1 the vacuum on the direction of Wilson line phaséss) in
RS this paper.

FIG. 4. The effective potential in the case BE" =2, N{~) Finally we should comment on the Yukawa interac_tions.
=10, Ng‘):N§+):0 with =0.1. The unit isC=3/647"R°. The We have assumed that quarks and leptons are localized on
horizontal line shows &a<1 and 0<a<0.1. the 4D wall. In this situation, the “Higgs doublet” cannot

make the gauge invariant Yukawa interactions even if the
_ _ _ (+)_ni(—) “Higgs doublet” appear as the zero modeXfs is shown in
e 0) = Ver(1)=2(8=8(Na=Na ) Ref. [10]. It is because3 transforms as¥—e’(S
—\/Z?y)e*‘\ under the gauge transformation. However, if we
(2n 1)5 consider the nonlocal operates=P exp([ dy), as the new
Higgs doublet, it can have the gauge invariant Yukawa inter-
X (1—cog2m(2n—1)B)), (48)  actions with the wall-localized quarks and leptdas]. An-
other possibility is to consider the situation where quarks and
which is consistent with the results in REB]. leptons are the bulk fieldgll], where the Yukawa interac-

As the non-SUSY case, in order to obtain the suitabldions is originated in the 5D gauge interactions.
value ofa (a<1), we should introduce bulk hypermultiplets ~ Note added in proofAfter this work was completed we
which induce large coefficients of-cos@na) and/or noticed the work of Scrucca, Serone, and Silvestii],
cos@mn(a—1)) and small (but nonzerp coefficients of where a similar idea is considered in non-SUSYJ(3).
cos(2ma) and —cos(2m(a—1/2)). We show an example XSU(3)w. They estimated the effects to the effective po-
that satisfies the above condition, that K{"’=2, N{~)  tential induced from bulk and wall-localized fields mixings
=10, Ng’)zNV):O with B=0.1 (Fig. 4). In this case, the and WaII-Iocallze_d Kinetic terms. They_ also C(_)n5|der_ flavor
minimum exists ae=0.047, and the “Higgs” mass squared symmetry breaklng_ through Yukawa interactions with the
is given by nonlocal operat_or induced by mtegr{:\tmg out_ heavy bul_k
fields[26]. The difference between their scenario and ours is

-4.225

+2(N{P =N ’))CE

) 0.024,\? ) 5 that the electroweak symmetry breaking is realized by the
mASN( R ) ~(130g; GeV)s, (49)  effect of wall-localized fields in the former, while by the
effect of bulk fields possessing degrees of freedony ahd
whereg,=0O(1). n' in the latter.
As for the extraU(1) gauge symmetry that remains un-
broken through the orbifolding boundary conditions, we as- ACKNOWLEDGMENTS
sume it is broken by an extra elementally Higgs field. N.H. would like to thank C. S. Lim for a lot of very
helpful discussions. T.Y. would like to thank S. Teraguchi for
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We have studied the possibility of the dynamical symme-,
try breaking in the gauge-Higgs unification in the 5D theory
compactified on an orbifoldS'/Z,. This theory identifies
Wilson line degrees of freedom as “Higgs doublets.” We
consideredSU(3).X SU(3),y and SU(6) models with the
compactification scale of order of a few TeV. The gauge
symmetries are reduced ®U(3),xSU(2) xU(1)y and
SU(3).XSU(2) X U(1)yxU(1), respectively, through the The one loop effective potential of the Wilson line de-
orbifolding boundary conditions. We have estimated the ongyrees of freedom of\s is given by

APPENDIX A: THE DERIVATION OF VZ$“°IN SU(6)
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i
Veﬂ[AO]=—(D—2)§TrIn DY,DM, (A1)

where D (A%)D"(A%=4,5*+D,(A%)DY(A%, with A°

=(As)=(1IgR) = a,(\4/2). We can always take the base of

— eiEaa(}\aIZ)(y/R), as

gauge transformation, Q(x*,y)

(As)—Q(y) (A (y) T~ 'an<y>ay9(y>f=<As>

PHYSICAL REVIEW D 70, 015010 (2004

Introducing a fluctuation fiel®=X= ,B,(\,/2), the effec-
tive potential is given by

TrinBD,(A%)D,(A%B
2
—Tr( ; %) .

As is shown in the Sec. lll, we can always take VEV as
a;g=a, and othera;=0, by using the residuaBU(2)
XU(1) global symmetry. Thus, only structure constants re-
lating \ 15 are needed for the calculation of E&#\5). They

1
ayBc__E fabc@aBp (AS5)
Rab

1 N
- g_RE aa7a=0. (A2)  are given by
In this base the parities are given as f1,16,19: f2,16,18: f3,16,17:f4,16,21:f5,16,20:f9,16,23:f10,16,22
:f162534:f163326:%’
— _ T 129, 199,
P_>P_Q( Y) PQ(y) ) (A3) \/_ (AG)
1 10
P'—-P'=Q(7R-y)P'Q(7R+y)". f - f — _ N
(Ad) 8,16,17 3 15,16,17_2\/6 167,24~ 4
ThenP andP’ correspond to the Wilson looy/c . Where the generators are numbered as
|
(1,2 (45 (910 (16,19 (25,26
(1,2 (6,7 (11,12 (1819 (27,28
(4,9 (6,7 (13,19 (20,2) (29,30 A7)
(9,10 (11,12 (13,19 (22,23 (31,32
(16,19 (18,19 (20,21 (22,23 (33,39
(25,26 (27,28 (29,30 (31,32 (33,39
For examples(1, 2) stands for
1 —i
1 i
7\1: y )\2: (A8)
The diagonal generators are
. 1
N3=diag1,-1,0,0,0,0, Ag=-—diag1,1,-2,0,0,0,
V3
A 1d' g1,1,1-3,00, A 1d' g1,1,1,1-4,0
== Ia L L !_ 1 ’ ’ = Ia ’ L 1 !_ L L
15 \/6 24 \/E
1
Ng5= \/—l_5d|agl,1,1,1,1,— 5), (A9)

Then, Eq.(A5) becomes

015010-9



HABA et al. PHYSICAL REVIEW D 70, 015010(2004

1 2 2 2 1 2
E (&yBi)Z“F é’yB] 2RaBk & Bk+ 2R + 8yB3 2RaBl7 + ayBS_ﬁaB]j + (9yBl5
! B 2+(&B \/1—05 2+ 9B+ ——aBs+ —— ! Bo+ ! B+ —aB 2 (A10)
——F—_a a 5 a ——a —F_a - a )
2\/§R 17 y 24 4R 17 yP17 2R 3 2\/§R 8 2\/€R 15 4R 24

wherei =6, 7, 11, 12, 13, 14, 16, 27, 28, 29, 30, 31, 32, 35, gnk)& (1,19), (2, 18, (4, 21), (5, 20, (9, 23, (10, 22, (25,
34),(26,33.Ini=6, 7, 11, 12, 13, 14, 35 in EGA10), eigenvalues ara?/R? and (+ 1)%/R? for (+, +) states ofA, and
(—, —) states ofA5, respectively. Iri =16 in Eq.(A10), eigenvalue isif+1)?/R?* andn?/R? for (—, —) state ofA,, and(+
+) state ofAs, respectively. Iri =27, 28, 29, 30, 31, 32 in EGA10), eigenvalues aren+ 1/2)?/R? and (n+1/2)2/R2 for (—,
+) states ofA,, and(+, —) states ofAs, respectively. In f,k)=(1,19), (2, 18, (4, 21), (5, 20, (9, 23, (10, 22, eigenvalues
are (n+1/2~|—a/2)2/R2 (n+1/2—a/2)?/R? and (n+ 1/2+a/2)?/R?, (n+ 1/2—al2)?/R? for ((+, —), (—, +)) states ofA , and
((—, +), (+, —)) states ofAg, respectively. In ,k)=(25,34), (26, 33, eigenvalues aren(+a/2)2/R2, (n—a/2)2/RéL and
(n+a/2)’/R?, (n—al2)’/R? for ((—, —), (+, +)) states ofA, and ((+, +), (-, —)) states ofAs, respectively. As for
(B3,Bg,B15,B24,B17), the relevant part in EqAL0) is simplified as

1 a_ \? a_\2 5 5 )
E &ycl— ﬁ Bl7 + &yBl7+ ﬁ Cl + (ayCZ) + (&yC3) + (5yC4) y (All)
in an appropriate basis. Here new fieldss are introduced by
C1A1+ C2A2+ C3A3+ C4A4= Bg)\3+ BS)\8+ 815)\15+ 824)\24 (AlZ)

by the use of new bases;’'s with diagonal elements. For instanc¢e, and A, are given by

c—lB+1B+1B+mB (A13)
1 2 3 2‘/3 8 2\/6 15 4 24
and
A,=diag1,0,0,0;-1,0), (A14)

respectively. From EqA11), the eigenvalues are given by a)?/R?, (n—a)?/R?, n?/R?, n?/R?, andn?/R2.
Then, the effective potential for gauge and ghost is given by

i [ dp 1 - n? - n2 ” (n+1/2)?
g+gh_ _ 2 - _n2, S T
Ve 25 | Gayzar| > 2, N P R +; 2 '”( PPt T2 2 '”( P R )
- n+1/2+a/2)? n+1/2—a/2)? - n+a/2)?
+ 3 3 | pre AR (e, IE DL 5 5 ey (052
(f,m) n=0 R R (pa) n=0 R

(n+a)?

2 oo
=z)+ 2 In| —p?+ ——;
A=0 R

*© 2
n—a

+> In(—p2+( 2)

n=1 R

” n—a/2)? ”
IS S m(-ﬁ% 133 m(— |
p n=1 R h=0

(A15)

and forAs part is given by
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dp 1
2] (2m?*27R

+2§In

(I,m) n=0

> In(—pzjL
p n=1

A
vi--1

(n+1/2+a/2)?
R
R

-

+(—p2+

(n—al2)?

R2

n? -
—p2+ —2)+E > |n<_p2+
R j n=1

- n
+3z In(—p2+—2
n=0 R

PHYSICAL REVIEW D 70, 015010 (2004

n2

R2

+Ek néo In(—p2

(n+1/2)2
TR

(n+1/2—al2)?
R?

(n+a/2)?
R?

}4—2 i In

(p,q) n=0

-

2
+> In( -p%+
n=0

(n+a)?
RZ

(n—a)?
R2

+2 In( —p+
n=1

(A16)

wherei=6, 7, 11, 12, 13, 14, 35,=16,k=27, 28, 29, 30, 31, 32|J(m)=(1,19), (2, 18, (4, 21, (5, 20, (9, 23, (10, 22,
(p,q)=(25,34), (26, 33, and the last line terms come froB4{,Bg,B45,B,4,B17). We omit terms withouta dependences,
since they have nothing to do with the dynamics of determiainbhen, we can obtain the VEV dependent effective potential

as

[ dp 1 - (n+1/2—al2)? (n—a/2)?
g+gh+A5:_ I_ ) A2
Ve 32j(277)4 7R 6.2, '”( P RZ 2 2 '”( Y
*° 2
n—a
+ |n<—p2+% (A17)
n=-—o
3 & 1
:_ECE F[G cogmn(a—1))+2cogmna)+cog2mna)], (A18)
n=1
|
whereC = 3/64x'R°. =— have eigenvalues, 2[(n+1/2)%/R?], [(n*a

The SUSY version of the effective potential is easily ob- +1/2)2/R?], and 2x[ (n+a/2+1/2)%R?]. Thus,N{~) num-

tained from this non-SUSY one. As in Ré4], it is obtained
by replacing the coefficient-2/3C— —2C due to the

change of degrees of freedom, and adding the factor (
—cos(2mp)) to VIE'E where B is the parameter of SS

SUSY breaking.

bers of Dirac fermion induce N )CX(1/n®%)[cos(2m(a
—1/2))+2 cosgmn(a—1))]. The fundamental representation
elds with 77'=+ have eigenvaluesp?R? and (
+a)?/R?. ThenN{*) and N{*) numbers of Dirac fermion

and complex scalar induce K"
APPENDIX B: THE DERIVATION OF V™ - Ng+))C_ZE(1/n5)cos(77na). The fundamental regreszentation
fields with »%»'=— have eigenvalues,n@1/2)°/R- and
The effective potential induced from bulk fields is given (n+a+1/2)?/R%. Then N{) and Ng‘) numbers of Dirac
by fermion and complex scalar induce MQ_)
_ i —N{)CE(1/n5) cosn(a—1))].
Veﬁ[Ao]ferm'o"zf(D)ETrln DYDY, (B1) In SU(6) model, adjoint representation fields witv)’
=+ have eigenvalues, KI(n?R?), 6x[(n+1/2)*/R?],
i [(h+a)%R?], 2x[(n*a/2)?R?], and 6x[(n*al2
Ve AC]3C202 ~25Trln DODO, (B2)  +1/2)?/R?]. Thus,N{") numbers of Dirac fermion induce
2N{PCE(1/n5)[ 6 cosgm(a—1)) +2 cosgrna) +cos(2mna)].
wheref(D)=2["2, TheV™, can be calculated similar to the The adjoint representation fields withy' = — have eigen-
V8% \We introduce a fluctuation field according to the values,  1K[(n+1/2)%/R*],  6X(n%/R?), [(n*a
representation of bulk fields in Eq&B1) and (B2) as Eq. +1/2%R?],  2x[(n*a/2+1/2)?/R?], and  6X[(n

(A5), and calculating the eigenvalues. Here, we show only* @/2)°/R?]. Thus,N$~) numbers of Dirac fermion induce

eigenvalues both iI8U(3). X SU(3)y andSU(6) models.

2N {)C2(1/n%)[6 cosgmna) + 2 cosgrn(a—1)) + cos(2m(a

In SU(3).X SU(3),, model, adjoint representation fields —1/2))]. The fundamental representation fields witin’

with  7y'=+ have eigenvalues, 2(n’R?), [(n
+a)?/R?], and 2x[(n+a/2)%/R?]. Thus,N{") numbers of
Dirac fermion induce RI{")CZ(1/n% [cos(2ma)
+2cosgmna)]. The adjoint representation fields with»’

=+ have eigenvaluesp?/R?, 3x[(n+1/2)?/R?], [(n
+a)?/R?]. ThenN{") andN{") numbers of Dirac fermion
and complex scalar induce K"
—N{")C3 (1% cos@mna). The fundamental representation
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fields with »»'=— have eigenvalues,nt1/2)?/R?, 3 The effective potential in the SUSY case with SS break-
X (n?/R?), [(n*(a—1))%R?]. ThenN{) andN{) num- ing can also be obtained as in Re4]. We add the factor
bers of Dirac fermion and complex scalar induceN(2)  (1—cos(2mp)) in the effective potential induced from the

—N{)CE(1n%) cosrn(a—1))]. fermion (ordinary particlg contributions.
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