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In this work, we perform a detailed dynamical analysis for the cosmological applications of a non-
minimal torsion-matter coupled gravity. Two alternative formalisms are proposed, which enables one
to choose between the easier approach for a given problem, and furthermore, we analyze six specific
models. In general, we extract fixed points corresponding either to dark-matter dominated, scaling
decelerated solutions, or to dark-energy dominated accelerated solutions. Additionally, we find that
there is a small parameter region in which the model can experience the transition from matter
epoch to dark-energy era. These feature are in agreement with the observed universe evolution, and
make the theory a successful candidate for the description of Nature.

PACS numbers: 04.50.Kd, 98.80.-k, 95.36.+x

I. INTRODUCTION

The late-time accelerated expansion of the universe is
a major challenge to present-day cosmology. The con-
verging observational evidence comes from a diverse set
of cosmological data which includes observations of type
Ia supernovae (SNeIa) [1], cosmic microwave background
radiation (CMB) [2], constraints from SDSS galaxy clus-
tering [3], baryon acoustic oscillations (BAO) [4] and
weak lensing [5]. A plethora of theories have been
proposed to explain this late-time cosmic acceleration.
The simplest explanation is provided by a cosmological
constant, however, this scenario is plagued by a severe
fine-tuning problem associated with its energy scale [6].
Hence one has two main directions in order to seek for
an alternative explanation, namely, either to introduce
the concept of an exotic repulsive cosmic fluid denoted
by “dark energy” in the framework of general relativity
[6, 7], or to modify the gravitational sector itself [8, 9].
All of these modifications to the Einstein-Hilbert action
are based on the curvature description of gravity. How-
ever, an interesting and rich class of modified gravity can
arise if one modifies the action of the equivalent torsional
formulation of general relativity, known as “Teleparal-
lel Equivalent of General Relativity” (TEGR) [10–13].
Thus, if one desires to modify gravity starting from this
formulation, the simplest model is to extend the torsion
scalar T in the Lagrangian to an arbitrary function f(T )
[14–19] (for a review see [20]).
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Recently, an extension of f(T ) gravity was proposed in
which the torsion scalar is coupled non-minimally to the
matter sector [21]. This theory is a novel gravitational
modification, since it is different from both f(T ) grav-
ity, as well as from the original nonminimal curvature-
matter-coupled theory [22]. Additionally, the cosmologi-
cal applications of this new theory proves to be very in-
teresting [21]. More specifically, a wide variety of cosmo-
logical scenarios were obtained, such as an effective dark
energy sector whose equation-of-state parameter can be
quintessence or phantom-like, or exhibit the phantom-
divide crossing, while for a large range of the model pa-
rameters the Universe results in a de Sitter, dark-energy-
dominated, accelerating phase. Furthermore, early-time
inflationary solutions were also obtained, and thus these
models provide a unified description of the cosmologi-
cal history. It is interesting to note, that along these
lines of research, another extension of f(T ) gravity was
also proposed [23] (motivated by Ref. [24]), that allowed
for a general coupling of the torsion scalar T with the
trace of the matter energy-momentum tensor T . The
resulting f(T, T ) theory also possesses interesting cos-
mological phenomenology, leading to a unified descrip-
tion of the initial inflationary phase, the subsequent non-
accelerating, matter-dominated expansion, and then the
transition to a late-time accelerating phase. Addition-
ally, a detailed study of the scalar perturbations at the
linear level revealed that f(T, T ) cosmology may be free
of ghosts and instabilities for a wide class of the model
parameters.

In the present paper, we are interested in perform-
ing a detailed phase space analysis of the non-minimal
torsion-matter coupling, and explore the phenomenology
associated to some specific models. In particular, we ap-
ply the Dynamical System Approach, developed amongst
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others by Ellis and Wainwright [25, 26]. This approach
is able to by-pass the non-linearities of the cosmological
equations, that forbid an analytical treatment, and al-
low for the extraction of the general features and global
behavior of the evolution, independently of the specific
initial conditions. Using this technique we will be able
to show that this class of models often present a matter-
dominated epoch and that providing suitable forms for
the functions of torsion, that appear in the theory, the
universe evolves towards a late-time acceleration.

The manuscript is organised in the following manner:
In Section, II we briefly review the scenario of non-
minimally torsion-matter coupled gravity and provide
the corresponding cosmological equations. In Section,
III we perform the dynamical analysis of this class of cos-
mologies, focusing on three different models. In Section
IV, for completeness, we present an alternative approach
to the problem, which offers complementary information
in relation to the first formulation. Finally, Section V is
devoted to the conclusions and discussion.

II. THE MODEL

The action of non-minimally torsion-matter coupled
gravity can be written in the following manner [21]

S =

∫
d4xe [κf1(T )− f2(T )Lm], (1)

where κ = 1/16πG and fi(T ) (with i = 1, 2) are arbitrary
functions of the torsion scalar T . The latter is defined as

T ≡ S µν
ρ T ρµν =

1

4
T µν
ρ T ρµν +

1

2
T ρµν T

ν
µρ − T ρ

ρµ T
νµ
ν ,

(2)
where

T ρµν ≡ e
ρ
A

(
∂µe

A
ν − ∂νeAµ

)
,

Kµν
ρ ≡ −

1

2

(
Tµνρ − T νµρ − T µν

ρ

)
,

S µν
ρ ≡ 1

2

(
Kµν

ρ + δµρ T
θν
θ − δνρ T

θµ
θ

)
, (3)

are respectively the torsion tensor, the contortion tensor
and the “superpotential” [20].

Varying the action with respect to the tetrad eAρ yields
the field equations

e−1∂ν
(
eFeρAS

µν
ρ

)
+ FeτAT

ρ
τνS

νµ
ρ +

1

4
κf1e

µ
A

+κf ′2∂νTe
τ
A

em

S τ
µν =

1

4
f2e

ν
A

em

T ν
µ, (4)

where we have defined

em

S A
ρµ =

1

4κ

∂Lm
∂∂µeAρ

, (5)

and F ≡ κf ′1 − f ′2Lm, with the prime denoting differen-
tiation with respect to the torsion scalar. The matter

energy-momentum tensor is defined as

em

T A
ρ =

1

e

δSm
δeAρ

. (6)

In a purely space-time form, the Bianchi identities of
Teleparallel Gravity imply the relationship

∇̄µ
em

T τ
µ =

4

f2
Kρ

µτS
µν
ρ ∇̄νF −

f ′2
f2

(
em

T τ
µ − Lmδµτ

)
∇̄µT,

(7)
where ∇̄µ is the covariant derivative in the Levi-Civita
connection [11]. Additionally, we have assumed that the
matter Lagrangian Lm, depends only on the tetrad and
not on its derivatives. Thus, the coupling between the
matter and torsion describes an exchange of energy and
momentum between both.

In order to obtain a cosmological model governed by
f(T ) gravity, we have to impose the usual homogeneity
and isotropy conditions. Therefore, we consider the com-
mon choice for the tetrad field, given by

eAµ = diag(1, a(t), a(t), a(t)), (8)

which corresponds to a flat Friedmann-Robertson-Walker
(FRW) background, with a(t) the scale factor. Since
the Lagrangian density of a perfect fluid is the energy
scalar, representing the energy in a local rest frame for
the fluid, a possible “natural choice” for the matter La-
grangian density is Lm = ρm [27]. However, we mention
that in the presence of non-minimal couplings in which
the matter Lagrangian appears explicitly in the gravita-
tional field equations, special care should be taken (we
refer the reader to [28] for more details). Nevertheless,
throughout this work we consider Lm = ρm. In this

case we have
em

S A
ρµ = 0, and also the usual form of the

energy-momentum tensor for the perfect fluid is given by

em

T µν = (ρm + pm)uµuν − pmgµν . (9)

One can see that the energy-momentum tensor is again
conserved, just like in teleparallel gravity or f(T ) theo-
ries, since Eq. (7) yields the continuity equation

ρ̇m + 3H (1 + ωm) ρm = 0, (10)

where H = ȧ/a is the Hubble parameter and ωm ≡
pm/ρm is the equation-of-state (EOS) parameter of mat-
ter. In the above expressions the dot represents a deriva-
tives with respect to cosmic time.

Inserting the flat FRW vierbein choice (8) into the field
equations (4) we obtain the modified Friedmann equa-
tions [21]

12FH2 = f2ρm − κf1, (11)

ḞH + FḢ = −1

4
γf2ρm, (12)

where we have defined γ ≡ 1 + ωm. Note that a useful
relation arising from the choice (8) of the tetrad is that
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the torsion scalar is proportional to the square of the
Hubble parameter, namely T = −6H2.

The generalized Friedmann equations can be rewritten
in the standard form

3H2 =
1

2κ
(ρDE + ρm) , (13)

2Ḣ = − 1

2κ
(ρm + pm + ρDE + pDE) , (14)

where the effective energy density and effective pressure
of the dark energy sector are defined as

ρDE =

(
κf2
2F
− 1

)
ρm −

κ2f1
2F

, (15)

pDE =

(
κf2
F
− 1

)
γρm +

4κHḞ

F
− ρDE , (16)

respectively. One can easily verify that the dark energy
density and pressure satisfy the continuity equation

ρ̇DE + 3H (1 + ωDE) ρDE = 0, (17)

in accordance with Eqs. (7) and (10). We have defined
the dark-energy equation-of-state parameter as usual,
namely, ωDE ≡ pDE/ρDE .

III. DYNAMICAL SYSTEM ANALYSIS

In order to perform the phase-space analysis of the cos-
mological scenario at hand, we have to introduce suitable
dimensionless auxiliary variables that will bring the sys-
tem of cosmological equations into its autonomous form
[25, 26]. We choose

X =
f1

12H2f ′1
, Y =

f2
12H2f ′2

, Ω =
ρm

6H2κ
, (18)

and the logarithmic time N = log a. With this choice,
and taking in account that T = −6H2, the case of a
standard f(T ) theory is recovered when |Y | → ∞.

Using the variables (18) the cosmological equations are
equivalent to the autonomous system

dX

dN
= −3γQ(X + 1)(Y + 1)(2(W + 1)X + 1)

P(X + 1)−Q(2W(Y + 1)−X + Y )
,

dY

dN
= − 3γ(X + 1)(Y + 1)(PY + 2QY + Q)

P(X + 1)−Q(2W(Y + 1)−X + Y )
,

2Q(Y + 1)Ω +X + 1 = 0,

(19)

with γ ≡ 1 + ωm, as defined above, and where

Q =
Tf ′2
2f ′1

, P =
T 2f ′′2
f ′1

, W =
Tf ′′1
f ′1

, (20)

are functions only of T . Their expression in terms of the
variables (18) can be obtained noting that

X

Y
=
f1f
′
2

f2f ′1
. (21)

Inverting the above equation for a given form of f1 and
f2, one obtains T = T (X/Y ) and the system (19) can be
closed. It is important to stress at this point that since
T = −6H2 must be non positive, the requirement that
T (X/Y ) ≤ 0 implies that only some parts of the phase
space defined by those variables will have actual physi-
cal meaning. In fact, this restriction implies that even if
some physically interesting fixed points are present there
might not be physical orbits that connect them. Addi-
tionally, note that since we have used the third equa-
tion of (19) to eliminate Ω, we might need to discard the
Y = −1 part of the phase space.

Using the dimensionless variables from Eqs. (18) and
(20), the dark-energy density parameter is written as

ΩDE ≡
ρDE

6κH2
= 1− Ω, (22)

Due to the definition (18) the physically relevant part of
the phase space will necessarily have Ω ≥ 0, however,
since ΩDE does not need to be defined positive, Ω is
not necessarily less than one. In the following however,
we will require, at least for the matter-dominated fixed
points, that 0 < Ω < 1 and therefore that 0 < ΩDE < 1.

The solutions associated to the fixed points can be ob-
tained using the equation

Ḣ

H2
= −1

p
,

1

p
= − 3γQ∗(X∗ + 1)(Y∗ + 1)

P∗(X∗ + 1)−Q∗(2W∗(Y∗ + 1)−X∗ + Y∗)
,

(23)

where p is a constant and an asterisk represents the value
of a variable at the fixed point {X∗,Y∗}. Hence, the solu-
tions obtained in this way are all scaling solutions which
can alleviate the coincidence problem [6].

The parameter of deceleration is defined as

q ≡ − Ḣ

H2
− 1 =

1

p
− 1. (24)

Thus, when H = H0 = constant (and therefore q = −1)
we have the de Sitter solution a(t) ∝ eH0t and accelerated
expansion for all values. For finite p > 0 we acquire
a(t) ∝ tp, and we have an accelerated solution if p > 1
(q < 0) or a decelerated solution if 0 < p < 1 (q > 0).

In the following subsections we apply the above general
technique to three specific cosmological models, obtained
by specific choices of the functions f1 and f2.

A. Model I: f1(T ) = T + αT 2 − Λ and f2(T ) = 1 + βT

As a first example we consider the specific choices,
given by

f1(T ) = T + αT 2 − Λ, and f2(T ) = 1 + βT, (25)
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with α, β and Λ constants. In this case, the auxiliary
variable choice (18) implies

X

Y
=
β
(
−Λ + αT 2 + T

)
(2αT + 1)(βT + 1)

, (26)

and

T (X,Y ) =
βY − (2α+ β)X +K

2αβ(2X − Y )
, (27)

K = ±
√

[(2α+ β)X − βY ]2 − 4αβ(2X − Y )(X + βΛY ) .
(28)

Therefore, for these choices of the functions f1 and f2, we
have two possible solutions for T (X/Y ). In the following,
we will choose the solution with positive K. Inserting the
functions in Eq. (20), one has

Q =
βT

2 (1 + 2αT )
, P = 0, W =

2αT

2αT + 1
. (29)

We will analyse the autonomous system and the fixed
points, and their respective stability below.

1. Autonomous system and fixed points

Substituting the expressions for Q , P and W into the
dynamical system (19) we find

dX

dN
= −3γ(X + 1)(Y + 1) [2αT + 2X(4αT + 1) + 1]

2αT (X − 3Y − 2) +X − Y
,

dY

dN
= −3γ(X + 1)(Y + 1)(2Y + 1)(2αT + 1)

2αT (X − 3Y − 2) +X − Y
,

(30)

where T is given by (27). The dynamical system presents
the invariant submanidfolds X = −1, Y = −1, Y =
−1/2, T = −1/2α. Some of these submanifolds, such
as X = −1, represent fixed points, whereas others can
be singular, as in the case of Y = −1. The presence
of invariant submanifolds additionally implies that the
phase space does not admit a global attractor.

The critical points are obtained setting dX/dN =
dY/dN = 0 and are shown in Table I. They consist of a
line of fixed points A characterized by X = −1, associ-
ated via (23) to the solution a(t) ∝ eH0t with

H0 =
1

6

√
1 +
√

1− 12αΛ

α
, (31)

and Ω ∝ ρm = 0, i.e., they correspond to a dark-energy
dominated, de Sitter universe.

In addition to the line A, the phase space admits the
couple of fixed points B for Y = −1/2. They are associ-
ated to the solution a(t) ∝ tp with H = p/t and

p = ±4α

3γ

√
βΛ + 1

αβ(4αΛ + 1)
, (32)

where the ± signs guarantee that p > 0.
Points B exist only if the inequality αXB < 0 is sat-

isfied, and they correspond to physical states only if the
torsion scalar evaluated in their coordinates is negative.
The same happens with the line A: in general, only seg-
ments of it will be in the physical T < 0 part of the
phase space. These complex constraints make a com-
plete analysis of this example, which are too complicated
to be fully included here. Hence, in order to highlight
physically interesting scenarios we will choose parameter
values such that at least one of the points B is in the
T < 0, 1 < Ω < 0 region of the phase space. One set of
parameter values for which this is possible is

α > 0, β > 2α,
β − 16α

12αβ
< Λ < Λ∗, (33)

Λ∗ = −64α3 + 24α2β + β3

32α2β(3α+ β)
−
√

16α2 + β2

32α2

∣∣∣∣β2 − 16α2

β(3α+ β)

∣∣∣∣ .
With these choices, A satisfies the constraint on T < 0
for

1

βΛ
< Y ≤ 2

√
−α2 + αβ2Λ + αβ

β2(4αΛ + 1)
− 1, (34)

and moreover only one point B exists for which 0 < Ω < 1
and 0 < p < 1.

2. Stability of fixed points

The stability of the fixed points is deduced using
the Hartmann-Grobmann theorem [29], and the stabil-
ity properties for each critical point are shown in Table
I. The de Sitter line A is always attractive with eigenval-
ues

µ1 = 0, µ2 = −3γ. (35)

Here the zero eigenvalue is related to the fact that we are
dealing with a line of fixed points rather than with a non-
hyperbolic character of the point. The character of the
line is determined by the sign on the non-zero eigenvalue
and is therefore attractive.

On the other hand, the eigenvalues of the critical points
B are given by

µ1 =
3

2
γ

√
β(4αΛ + 1)

α(βΛ + 1)
, µ2 = 3γ

(
2− β

2α

)
. (36)

It follows that point B can only be a saddle in the pa-
rameter range we consider. Choosing suitable initial
conditions, it is therefore possible that the model will
present an unstable phase of decelerated expansion fol-
lowed by accelerated expansion. An example of this
case is shown in the phase-space portrait of Fig. 1,
arising through a numerical elaboration in the case of
α = 1, β = 1,Λ = −6/5. The phase space presented also
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Name {X∗, Y∗} a(t) ρ(t) ΩDE = 1− Ω Deceleration parameter (q) Stability

A {−1, Y∗} eH0t 0 1 −1 Attractors

B
{
X0,− 1

2

}
tp t−3γp 1− 16αX0(X0+1)

β+2X0(2α+β)−4αX0

1
p
− 1 Saddle

H0 = 1
6

√
1+
√

1−12αΛ
α

, X0 =
4αβΛ+β−2

√
4α2β2Λ2+4α2βΛ+αβ2Λ+αβ

2(4α−β)
, p = ± 4α

3γ

√
βΛ+1

αβ(4αΛ+1)

Table I. The critical points for Model I. Here Y∗ are the values of Y for which T = −6H2 < 0.

reveals that there are orbits which evolve towards the
singularity of the system. This could deduce an instabil-
ity for this class of models, and therefore it restricts the
range of viable initial conditions.

B

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

X

Y

FIG. 1. An example of the phase space for Model I: f1(T ) =
T+αT 2−Λ and f2(T ) = 1+βT , with α = 1, β = 1,Λ = −6/5.
The dark grey area is the part of the phase space for which
T < 0 and the light gray one is the one in which 0 < Ω < 1.
The dashed line represents the line of fixed points A. The dot-
dashed lines represent the value of the phase space for which
the dynamical equations are singular.

B. Model II: f1(T ) = T − Λ and f2(T ) = 1− αT + βT 2

We consider now the case

f1(T ) = T − Λ, and f2(T ) = 1− αT + βT 2, (37)

where α, β and Λ are constants. For this model we have
that

X

Y
=

(T − Λ)(2βT − α)

T (βT − α) + 1
, (38)

and therefore

T (X,Y ) =
αX − Y (α+ 2βΛ)

2β(X − 2Y )
, (39)

K = ±
√

[αX − Y (α+ 2βΛ)]2 − 4β(X − 2Y )(X − αΛY ).
(40)

Thus, similarly to the Model I above, in this case there
are multiple solutions for the expression of the torsion
in terms of the variables X,Y . In the following we will
choose the expression where K is positive.

The parameters Q,P,W become

Q = −1

2
T (α− 2βT ), P = 2βT 2, W = 0. (41)

The conditions T ≤ 0 and 0 ≤ Ω ≤ 1 lead to complex
constraints of the allowed intervals of the variables, which
depend on the values of the constants α, β,Λ. In order
to select a class of physically interesting cases, we choose

α > 0, β < 0,
α

4β
< Λ < Λ∗, (42)

where Λ∗ is a solution of the algebraic equation

α5 − 3α3β − Λ2
(
−16α5β + 112α3β2 − 240αβ3

)
− Λ

(
α6 + 12α4β − 100α2β2 + 192β3

)
− 64β4Λ3 = 0.

(43)

1. Autonomous system and fixed points

Substituting the expressions for Q,P,W, the dynam-
ical equations become

dX

dN
= −3γ(X + 1)(2X + 1)(Y + 1)(α− 2βT )

α(X − Y )− 2βT (3X − Y + 2)
,

dY

dN
= −3γ(X + 1)(Y + 1) [(1 + 2Y )α− 2βT (4Y + 1)]

α(X − Y )− 2βT (3X − Y + 2)
,

(44)
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Name {X∗, Y∗} a(t) ρ(t) ΩDE = 1− Ω Deceleration factor (q) Stability

A {−1, Y∗} eH0t 0 1 −1 Attractor

B
{
− 1

2
, Y0

}
tp t−3γp 1 + β(4Y0+1)2

2αY0(Y0+1)(α+2αY0)
1
p
− 1 Repeller

H0 =
√

Λ
6
, Y0 =

4β−α2−2
√
β(α2−4β)(αΛ−1)

2α(α+4βΛ)
, p =

4
√
β(αΛ−1)

3γ
√
α2−4β

Table II. The critical points for Model II in the case β > α2/4. Here Y∗ are the values of Y for which T = −6H2 < 0.

where T is given by (39). The system is similar to the
one of Mode I above, and presents the same invariant
submanifolds. Setting to zero the L.H.S. of the equations
we find a critical line A for X = −1. In the chosen
interval for the parameters this line is physical (T < 0)
for α < 0 and

Y ≤ Y1 ∧ Y > −1/2, (45)

Y1 =
4β − α2

(α+ 2βΛ)2
− 2

√
−β (α2 − 4β) (Λ(α+ βΛ) + 1)

(α+ 2βΛ)4
.

Furthermore, the system admits two additional fixed
points. However, in the parameter region we have con-
sidered, only one of them, named B, lies in the T < 0
part of the phase space.

The solutions associated to these fixed points are ob-
tained from Eq. (23). The points on the critical line A
satisfiy a ∼ eH0t with

H0 =

√
Λ

6
= const, (46)

and thus they represent an accelerated expansion for all
parameter values, with q = −1 and Ω = 0, i.e., they cor-
respond to a dark-energy dominated, de-Sitter universe.
On the other hand, point B represents the power-law so-
lutions a ∼ tp with H = p/t and

p =
4
√
β(αΛ− 1)

3γ
√
α2 − 4β

. (47)

Note that with our choice of parameters, αΛ−1 is always
positive, and therefore this solution always represents a
decelerated solution (with 0 ≤ Ω ≤ 1).

2. Stability of fixed points

The de Sitter line A is always attractive with eigenval-
ues µ1 = 0 and µ2 = −3γ. On the other hand, for the
critical point B the eigenvalues are given by

µ1 =
3γ
√
α2 − 4β

2
√
β(αΛ− 1)

, µ2 = −3γ(α− 4βΛ)

2βΛ
. (48)

Hence, for the physically meaningful region 0 ≤ Ω ≤ 1
and T ≤ 0, the critical point B is always a repeller and
only for very specific initial conditions there are orbit
that can connect B to the line of fixed points A within the
physical part of the phase space. The critical points of
Model II and their features, are summarized in Table II.
Finally, for completeness, in Fig. 2 we provide a specific
phase-space portrait, arising from a numerical analysis
for the case of α = 5, β = −18/5,Λ = −2/7.

B

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0

X

Y

FIG. 2. An example of the phase space for Model II: f1(T ) =
T −Λ and f2(T ) = 1−αT +βT 2, with α = 5, β = −18/5,Λ =
−2/7. The grey area is the part of the phase space for which
T < 0 and 0 < Ω < 1. The dot-dashed line represents the line
of fixed points A that have T < 0.

C. Model III: f1(T ) = GeAT
2

and f2(T ) = Λe−T

We consider now the case with exponential couplings

f1(T ) = GeAT
2

, and f2(T ) = Λe−T , (49)
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where A, G and Λ are constants.
For the form of coupling given above we have that

T = − Y

2AX
, (50)

and

Q = − Λ

4AG
e
Y (2X−Y )

4AX2 , (51)

P =
ΛY

4A2GX
e
Y (2X−Y )

4AX2 ,

W =
Y 2

2AX2
+ 1.

Hence, in this case only Y/AX > 0 represents the
physical part of the phase space. In the following, for
simplicity, we will only consider Λ > 0, 0 < G < 3/7 and
A > 0.

1. Autonomous system and fixed points

For this model the dynamical equations are written as

dX

dN
=

3γX(X + 1)(Y + 1)
[
AX(4X + 1) + Y 2

]
AX2(X − 3Y − 2) + Y (X − Y )(X + Y + 1)

,(52)

dY

dN
=

3γX(X + 1)(Y + 1)
[
A(2XY +X) + Y 2

]
AX2(2 + 3Y −X) + Y (Y −X)(X + Y + 1)

,(53)

As in the previous models, the above system presents
the invariant submanifolds X = 0, X = −1 and Y = −1
and their existence implies that no global attractor exists
in the phase space. The submanifold X = 0 has to be
excluded as it represents a divergent torsion and in order
to use our general approach one has to exclude Y = −1.

The system admits, therefore, a line of fixed points and
an isolated fixed point. The critical line A is a de-Sitter
fixed point such that a ∼ eH0t with

H0 =
1

2
√

3 4
√
A
, (54)

and corresponds to T < 0 only if Y∗ < 0. The critical
point B is a scaling solution with X∗/AY∗ = 1. The as-
sociated solution is obtained from (23), and it represents
a power-law solution a ∼ tp with H = p/t and exponent
p given by

p =
2(A+ 1)

3γ
. (55)

Thus, it can be either an accelerated or decelerated solu-
tion.

2. Stability of fixed points

As in the previous examples, using the Hartman-
Grobman theorem we can analyze the stability of the
fixed subspaces. For the line A the eigenvalues are

µ1 = 0, µ2 = −3γ. (56)

B

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

X

Y

FIG. 3. An example of the phase space of Model III: f1(T ) =

ΛeAT and f2(T ) = e
A
2α
T−2α

, with A = 1, γ = 1,Λ = 1, G =
1/10. Here the grey area represents the region in which 0 <
Ω < 1, the balck line is the fixed line A, the dot -dashed line in
the invariant submanifold X = 0, the dashed lines represent
singularities for the dynamical system.

which is independent for Y∗. For point B they read

µ1,2 =
3γ
(

3A±
√

(A− 8)A
)

2(A+ 1)
(57)

so that for A > 0 this point can be a repeller or a saddle.
The critical points of Model III and their features, are
summarized in Table III.

It turns out that this model is able, for the interval of
parameters we have considered, to describe a transition
between decelerated and accelerated expansion. In Fig.
3, we present a phase-space portrait for A = 1, γ = 1,Λ =
1, G = 1/10. Similarly to Model I above, in this case
there also appear orbits which evolve towards singular
states for the model.

IV. AN ALTERNATIVE
DYNAMICAL-SYSTEMS APPROACH

The analysis performed in the previous section does
not make full use of the key relationship T = −6H2. In
order to formulate an approach which will be optimal in
this respect, let us consider the form of Eq. (11). Since
Lm = ρm one has

κ
(
12H2f ′1 + f1

)
− ρm

(
12H2f ′2 + f2

)
= 0. (58)
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Name {X∗, Y∗} a(t) ρ(t) ΩDE = 1− Ω Deceleration factor (q) Stability

A {−1, Y∗ < 0} eH0t 0 1 −1 Attractor

B
{
− A

4(A+1)
,− A

2(A+1)

}
t
2(A+1)

3γ t−2(A+1) 1− A(3A+4)G
(A+2)Λ

3Aγ
2(1+A)

− 1 Saddle for A > 8

Repeller (focus) for 0 < A < 8

Table III. The critical points for Model III.

Using the relation T = −6H2, this equation can be
rewritten as

f1(H2) + 12H2f ′1(H2)

f2(H2) + 12H2f ′2(H2)
− ρm

κ
= 0. (59)

In the above equation the first term is a function of H2

only, and hence it could be formally solved for H2 giving

H2 − g
(ρm
κ

)
= 0, (60)

where g (ρm/κ) a function of its argument. Relation (60)
implies that this scenario is equivalent to general rela-
tivity plus a fluid with a non-trivial equation of state.
Additionally, it implies that there is a certain degree of
degeneracy in the cosmological application of this gravi-
tational modification: there are multiple combinations of
f1 and f2 that give rise to the same function g.

Let us now define the variables

X =
f1 − 2Tf ′1

T (2Tf ′2 − f2)
, Ω =

ρm
6κH2

, (61)

and the logarithmic time N = log a. In this way Eqs.
(60) tells us that X = Ω, i.e. there is only one indepen-
dent variable and the phase space is of dimension one. In
the following we will choose Ω as a key variable due to
its straightforward physical meaning.

In the same way, Eq. (12) can be written as

Ḣ [κ (f ′1 + 2Tf ′′1 )− ρm (f ′2 + 2Tf ′′2 )]

+
1

4
γρm (f2 − 2Tf ′2) = 0,

(62)

where we have used the relation Ṫ = −12HḢ. In terms
of the variables given in Eq. (61), one may write Eq.
(62) as

X[A(T ) + ΩB(T )]
Ḣ

H2
− 3γ

2
Ω = 0, (63)

where A(T ) and B(T ) are defined as

A(T ) =
T (f ′1 + 2Tf ′′1 )

f1 − 2Tf ′1
,

B(T ) =
T 2 (f ′2 + 2Tf ′′2 )

f1 − 2Tf ′1
,

(64)

respectively. Now, provided that the equation

f1 − 2Tf ′1
T (2Tf ′2 − f2)

= Ω (65)

can be inverted, the dynamics of the full cosmological
system is described solely by a single equation for Ω,
namely

dΩ

dN
= −3γΩ

[
1 +

1

A(Ω) +B(Ω)Ω

]
. (66)

The stability of the fixed points of this equation can be
trivially obtained considering its second derivative with
respect to Ω, evaluated at the fixed points. The associ-
ated solution will be given integrating

Ḣ

H2
= −1

p
1

p
= − 3γ

2(A(Ω∗) +B(Ω∗)Ω∗)
,

(67)

where the subscript ∗ represents the value of Ω at the
fixed point. Similarly to the usual method of the previous
section, integrating and using the Bianchi identities we
obtain

a = a0(t− t0)p,

ρ = ρ0(t− t0)−3γp.
(68)

Finally, from the structure of Eq. (66) we deduce that
one of the possible solutions can be the vacuum (Ω = 0)
one, but its existence depends on the form of the second
factor. A second class of points, namely B, can arise
from the term in square parenthesis in (66), representing
a scaling solution with decelerated expansion.

In the following three subsections, we apply the above
general method in three specific examples based on dif-
ferent choices of f1 and f2.

A. Example 1

Let us consider the functions

f1 = −α
9
T 5, f2 = −β

3
T, (69)
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where α, β are constants. In this case we have

T = −
√
βΩ

α
, (70)

and therefore Eq. (66) reads

dΩ

dN
= 2γΩ, (71)

which admits the fixed point Ω = 0. The solution asso-
ciated to this fixed point can be found integrating (67)
at the fixed point, once the functions A and B have been
substituted. In particular, we find

Ḣ

H2
= −1

2
γ, (72)

which leads to the scaling solution

a = a0(t− t0)
2
γ , (73)

that corresponds to accelerated expansion. It is easy to
see that this point is an attractor for all parameter values.
However, since this point corresponds to T = 0, this
form of the functions f1 and f2 cannot be accepted as
physically motivated.

B. Example 2

As a second example, let us consider the functions

f1 = −α
6
T, f2 = −δ

√
−T − ηT

2T
, (74)

where α, β, δ, η are positive constants. In this case we
obtain

T = − 36δ2Ω2

(α+ 6ηΩ)2
, (75)

and therefore Eq. (66) becomes

dΩ

dN
=
γΩ(α+ 6ηΩ)

α− 6ηΩ
, (76)

where without a significant loss of generality we have
assumed that all constants are positive. This equation
admits only one fixed points with non negative coordi-
nates, namely Ω = 0 . The corresponding solutions are
given by

a = a0(t− t0)
1
3γ (77)

which represents a decelerated expansion scenario. This
scaling solution is always unstable, and this implies the
presence of asymptotic attractors. It is also interesting to
note that since the (76) posses a singularity in this case,
like in the examples of the previous sections, there are
initial conditions for which the system evolves towards a
singularity. This implies that in general the models at
hand can present dynamical instabilities.

C. Example 3

Finally, let us consider the functions

f1 = log(−T ) + 2 + α, f2 = −β[3 log(−T ) + 2]

9T
, (78)

where α, β are constants. In this case we find

T = − exp

(
α

βΩ− 1

)
, (79)

and therefore Eq. (66) reads as

dΩ

dN
= − 3γΩ(βΩ + 1)2

βΩ(α+ 2 + βΩ) + 1
, (80)

which admits two non-negative fixed points, namely Ω =
0 and Ω = 1/β. The corresponding solutions are the
de-Sitter expansion and the Friedmann solution (matter-
dominated expansion). The first one is stable for any
values of the parameters α, β and positive w. However,
the Friedmann point is not hyperbolic: it is an attractor
for Ω > 1/β and a repeller for Ω < 1/β. This point
will give a consistent value of the parameter Ω for β >
1. Hence, for this specific model the transition between
matter-dominated epoch and de-Sitter dark-energy era
can be described naturally.

Like in the previous example, also in this case the phase
space presents singular points. Some initial condition
lead to these singularities showing also in this case the
possibility of instabilities of this class of theories.

V. DISCUSSIONS AND FINAL REMARKS

Recently, a generalized f(T ) gravity theory with a non-
minimal coupling between matter and the torsion scalar
was proposed in [21]. From the physical point of view,
in this theory, matter is not just a passive component in
the space-time continuum; rather, it plays an active role
in the overall gravitational dynamics, which is strongly
modified due to the supplementary interaction between
matter and geometry [21, 22, 30]. Moreover, the ma-
jor advantage of the f(T )-type models, namely that the
field equations are of second order, is not modified by the
torsion-matter coupling [20].

In this work we have performed a detailed phase-space
analysis for this scenario, proposing two new approaches.
The first one, although in principle more general, turns
out to lead to complications, not only in terms of the
dynamical equations, but also in terms of external con-
straints that have to be considered during the dynamical
analysis. Hence, we have developed a second method,
which can be alternatively used in cases where the above
complexities make the application of the first method dif-
ficult, since in this approach all constraints are included
in the initial equations. Definitely, the physical results do
not depend on the specific mathematical method used,
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and thus one can choose the easier method according to
the specific problem.

We have analyzed six specific models of non-minimally
matter-torsion coupled cosmology. In general we have ex-
tracted fixed points corresponding either to dark-matter
dominated, scaling decelerated solutions, or to dark-
energy dominated accelerated solutions. Additionally,
note that there is a small parameter region in which
the model can experience the transition from the mat-
ter epoch to dark-energy era. This feature is in agree-
ment with the observed universe evolution, and cannot
be easily obtained in dark energy models. It is also worth
mentioning that in both the approaches reveal that there
are sets of initial conditions for which the models evolve
towards singular states for the equations. This tendency
is a signal of instability related with certain specific forms
of the coupling functions and this feature constraints even
more the viable parameter space of these models.

We mention that in the present analysis we have fo-
cused on the finite regions of the phase space, without
examining the possible non-trivial behavior at infinity,
since such an extended investigation would lie beyond the

scopes of this work, which is just to reveal the capabilities
of the theory in producing a cosmology in agreement with
observations. As we showed this is possible, and hence
non-minimally matter-torsion coupled gravity may be a
successful candidate for the description of Nature.
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