
Dynamical System Modulation for Robot Learning

via Kinesthetic Demonstrations
Micha Hersch, Florent Guenter, Sylvain Calinon, and Aude Billard

Learning Algorithms and Systems Laboratory - LASA

School of Engineering - EPFL

Station 9 - 1015 Lausanne - Switzerland

Abstract

We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn
a simple goal-directed gesture, and correctly reproduce it despite changes in the initial conditions, and perturbations in the
environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to
the inverse kinematics problem, when dealing with a redundant manipulator. The system is validated on two experiments involving
a humanoid robot: putting an object into a box, and reaching for and grasping an object.

Index Terms

Robot Programming by Demonstration, Dynamical System Control, Gaussian Mixture Regression

Corresponding author: Micha Hersch, micha.hersch@epfl.ch

Conditionally accepted short paper submitted to the IEEE Transactions on Robotics

Paper # A07-471/A06-417

This work was supported by the European Commission through the EU Integrated Projects ROBOT-CUB (FP6-IST-004370), Cogniron (FP6-IST-FET-
002020) and ROBOT@CWE (FP6-034002).

1

Dynamical System Modulation for Robot Learning

via Kinesthetic Demonstrations

I. INTRODUCTION

A
S robots are progressively coming out of the controlled

environment of assembly lines to pervade the much

less predictable domestic environments, there is a need to

develop new kinds of controllers that can cope with changing

environments and that can be taught by unskilled human users.

In order to address this last issue, Programming by Demon-

stration (PbD) has emerged as a promising approach [1]. PbD

has been mostly used in two cases: for tasks involving no

or very loose interaction with the environment (like writing,

martial arts or communicative gestures) human demonstra-

tions are used to train a movement model, which can be

used to reproduce the task. Those movement models (also

used in computer animation or visual gesture recognition)

usually imply some averaging process (LWR [2], HSTMM

[3]), possibly in a latent space (GPLVM [4], ST-Isomap [5])

or some probabilistic model like Bayesian Networks [6]. And

for more complex tasks, involving precise interactions with the

environment, the robot learns from examples how to sequence

a set of hard-coded controllers for a given task. This has been

done using HMMs [7] or knowledge-based systems [8].

In our work, we position ourselves in between those two

approaches and combine learning of a task-dependent mod-

ulation of a built-in controller. We, thus, start with a basic

built-in controller (or motion primitive) that consists in a

dynamical system with a single stable attractor. We modulate

the trajectories generated by this controller to be task-specific,

by learning a probabilistic model of the task-based trajectory,

as shown by a human user. This results in a general framework

for learning and reproducing goal-directed gestures, despite

different initial conditions and changes occurring during task

execution. In this respect, we improve in several ways classical

control approaches for goal-directed motions, such as [9].

The closest work to ours is [2], which uses a dynamical

system for goal-directed reaching. We depart from this work

in two ways: First, we propose a hybrid controller composed

of two of our basic dynamical systems working concurrently

in end-effector and joint angle spaces. This results in a

controller that has no singularities. Second, the dynamical

system approach gives us a controller robust in the face of

perturbations, which can recompute the trajectory on-line to

adapt to sudden displacements of the target or unexpected

motion of the arm during motion, and we provide experimental

results on the robustness to static and dynamic changes in the

environment. While our controller is less precise than ad-hoc

controller (e.g. [10]), it is more general in that it can be easily

modulated to achieve arbitrary goal-directed reaching tasks.

In the experiments presented here, the motions are demon-

strated to the robot by a human user moving the robots’ limbs

passively (kinesthetic training). In Section IV, we validate the

approach on two different tasks, namely placing an object

into a box, and reaching-to-grasp a chess piece, see Fig. 2

for illustrations of these two tasks.

II. OVERVIEW

The system is designed to enable a robot to learn to

modulate its generic controller to produce any arbitrary goal-

directed motion. The model must be generic so as to repro-

duce the motion given different initial conditions and under

perturbations during execution. Moreover, the architecture of

the system must permit the use of different control variables

for encoding the motion. Here, we compare a control in

either velocity or acceleration. We refer to those further as the

velocity model (see Section II-B) and the acceleration model

(see Section II-C).

A. System Architecture

The structure of the system is the same for both models

and is schematized in Fig. 1. During training, the relevant

variables (end-effector velocity profiles for the velocity model,

or end-effector positions, velocities and accelerations for the

acceleration model) are extracted from the set of demonstrated

trajectories and used to train a Gaussian Mixture Model

(GMM) (see Table I). During reproduction, the trajectory is

specified by a spring-and-damper dynamical system modulated

by the GMM (see section III). The target is tracked by a

stereo-vision system and is set to be the attractor point of

the dynamical system. At each time step, the desired velocity

computed by the model is then fed to a PID controller for

execution. This does not hinder the online adaptation of the

movement.

B. Velocity Model

The first way to encode a motion in a GMM, is to consider

the velocity profile of the end-effector as a function of time�✁✄✂✆☎✞✝ . Thus, the input variable ✟ is the time and the output
variable ✠ is the velocity, like in the following velocity model:�✁☛✡✌☞✎✍✏✒✑✓ ✂✆✔✕✝ (2)

In other words, the movement is modeled as a velocity profile,

given by a function of time, which is learned as described

in Table I. Here and henceforth,
�✁ ✡ ✖✘✗✚✙ is the end-

effector velocity specified by the task model.
✍✏✒✑✓ is obtained

by applying (1) with the appropriate variables.

2

TABLE I

SUMMARY OF GAUSSIANMIXTURE REGRESSION (GMR).

GMR is a method suggested by [11] for statistically estimating a function ✛✢✜✤✣✦✥★✧
given by a “training set” of ✩ examples ✪✤✣✦✥★✫✭✬✯✮✰✫✱✧✱✲✴✳✫✦✵✷✶ , where ✮✴✫ is a noisy
measurement of ✛✸✜✹✣✦✥★✫✆✧ : ✮ ✫✻✺ ✛ ✜ ✣✦✥ ✫ ✧✽✼✿✾ ✫
(✾✱✫ is the Gaussian noise). The idea is to model the joint distribution of the “input”
variable ✥ and an “output” variable ✮ as a Gaussian Mixture Model. If we join those
variables in a vector ❀ ✺❂❁ ✥✹❃✷✮★❃❅❄❆❃ , it is possible to model its probability density
function as a mixture of ❇ Gaussian functions❈ ✣✦❀✞✧ ✺❊❉❋● ✵✷✶ ❍ ●❏■▲❑ ❀◆▼P❖ ● ✬P◗ ● ✧❘✬❚❙✆❯❲❱✱❳❩❨✯❳❭❬✰❨ ❉❋● ✵✷✶ ❍ ● ✺✒❪
where the ❍ ●❴❫ ❁ ❵❛❪ ❄ are the priors, and ■ ✣✦❀◆▼❘❖ ● ✬P◗ ● ✧ is a Gaussian function
with mean ❖ ● and covariance matrix ◗ ● :■▲❑ ❀❜▼P❖ ● ✬P◗ ● ✧ ✺ ❑ ✣✦❝ ❍ ✧✯❞✞❡ ◗ ● ❡ ❢✹❣ ✶❤❥✐❘❦✤❧ ❑❅♠ ❪❝ ✣✦❀ ♠ ❖ ● ✧ ❃ ◗❩❣ ✶● ✣✦❀ ♠ ❖ ● ✧✆❢✤✬
where ♥ is the dimensionality of the vector ❀ . The mean vectors ❖ ● and covariance
matrices ◗ ● can be separated into their respective input and output components:

❖ ● ✺▲❁ ❖ ❃●✹♦ ♣ ❖ ❃●✹♦ ✜ ❄ ❃ ◗ ● ✺rq ◗ ●★♦ ♣ ◗ ●✹♦ ♣ ✜◗ ●★♦ ✜ ♣ ◗ ●✹♦ ✜ts
The Gaussian Mixture Model (GMM) is trained using a standard E-M algorithm,

taking the demonstrations as training data. The GMM computes a joint probability

density function for the input and the output, so that the probability of the output

conditioned on the input are GMM. Hence, it is possible, after training, to recover

the expected output variable ✉✮ , given the observed input variable ✥ .✉✮ ✺ ✉✛✸✜✹✣✦✥★✧ ✺❊❉❋● ✵✷✶✇✈ ● ✣✦✥★✧ ❑ ❖ ●✹♦ ✜✸✼✿◗ ●✹♦ ✜ ♣ ◗❩❣ ✶●★♦ ♣ ✣✦✥ ♠ ❖ ●✹♦ ♣ ✧✆❢✤✬ (1)

where the ✈ ● ✣✦✥★✧ are given by:✈ ● ✣✦✥★✧ ✺ ❍ ● ■ ✣①✥✹▼P❖ ●✹♦ ♣ ✬❘◗ ●✹♦ ♣ ✧② ❉● ✵✷✶ ❍ ●✕■ ✣✦✥✤▼P❖ ●✹♦ ♣ ✬✭◗ ●✹♦ ♣ ✧❜③
The tilde (✉) sign indicates that we are dealing with expectation values.

target tracking

(stereovision)

execution by

the robotdemonstrations

kinesthetic

GMM training GMR

trajectory features

modulated
spring and
damper system

executiontraining

task
model

④⑥⑤ ⑦❆⑧ ⑨ ⑩❶⑧ ❷ ❸❶❹⑧ ❺❘❻
④⑥⑤ ❼✆❽①⑨ ❾✱❽①⑨ ❿✤❽❆❷ ❸❶➀❽ ❺❘❻ ➁➂✰➃➄ ➂✹➅ ➁➂✰➆ ➇

➁➈➂✕➉
➊
only in the case of the acceleration model

(2,4) (11,12)

Fig. 1. The architecture of the system. During training the relevant variables
(end-effector’s position, velocity and acceleration) are extracted from the
demonstrations and used to train a GMM. During task execution, this model is
used to modulate a spring-and-damper system. ➋➌➎➍ is the end-effector velocity
specified by the task model. ➌✷➏ is the target location, and ➌➑➐❲➒ ➋➌✻➐❲➒ ➋➓ ➐ are
respectively the actual current end-effector’s position and velocity and the
joint angles’ velocities. The numbers in parentheses refer to the corresponding
equations in the text.

C. Acceleration Model

A second way of encoding a trajectory is to take as input the

position ✁ and velocity �✁ , and as output the acceleration ➔✁ . The
rationale of this is to consider a trajectory not as a function

of time, but as the realization of a second-order dynamical

system of the form: ➔✁ ✡ ☞✎✍✏❴→✓ ✂✯✁↔➣ �✁❥✝✤↕ (3)

Again, ✍✏ ✑✓ is obtained by applying (1) with the appropriate
variables. The velocity specified by the acceleration model is

then given by �✁☛✡✌☞ �✁✒➙➜➛ ✍✏ →✓ ✂✯✁↔➣ �✁❥✝✤➣ (4)

where
➛
is the time integration constant (set to ➝ in this paper).

Since the position
✁
and velocity

�✁
depend on the acceleration➔✁ at previous times, this representation introduces a feedback

loop, which is not present in the representation given by (2).

III. MODULATED SPRING-AND-DAMPER SYSTEM

We now show how the task model described above is used

to modulate a spring-and-damper dynamical system in order

to enable a (possibly redundant) robotic arm with ➞ joints
to reproduce the task with sufficient flexibility. Although the

modulation
�✁ ✡ is in end-effector space, it is advantageous (for

avoiding singularity problems related to inverse kinematics

of redundant manipulators) to consider the spring-and-damper

dynamical system in joint angle variables:➔➟◆➠ ☞➢➡➤✂❏➥ �➟ ➙r➦❩✂ ➟◆➧ ➥ ➟ ✝✕✝
(5)

where
➟ ✖r✗✚➨ is the vector of joint angles (or arm configu-

ration vector). This dynamical system produces straight paths

(in joint space) to the target
➟ ➧
, which acts as an attractor of

the system. This guarantees that the robot reaches the target

smoothly, despite possible perturbations.

The above dynamical system is modulated by the variable�✁ ✡ given by the task model (2) or (4). In order to weigh
the modulation, we introduce a modulation factor ➩ ✖➫✗ ❁ ❵➭❪ ❄ ,
which weighs the importance of the task model relatively to

the spring-and-damper system. If ➩ ☞➲➯
, only the spring-and-

damper system is considered, and when ➩ ☞ ➝ only the task
model is considered. In order to guarantee the convergence

of the system to
➟ ➧
, ➩ has to tend to zero at the end of the

movement. In the experiments described here, ➩ is given by:➳➩ ☞❚➡❥➵➸✂✕➥❂➺➩ ➥ ➝➻ ➡➼➵ ➩ ✝➾➽❛➚❆➪✴➶ ➩ ❵ ☞ ➝ ➣ (6)

where ➩ ❵ is the initial value of ➩ and ➡ ➵ ✖▲✗ ❁ ❵➹❪ ❄ is a scalar.
Since

�✁ ✡ lives in the end-effector space (and not in the joint
space), the modulation is performed by solving the following

constrained optimization problem.�➟ ☞ ➘◆➴✴➷◆➬➮➚✦➱✑✃ ✂ ➝ ➥ ➩ ✝✤✂ �➟ ➥ �➟ ➠ ✝✕❐❮❒❰ ✃ ✂ �➟ ➥ �➟ ➠ ✝❥➙
➩ ✂ �✁▲➥ �✁☛✡Ï✝❏❐Ð❒❰ ✓ ✂ �✁➫➥ �✁☛✡Ï✝ (7)Ñ☛↕ Ò◆↕ �✁❂☞ÔÓ �➟ ➣ (8)

where Ó is the Jacobian of the robot arm kinematic functionÕ
and

❒❰ ✃ ✖➫✗Ö➨➸×✻➨ and ❒❰ ✓ ✖Ø✗✚✙❴×✻✙ are diagonal matrices
necessary to compensate for the different scale of the

✁
and➟

variables. As a rough approximation, the diagonal elements

of
❒❰ ✓ are set to one and those of ❒❰ ✃ are set to the average

3

distance between the robot base and its end-effector.

The solution to this minimization problem is given by [12]:�➟ ☞ Ù ❰ ✃ ➙ÚÓ☛❐ ❰ ✓ Ó➼Û ♠ ❪ Ù ❰ ✃ �➟ ➠ ➙➜Ó☛❐ ❰ ✓ �✁☛✡ÜÛ (9)➽❛➶➑Ý❭➴✴Ý ❰ ✃ ☞✌✂ ➝ ➥ ➩ ✝Þ❒❰ ✃ ➣ ❰ ✓ ☞ ➩ ❒❰ ✓ ↕ (10)

To summarize, the task is performed by integrating the

following dynamical system:➔➟◆➠ ☞ ➡ß✂✕➥ �➟ ➙➜➦ß✂ ➟◆➧ ➥ ➟ ✝✰✝ (11)�➟ ☞ Ù ❰ ✃ ➙➜Ó☛❐ ❰ ✓ Ó➼Û ♠ ❪ Ù ❰ ✃ �➟ ➠ ➙ÚÓ☛❐ ❰ ✓ �✁☛✡ÜÛ (12)
where

❰ ✓ and ❰ ✃ are given by (6) and (10), and �✁ ✡ is
given either by (2) (velocity model) or by (4) (acceleration

model). Integration is performed using a first-order Newton

approximation (
�➟ ➠ ☞ �➟ ➙r➛ ➔➟ ➠).

Since the target location is given in cartesian coordinates,

inverse kinematics must be performed in order to obtain the

corresponding target joint angle configuration which will

serve as input of the spring-and-damper dynamical system.

In the case of a redundant manipulator (such as the robot

arm used in the following experiments) the desired redundant

parameters of the target joint angle configuration can be

extracted from the demonstrations. This is done by using the

GMR technique described in Table I to build a model of the

final arm configuration as a function of the target location.

Using an attractor system in joint angle space has the

practical advantage of reducing the usual problems related

to end-effector control, such as joint limit and singularity

avoidance. Equation 9, which is a generalized version of

the Damped Least Squares inverse [13] [14], is a way to

simultaneously control the joint angles and the end-effector,

imposing soft constraints on both of them. It is thus different

than optimizing the joint angles in the null space of the

kinematic function.

IV. EXPERIMENTS

A. Setup

We validate and compare the systems described in this paper

on two experiments. The first experiment involves a robot

putting an object into a box and the second experiment consists

in reaching and grasping for an object. Those experiments

were chosen because (1) they can be considered as simple

goal-directed tasks (for which the system is intended), (2) they

are tasks commonly performed in human environments and (3)

they presents a clear success or failure criterion.

All the experiments presented below are performed with a

Hoap3 humanoid robot acquired from Fujitsu. This robot has

four back-drivable degrees of freedom (dof) at each arm. Thus,

the robot arms are redundant, as we do not consider end-

effector orientation. The robot is endowed with a stereo-vision

system enabling it to track color blobs. A small color patch

is fixed on the box and on the object to be grasped, enabling

their 3D localization. Pictures of the setup are shown in Fig.

2.

Fig. 2. The setup of the experiments. The top pictures show the first task and
the lower picture sow the second task Left: a human operator demonstrates
a task to the robot by guiding its limbs. Right: the robot performs the task,
starting from different initial positions.

0
100

200
300

0

100
0

100

200

50

150

250

50

150

100

200à á [mm]à á [mm]

â❘ã
[mm] ä❘å

[mm]

äPæ
[mm]ä æ

[mm]

Fig. 3. The demonstrated trajectories for the box task (left) and the grasping
task (right). Circles indicate starting positions.

1) Preprocessing: During the demonstrations, the robot

joint angles were recorded and the end-effector positions were

computed using the arm kinematic function. All recorded

trajectories were linearly normalized in time (ç ☞éè✽➯✽➯ time
steps) and Gaussian-filtered to remove noise. The number of

Gaussian components for the task models were found using the

Bayesian Information Criteria (BIC) [15], and the parameter

values used were ➡ ➵ ☞➲➯➑↕ ➯ëê , ➡ì☞➲➯➎↕ ➝✇í and ➦î☞➢➯➎↕ ➯✽ê .
B. Putting an object into a box

1) Description: For this task, the robot is taught to put an

object into the box (see Fig.2). In order to accomplish the

task, the robot has to avoid hitting the box while performing

the movement and must thus first reach up above the box and

then down to the box. A straight line reaching will in general

cause the robot to hit the box while reaching and thus fail.

2) Training: A set of 26 kinesthetic demonstrations were

performed, with different initial positions and box locations.

The box was placed on a little table. Thus its location only

varies in the horizontal plane. Similarly, the initial position of

the object (and thus of the end-effector) lied on the table. The

set of demonstrated trajectories is depicted in Fig. 3, left. The

velocity models trained on this data are shown in Fig. 4, left.

4

0 500
−2

−1

0

1

2

time steps

0 500 0 500 0 500 0 500 0 500

“put object in box” task “grasp object” task

ï ð ñï ð ñ ï ð òï ð ò ï ð óï ð ó

Fig. 4. The velocity models for both tasks. The dots represent the training
data, the ellipses the Gaussian components and the thick lines the trajectory
obtained by GMR alone. The thick lines show that, for the first task, the
horizontal components ôõ✻ö and ôõë÷ are averaged out by the model, but the
vertical component ôõ✽ø shows a marked upward movement. For the second
task, all components are almost averaged out.

C. Reach and Grasp

1) Description: In order to accomplish this task, the robot

has to reach and correctly place its hand to grasp a chess piece.

In other words it has to place its hand so that the chess piece

stands between its thumb and its remaining fingers, as shown

in Fig. 7, left. This figure illustrates that the approaching the

object can only be done in one of two directions: downward

or forward. This task is more difficult than the previous one,

as the movement is more constrained. Moreover, a higher

precision is required on the final position, since the hand is

relatively small.

2) Training: A set of 24 demonstrations were performed

starting from different initial positions located on the horizon-

tal plane of the table. The chess piece remained in a fixed

location. Depending on the initial position, the chess piece

was approached either downward or forward (as illustrated

on Fig. 7). The set of demonstrations is represented in Fig.

3, right. The resulting velocity model is shown in Fig. 4,

right. One can notice that there is no velocity feature that

is common to all demonstrated trajectories. The acceleration

model is shown in Fig. 5. This model captures well the fact that

the vertical acceleration component depends on the position in

the horizontal plane.

D. Results

Endowed with the system described above, the robot is

able to successfully perform both tasks. For the first task,

both the velocity and the acceleration models can produce

adequate trajectories (see Fig. 6, left for examples). The system

can adapt its trajectory online if the box is moved during

movement execution (see Fig. 6, right). For the second task,

examples of resulting trajectories are displayed in Fig. 7, right.

In order to evaluate the generalization abilities of the systems,

both tasks were executed from various different initial posi-

tions arbitrarily chosen on the horizontal plane of the table,

and covering the space reachable by the robot. Fig. 8 shows the

results and starting positions for both experiments. For the box

experiment (left), the velocity model was successful for 22 out

of the 24 starting locations (91%). The two unsuccessful trials,

100

200100

0

100

200

300

z
m

0 100 200
-2

-1

0

1

2

time steps

zd

vertical velocities

trajectories

acceleration model

A

A

A

B
B

B

ù✭ú
[mm]

ù ú
[mm]

ù❘û
[mm]

ù❘û
[mm]

ü ý þ

Fig. 5. In the center, the acceleration model for the second task. The ellipsoids
show the Gaussian components at twice their standard deviation. Only three
projections (out of nine) are shown. The vertical acceleration strongly depends
on the position in the horizontal plane. On the lower right, two trajectories
encoded by this model but starting from different positions A and B (indicated
by the crosses) are shown. The corresponding vertical velocity profiles appear
on the upper right. They differ significantly, as the model is not homogeneous
across the horizontal plane.

60
80

100
120

140
160

80

100

120

140

40

60

80

100

120

140

160

20
40

60
80

100
120

80

100

120

40

60

80

100

120

140

160

180

-20
0

ÿ✁�
[mm]

ÿ✁�
[mm]

ÿ
✂ [mm]

ÿ
✂ [mm]

✄ ☎ [m
m
]

✄ ☎ [m
m
]

Fig. 6. Left: end-effector trajectories of the robot putting the object into
the box. The thin line corresponds to the velocity model and the thick line
corresponds to the acceleration model. Right: online trajectory adaptation to a
target displacement using the velocity model. The circles indicate to location
of the box, as tracked by the stereo-vision system. The thick line shows the
produced trajectory and the thin line shows the original trajectory if the box
remained unmoved. Similar results were obtained with the acceleration model.

indicated by empty circles, correspond to initial positions close

to the work space boundaries. The acceleration model was

successful for all trials (100%).

For the chess piece experiment (Fig. 8, right), the velocity

model was successful for 5 out of 21 (24%) trials whereas the

acceleration model was successful for 18 trials (86%). This

performance gap is due to the fact that this task does not

require a fixed velocity modulation. The adequate modulation

depends on the position. This position-dependent modulation

can be captured by the acceleration model, but not by the

velocity model. As illustrated in Fig. 5, the acceleration model

is able to produce different velocity profiles, depending on the

starting position and is thus more versatile than the velocity

model.

5

60

100

140

180

80

120

40

80

120

✆✞✝
[mm]✆✠✟

[mm]

✡ ☛ [m
m
]

Fig. 7. Left: the chess piece to be grasped. For a successful grasp, the robot
has to approach it as indicated by the arrows. Right: resulting trajectories for
the grasping task, starting from two different initial positions. The acceleration
model (thick lines) adapts the modulation to the initial position, while the
velocity model (thin lines) starts upward in both cases. The trajectory produced
by the velocity model and starting left of the target is not successful.

50 100 150 200 250 300

0

40

80

120

160

BOX

50 100 150 200 250 300

−50

0

50

100

150

chess piece

ROBOT
ROBOT

success:

vel. model: 91%

acc. model: 100%

success:

vel. model: 24%

acc. model: 86%

☞✍✌
[mm]

☞✍✌
[mm]

✎ ✏ [m
m
]

✎ ✏ [m
m
]

Fig. 8. The robustness to initial end-effector position for both tasks. The
plots represent top views of the first (right) and second (left) experiment. The
filled markers (circles or squares) indicate all initial positions for which the
velocity model was successful. The circles (filled and non-filled) indicate all
initial positions for which the acceleration model was successful. The crosses
indicate initial end-effector position, for which both models failed. The dots
indicate the starting positions of the training set.

V. DISCUSSION

Our results show that the framework suggested in this

paper can enable a robot to learn constrained reaching

tasks from kinesthetic demonstrations, and generalize them

to different initial conditions. Using a dynamical system

approach allows to deal with perturbations occurring during

the task execution. This framework can be used with various

task models and has been tested for two of them, the velocity

model and the acceleration model. The results indicate that the

velocity model is too simplistic if the task requires different

velocity profiles when starting from different positions in

the workspace. The acceleration model is more sophisticated

and can model more constrained movements, but may fail to

provide an adequate trajectory when brought away from the

demonstrations in the phase space ✂✯✁↔➣ �✁❥✝ . Other regressions
techniques, such as LWR, could also be used. But if there are

inconstancies across demonstrations, simple averaging may

fail to provide adequate solutions.

In its present form, the modulation factor between the

dynamical system and the task model (➩) is not learned.
Learning it from the demonstrations is likely to further

improve the performance of the system, especially for tasks

requiring a modulation at the end of the movement. It would

also be desirable to have a system that extracts the relevant

variables, and automatically selects the adequate model. A

first step in this direction has been taken in [16], where a

balance between different sets of variables is achieved.

Of course, the adequacy of this framework is restricted

to relatively simple tasks, such as those described in the

experiments. More complicated tasks, such as obstacle

avoidance in complex environments or stable grasping of

particular objects require a detailed model of the environment

and more elaborate planning techniques. The tasks considered

for this framework are those that cannot be accomplished

by simple point-to-point reaching, but still simple enough

to avoid the complete knowledge of the environment. But

this framework could be extended to learn more complicated

tasks. In a first step in this direction, [17] investigates in

simulation and on a simplified framework how Reinforcement

Learning can deal with obstacle avoidance.

REFERENCES

[1] A. Billard and R. Siegwart, Eds., Robotics and Autonomous Systems,
Special Issue: Robot Learning From Demonstration. Elsevier, 2004,
vol. 47, no. 2,3.

[2] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2002,
pp. 1398–1403.

[3] W. Ilg, G. Bakir, J. Mezger, and M. Giese, “On the representation,
learning and transfer of spatio-temporal movement characteristics,”
International Journal of Humanoid Robotics, pp. 613–636, 2004.

[4] A. Shon, J. Storz, and R. Rao, “Towards a real-time bayesian imitation
system for a humanoid robot,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2007, pp. 2847–2852.

[5] O. Jenkins, G. González, and M. Loper, “Tracking human motion and
actions for interactive robots,” in Proceedings of the Conference on
Human-Robot Interaction (HRI07), 2007, pp. 365–372.

[6] D. Grimes, D. Rashid, and R. Rao, “Learning nonparametric models for
probabilistic imitation,” in Advances in Neural Information Processing
Systems (NIPS 06), 2006.

[7] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi, “Extraction of
essential interactions through multiple observations of human demon-
strations,” IEEE Trans. Ind. Electron., vol. 50, pp. 667–675, 2003.

[8] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, no. 2,3, pp.
109–116, 2004.

[9] C. Campbell, R. Peters, R. Bodenheimer, W. Bluethmann, E. Huber, and
R. Ambrose, “Superpositioning of behaviors learned through teleopera-
tion,” IEEE Transactions on Robotics, 2006.

[10] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,” International Journal of
Robotics Research, 1999.

[11] Z. Ghahramani and M. Jordan, “Supervised learning from incomplete
data via an em approach,” in Advances in Neural Information Processing
Systems 6, J. Cowan, G. Tesauro, and J.Alspector, Eds. Morgan
Kaufmann Publishers, 1994.

[12] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 370–384, 2006.

[13] C. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” IEEE Transactions on
Systems, Man and Cybernetics, Part C, vol. 16, no. 1, pp. 93–101, 1986.

[14] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with
singularity robustness for robot manipulator control,” ASME Journal of
Dynamic Systems, Measurement, and Control, vol. 108, pp. 163–171,
1986.

[15] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics,
vol. 6, 1978.

[16] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and
generalizing a task in a humanoid robot,” IEEE Trans. Syst., Man,
Cybern. B, vol. 37, no. 2, pp. 286–298, 2007.

[17] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” RSJ Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.

