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Abstract. The current paper studies possible neuronal mechanisms for
meta-level cognition of rule switching. In contrast to the conventional
approach of hand-designing the cognitive functions, our study employs
evolutional processes to search for neuronal mechanisms accounting for
meta-level cognitive functions required in the investigated robotic tasks.
Our repeated simulation experiments showed that the different rules are
embedded in separate self-organized attractors, while rule switching is
enabled by the transitions among attractors. Furthermore, the results
showed that although certain segregation between the lower sensory-
motor level and the higher cognitive level enhance the task performance,
meta-level cognition is significantly supported by the embodiment and
the lower level sensory-motor properties.

1 Introduction

Both animals and humans, use meta-level cognition in order to adapt their action
strategies to unpredictable environment situations. Three decades ago, Gregory
Bateson [1] demonstrated this ability in dolphins that learned both behavior
scheme rules and additionally how to manipulate them in a meta-level, consid-
ering that rules have to repeatedly switch in order for the overall behavior to be
successful. He argued that dolphins were manipulating rules at a meta-level, but
how humans and other animals acquire a meta-rules, has yet to be explained.
What are the neural mechanisms that enable meta-level phenomena?

To better understand how animals and humans execute rule switching, neuro-
scientists have relied on tests like the Wisconsin Card Sorting (WCS). The WSC
task creates a situation in which the subject needs to have meta-level awareness
of the rules to accomplish card sorting. A large number of experiments with
humans and monkeys have shown that impairments to the prefrontal lobe ad-
versely affect performance in WCS tests, suggesting that this region is important
for meta-level cognitive behaviors.

In order to explain rule switching in meta-level, modelling researchers de-
scribe possible brain mechanisms from a human-specified cognitive science per-
spective. In a typical explanation, a rule is retrieved from long-term memory
to working memory in order to be applied to the current situation. If the rule
matches the situation (i.e. it supports gaining a reward) it is kept in the working
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memory. Otherwise, the rule is switched. Such predefined cognitive mechanisms
have been implemented in neural network models of prefrontal functionality [2,
3]. The models describe rule switching mechanisms by combining discrete cog-
nitive modules responsible for memory retrieval, matching, working memory,
long-term memory and rule alternation.

However, these hardwired explanations seem to lack generality because of
their potential arbitrariness. Therefore, the question now is, can we explain meta-
level cognition only by combining these predefined cognitive modules? Is there
any alternative approach that accounts for meta-level cognition? In order to
investigate this issue, we should model meta-cognitive phenomena from the lower
grain size level, without assuming apriori functions. Then, we might find novel
and more natural mechanisms for explaining the same phenomena. The current
paper pursues this type of approach for investigating meta-rule processing.

The motivation for our experiments is to examine possible neuronal mecha-
nisms accounting for rule switching, by providing self-organization pressure on
simple neural network models. Our research methodology is based on the com-
bination of evolutionary robotics [4] and dynamic neural networks [5, 6]. Specif-
ically, we conduct robotics simulation experiments without abstracting prede-
fined processes at different cognitive levels. The tasks used in our study inte-
grate meta-level rule manipulation with sensory-motor interaction, highlighting
the inseparable nature of these processes. In summary, our experiments and the
analysis of the obtained results elucidate that:

– Attractor switching could be a universal mechanism accounting for rule
switching in meta-level.

– Some kind of information processing segregation between higher and lower
levels enhances the overall network performance. This findings may account
for the higher level role of prefrontal lobe in tasks.

– Embodiment is essential even for meta-level cognitive processes because
sensory-motor dynamics can support the rule switching mechanisms.

2 Behavioral Tasks

We have designed a robotic task that resembles Wisconsin Card Sorting test, but
additionally emphasizes dynamic body-environment interaction. Following this
approach, we consider both meta-level cognition and sensory-motor coupling as
inseparable parts of a complex behavioral problem.

The task goes as follows. Let’s assume that a simulated robotic agent is
located in the lower part of a T-maze, and a light sample appears at its left or
right side [7]. The agent has to move to the end of the corridor making a 90o

left or right turning, depending on the side of the light sample. Two different
response rules are defined (see Fig 1) similar to [8]. According to the Same-
Side (SS) rule, the agent should turn left if the light source appeared at its left
side, and it should turn right if the light source appeared at its right side. The
complementary response rule named Opposite-Side (OS), implies that the robot
should turn to the opposite direction of the light source sides. For both rules,
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Same Side (SS) Rule Opposite Side (OS) Rule

Fig. 1. A schematic representation of the delayed response rules. Light samples are
represented by double circles. Target locations are represented by ×, while reward cor-
responds to the gray area. The behavioral task asks for controllers capable of switching
between the two rules.
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Fig. 2. A schematic demonstration of the task. For the current example, we assume
that Tp = 10, Tp+1 = 8, Tp+2 = 10.

when the agent responds correctly it receives positive reinforcement indicating
it is following the correct rule.

The task trials are repeated with resetting robot position to the start position
but without resetting the neural state of the robot controller (see below). Because
the rules are switched from one to the other unpredictably after several trials,
the robot has to adapt its response strategy to the newly adopted rules by
monitoring the reward signal. The details of the experimental procedure are
described below.

2.1 Task Setup

The task is separated to P ∈ {1...10} phases, each one including Tp trials. The
number of trials Tp ∈ {8, 10, 12, 14} is randomly specified, so that the agent
can not predict the end of a phase. During phase p, the agent has to follow
the same response rule for all Tp trials. Let’s assume for example that it should
follow the SS rule. Each trial tests the response of the robot after light sample
appearance at its left or right side (their order is randomly chosen). When a
trial starts, the robot is sensing the light and then it moves to the end of the
corridor where it makes a turn choice. According to the SS rule, the response is
correct when the robot turns towards the side of light sample. If the robot makes
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the correct choice, it drives to a reward area receiving positive reinforcement. In
case that the robot turning is not correct, it will drive to an area that no reward
exists, indicating that the currently adopted rule is not correct and it should
be switched. During phase p, the robot is given six free exploratory trials to
discover what is the correct rule. In the remaining Tp− 6 trials the performance
of the robotic agent is evaluated in terms of following the desired response rule.

If phase p is completed successfully, the robot moves to phase p + 1, where
the response rule is switched. This means that the reward signals have changed
places and -for our example- they are now positioned according to the OS rule.
However, the agent is not informed that the rule has been switched and thus it
will continue responding according to the previous rule. In that case, the agent
will be unable to get more reward, that indicates it is not following the correct
rule. In order to get a new reward, the robot must reconsider its rule choice,
switching to OS. In phase p + 1, the robot is given again six free exploratory
trials to discover rule switching. In the remaining Tp+1−6 trials agent’s responses
are evaluated according to the currently correct response rule. If any of these
trials is incorrect, the evaluation is interrupted.

If phase p + 1 is completed successfully, the robot moves to phase p + 2,
where the response rule is switched again -to SS, for our example- and a similar
experimental procedure is repeated. Overall, the task evaluates agent’s switching
behavior for a maximum of P phases (if all of them are completed successfully).
Computational Details. At the beginning of trials the robot is located at a
predefined starting position with its direction randomly specified in the range
[85o − 95o] degrees. The robot is kept in the same initial position for five simu-
lation steps, and then it is allowed to navigate freely in the environment for 165
more simulation steps. After the completion of one trial the simulated robot is
automatically transferred to the initial position having a new random direction,
in order to experiment for the next trial.

3 CTRNN Model and Input-Output Connectivity

We use Continuous Time Recurrent Neural Network (CTRNN) models to inves-
tigate how meta-level mechanisms self-organize in neuronal dynamics under the
given task pressure. Interestingly, in CTRNNs contextual memory is implicitly
represented by internal neurons dynamics. In our experimental setup, the neu-
ronal state is initialized only once in the beginning of the first trial, and then
neuronal dynamics continues across trials and phases without resetting. In this
manner, we speculate that dynamical states will emerge for representing the rule
stored in working memory, and additionally, these dynamical states might switch
to one another according to the currently adopted rule.

Additionally, both bottleneck (BN) [6] and fully connected CTRNN config-
urations are explored (see Fig 3), investigating what kind of network structure
is essential for achieving meta-level functions. As shown in Fig 3(a), a CTRNN
is squeezed in the middle with BN neurons (i.e. the upper and lower parts can
interact only through BN neurons). The lower part perceives the sensory flow
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Fig. 3. Schematic representation of (a) the bottleneck CTRNN and (b) the fully con-
nected CTRNN.

and outputs motor flow and the higher part receives reward stimuli. The BN
is supposed to segregate information processing in different levels, maintaining
minimum interactions between them. In contrast, in the fully connected case
(see Fig 3(b)) information processing levels can hardly differentiate. Overall, the
CTRNN consists of 15 neurons for the case of the bottleneck structure and 13
neurons for the case of fully connected structure. All neurons are governed by
the standard leaky integrator equations described in previous studies [5, 6].

In order to investigate embodied rule switching in meta-level we employ a two
wheeled simulated robotic agent equipped with 8 uniformly distributed distance,
light and reward sensors. The robotic platform is based on YAKS environment1,
which simulates motion dynamics of the Khepera robot.

4 Evolutionary Procedure

A Genetic Algorithm2 (GA) is utilized to explore how the desired meta-level
switching behavior can self-organize in the CTRNNs.
Incremental Evolution. In order to facilitate successful convergence of the
evolutionary process we have used an incremental approach investigating gradu-
ally more complex versions of the problem. In the first 60 generations (see Table
1) the evolutionary process asks for robot controllers capable of adopting both
SS and OS response rules. Two different tasks are used to evaluate robot con-
trollers. Each task consists of only one phase. The accomplishment of Task1
implies that the robot can adopt SS rule, while the accomplishment of Task2
implies that the robot can adopt OS rule. At the beginning of each task the
states of all CTRNN neurons are reset to zero, which means that the robot is in
a neutral state without following any rule. The robot explores the environment
to find out which is the rule that should be adopted in order to get rewards.
1 The simulator has been slightly modified for the needs of the present study.
2 The current evolutionary procedure does not mean to represent an artificial coun-

terpart of biological evolution. It only serves our study as a consistent mechanism
to explore the domain of solutions for our problem.
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Generations Task Type Description

Single CTRNN reset - Task 1: SS
1-60

Phase CTRNN reset - Task 2: OS

Two CTRNN reset - Task 1: SS → OS
61-140

Phase CTRNN reset - Task 2: OS → SS

Multiple CTRNN reset - Task 1: SS → OS → SS → OS . . . SS → OS
141-300

Phase CTRNN reset - Task 2: OS → SS → OS → SS . . . OS → SS

Table 1. The incrementally more complex tasks solved in different parts of the evolu-
tionary procedure.

During generations 61-140, the tasks are getting more complex asking for
controllers capable of switching between rules. At this version of the tasks only
one switching step is explored, therefore tasks consist of two phases. Properly
positioned reward signals indicate the desired response strategy in each phase.
The Task1 examines agent’s ability to adopt SS and then switch to OS. In a
similar way, the Task2 examines robot’s ability to first adopt OS and then switch
to SS. At the beginning of each task the CTRNN state is reset to zero, but then
it is kept continuous implying that special memory pathways have to develop
facilitating rule switching from SS to OS and visa versa.

Finally, in generations 141-300 we ask for controllers capable of repeatedly
switching between rules. Both Task1 and Task2 are now described by ten phases.
Similarly to previous generations CTRNN is reset to zero at the beginning of
each task, and then keeps continuous memory state when passing from one phase
to the other (i.e. continuously switching between SS and OS rules).
Task Evaluation. The accomplishment of tasks is evaluated based on the goal
positions of each trial. The goal positions are specified according to (i) the current
rule, and (ii) the side of the light sample (see Fig 1). For each response of the
robot the minimum distance dmin ∈ [0, D] between the goal and the robot route,
is used to measure the success of robot turning choice (D is the distance between
the starting position and the goal). For a task i evaluating the behavior of the
robot for p phases, the success on rule switching is given by:

Ei =
p∑

q=1




Tq∑
t=7

(
1− dmin

D

)
 (1)

The evaluation starts from trial t = 7 because the first six trials of each phase
are exploratory and they are not considered in evaluation. The higher the value
of Ei the more rule switches the agent has accomplished.
Fitness Measure. The individuals encoding CTRNN controllers are tested on
Task1 and Task2 described above. The accomplishment of each task is evalu-
ated separately according to eq (1). The total fitness of the individual is then
estimated by:

fit = ETask1 · ETask2 (2)
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Fig. 4. The response of the agent in two consecutive phases.
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Fig. 5. The activation of two higher (H-N1, H-N2) and two lower (L-N1, L-N2) level
neurons when the agent follows the SS rule and the OS rule. SS is demonstrated with
a solid line while OS is demonstrated with a dashed line.

5 Results

For each network topology (either bottleneck or fully connected) we have con-
ducted ten independent evolutionary runs to acquire CTRNN controllers capable
of rule switching in meta-level. Specifically, a standard GA with mutation, but
without crossover, is employed to evolve populations of 500 encoded CTRNN
solutions. In the case of the bottleneck network eight out of the ten runs con-
verged successfully, producing controllers capable of switching between SS and
OS rules. However, for the fully connected networks, the success of evolutionary
runs was reduced to five out of ten. This significant difference of the success rate
implies that bottleneck structures are more appropriate to address meta-level
cognitive process. This is because the bottleneck adequately segregates the com-
posite system facilitating self-organization of distinct partial functionalities. For
the rest of the paper we will concentrate on the results of bottleneck networks.

The performance of the agent for one representative CTRNN is demonstrated
in Fig 4. Despite the fact that evolutionary procedures have been statistically
independent, they have all produced CTRNNs with similar internal dynamics.
The consistently similar characteristics of neural networks supports the valid-
ity of our results in terms of considering their internal dynamics as a valuable
alternative scenario for rule switching in meta-level.
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Fig. 6. Phase plot of higher level neural activity when the agent follows (a) the SS rule
and (b) the OS rule. Neural activities stabilize to attractors having distinct shapes for
each case.

Additionally, we have investigated neural activity in the higher and lower
levels of the CTRNN network observing different qualitative characteristics in
their firing (see Fig 5), implying that layers have acquired different roles in
the functionality of the overall system. In particular, the activity of higher level
neurons varies mostly in (i) the beginning of trials, indicating they are involved in
deciding the response of the agent, and (ii) the end of trials, indicating they are
involved in assessing agent’s response in terms of accomplishing the expected
reward (Fig 5 (a),(b) top two lines). In contrast, variance in the activity of
lower level neurons is observed during the whole trial indicating its involvement
in the execution of higher level plans taking also into account environmental
interaction issues, e.g. wall avoidance (Fig 5 (a),(b) lower two lines). It is worth
emphasizing that the design procedure does not artificially force CTRNN to
develop different roles in the higher and lower levels. This property is an emergent
result of evolutionary self-organization, and appears consistently in all CTRNNs
capable of rule switching in meta-level.

Comparing higher level activity for all four possible cases (left and right
response for either the SS or the OS rule), we observe that the two rules are
separated by the activation of neurons at the beginning and end of trials. Specif-
ically, both left and right SS rule turnings start and end with maximum activity
at H-N1, and minimum activity for H-N2 (see Fig 5(a)). In contrast, these neu-
rons have a complementary activation pattern for OS rule, that is common for
both the left and the right turnings (see Fig 5(b)). The fact that the neurons have
similar activities for both turnings of a rule facilitates positioning agents behav-
ior in the same context when the underlying rule is adopted. At the same time,
the fact that neural activity is very different when different rules are followed
facilitates separating agent’s behavioral context between OS and SS rules.

The higher level differences between the two rules can be clearly demon-
strated by conducting the attractor analysis taking the phase plots of neuron
activities in the higher level. Specifically, for both rules, we ask the agent to
perform 30 random turning trials (either left or right) after randomly resetting
the neurons in the higher level (Fig 6). For each rule we observed the same
shape of attractors to appear in the plot, regardless of the randomness in the
initial state. Therefore, each plot represents a distinct invariant set for the cor-
responding rule. The neuronal state always converge to one of the two invariant
sets depending on the reward stimuli condition that specify the currently cor-
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Fig. 7. Higher level neural activity during rule switching. In the trial 1 the agent
follows the SS rule giving a successful right response (demonstrated with a solid line).
In the next trial the rule has unexpectedly changed to OS, therefore the agent gives
an erroneous response (demonstrated with dotted line). In the trial 3 the agent tries
the OS rule that is correct (demonstrated with dashed line), and therefore it continues
with the same rule in the next trial (demonstrated again with a dashed line).

rect rule. The generation of distinct attractors for each rule is observed in all
successful evolutionary runs, implying that this might be a general mechanism
for rule encoding.

The activity of neurons for the case of rule switching is demonstrated in Fig 7.
Specifically, when the agent makes a wrong response (due to an unexpected rule
change) higher level neurons are unable to get values that confirm the current
rule is correct, providing instability to the whole system. This unstable condition
facilitates changing the currently adopted rule to the new one (i.e making a
transition from the one attractor to the other). We note that according to the
current experimental setup the robot is provided 6 free trials to consider rule
switching. However, in the majority of cases, the attractor state can transit
immediately after a single wrong response, and rarely two or three unsuccessful
trials are necessary.

6 Discussion

The current study investigates possible mechanism capable of accomplishing rule
switching in meta-level. In contrast to traditional approaches using cognitive sci-
ence terminology to explain rule switching, our results showed that new mech-
anisms based on dynamical systems principles can also accomplish meta-level
manipulation of behavioral rules.

In our results, the self-organized internal dynamics encode each rule to a dis-
tinct attractor, while switching of rules takes place by accompanying state tran-
sition from one attractor to another. This mechanism seems to be widely valid
because the same internal dynamics was observed in the most of our experiments
and additionally because the assumptions made in our neural network model are
minimal. Our only constraint is the bottleneck connectivity in the network [6].
In that case it is shown that partial segregation of information processing be-
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tween the meta-level and the sensory-motor level enhances the performance of
the global network. This may account why meta-level cognition has developed
in a semi-autonomous higher level module (i.e. prefrontal cortex) in mammals
and especially in humans.

It is noted that the agent follows different trajectories depending on the
rules adopted. In other words, sensory-motor level dynamics have considerable
correlations with meta-level processing. This means that distinct attractors are
generated not only by abstract meta-level processing but with the active partic-
ipation of sensory-motor dynamics. Therefore, we argue that the embodiment
plays an important role in meta-level cognition.

Our results can be related to the study on emergence of turn-taking, con-
ducted by Ikegami and Iizuka [9]. In this work, a couple of evolved agents
alternates predator-pray roles acquiring autonomous, self-generated behavior
switching mechanisms without external triggering. A similar phenomenon of self-
generated rule switching was observed in our study, when the reward signal is
completely removed for all trials. In that case, the agent repeatedly switches the
adopted rule from one trial to the other whenever the robot enters the location
where reward “used to be”.

Our future research includes more complex cases with having more than two
rules. Our preliminary result showed that 3 rules case can be evolved but with
slightly lower success rate. The rule switching dynamics becomes much more
complex compared to the two rule case. The detail analysis of these results is
left for a future study.
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