## **Dynamical Systems** and Ergodic Theory

Mark Pollicott University of Manchester

Michiko Yuri University of Sapporo



## CONTENTS

| Introduction  |                                                      |      |
|---------------|------------------------------------------------------|------|
| Preliminaries |                                                      |      |
| 1.            | Conventions                                          | xi   |
| 2.            | Notation                                             | xi   |
| 3.            | Pre-requisities in point set topology (Chapters 1-6) | хi   |
|               | Pre-requisites in measure theory (Chapters 7-12)     | xii  |
| (             | Subadditive sequences                                | xiii |
| 6.            | References                                           | xiii |
| Cha           | pter 1. Examples and basic properties                | 1    |
|               | Examples                                             | 1    |
|               | Transitivity                                         | 2    |
|               | Other characterizations of transitivity              | 4    |
|               | Transitivity for subshifts of finite type            | 5    |
|               | Minimality and the Birkhoff recurrence theorem       | 6    |
|               | Commuting homeomorphisms                             | 8    |
|               | Comments and references                              | 9    |
| Cha           | pter 2. An application of recurrence to arith-       |      |
|               | metic progressions                                   | 11   |
|               | Van der Waerden's theorem                            | 11   |
|               | A dynamical proof                                    | 12   |
|               | The proofs of Sulemma 2.2.2 and Sublemma 2.2.3       | 15   |
|               | Comments and references                              | 17   |
|               | pter 3. Topological entropy                          | 19   |
| J             | Definitions                                          | 19   |
| 3.2.          | The Perron-Frobenius theorem and subshifts of finite | 20   |
| , , ,         | type                                                 | 23   |
|               | Other definitions and examples                       | 26   |
|               | Conjugacy                                            | 30   |
|               | Comments and references                              | 32   |
|               | pter 4. Interval maps                                | 33   |
|               | Fixed points and periodic points                     | 33   |
|               | Topological entropy of interval maps                 | 37   |
| 4.3.          | Markov maps                                          | 39   |

| 4.4. Comments and references                              | 44  |
|-----------------------------------------------------------|-----|
| Chapter 5. Hyperbolic toral automorphisms                 | 47  |
| 5.1. Definitions                                          | 47  |
| 5.2. Entropy for Hyperbolic Toral Automorphisms           | 49  |
| 5.3. Shadowing and semi-conjugacy                         | 52  |
| 5.4. Comments and references                              | 55  |
| Chapter 6. Rotation numbers                               | 57  |
| 6.1. Homeomorphisms of the circle and rotation numbers    | 57  |
| 6.2. Denjoy's theorem                                     | 60  |
| 6.3. Comments and references                              | 64  |
| Chapter 7. Invariant measures                             | 65  |
| 7.1. Definitions and characterization of invariant mea-   |     |
| sures                                                     | 65  |
| 7.2. Borel sigma-algebras for compact metric spaces       | 65  |
| 7.3. Examples of invariant measures                       | 67  |
| 7.4. Invariant measures for other actions                 | 69  |
| 7.5. Comments and references                              | 71  |
| Chapter 8. Measure theoretic entropy                      | 73  |
| 8.1. Partitions and conditional expectations              | 73  |
| 8.2. The entropy of a partition                           | 76  |
| 8.3. The entropy of a transformation                      | 79  |
| 8.4. The increasing martingale theorem                    | 82  |
| 8.5. Entropy and sigma algebras                           | 84  |
| 8.6. Conditional entropy                                  | 86  |
| 8.7. Proofs of Lemma 8.7 and Lemma 8.8                    | 87  |
| 8.8. Isomorphism                                          | 88  |
| 8.9. Comments and references                              | 89  |
| Chapter 9. Ergodic measures                               | 91  |
| 9.1. Definitions and characterization of ergodic measures | 91  |
| 9.2. Poincaré recurrence and Kac's theorem                | 91  |
| 9.3. Existence of ergodic measures                        | 93  |
| 9.4. Some basic constructions in ergodic theory           | 94  |
| 9.4.1. Skew products                                      | 95  |
| 9.4.2. Induced transformations and Rohlin towers          | 95  |
| 9.4.3. Natural extensions                                 | 96  |
| 9.5. Comments and references                              | 97  |
| Chapter 10. Ergodic theorems                              | 99  |
| 10.1. The Von Neumann ergodic theorem                     | 99  |
| 10.2. The Birkhoff theorem (for ergodic measures)         | 102 |
| 10.3. Applications of the ergodic theorems                | 106 |
| 10.4. The Birkhoff theorem (for invariant measures)       | 111 |
| 10.5 Comments and references                              | 112 |

| Chap  | pter 11. Mixing Properties                           | 113         |
|-------|------------------------------------------------------|-------------|
| 11.1. | Weak mixing                                          | 113         |
| 11.2. | A density one convergence characterization of weak   |             |
|       | mixing                                               | 114         |
| 11.3. | A generalization of the Von Neumann ergodic theo-    |             |
|       | rem                                                  | 116         |
| 11.4. | The spectral viewpoint                               | 118         |
|       | Spectral characterization of weak mixing             | 120         |
|       | Strong mixing                                        | 122         |
| 11.7. | Comments and reference                               | 123         |
| Chap  | pter 12. Statistical properties in ergodic theory    | <b>12</b> 5 |
| 12.1. | Exact endomorphisms                                  | 125         |
| 12.2. | Statistical properties of piecewise expanding Markov |             |
|       | maps                                                 | 126         |
|       | Rohlin's entropy formula                             | 133         |
|       | The Shannon-McMillan-Brieman theorem                 | 134         |
| 12.5. | Comments and references                              | 137         |
| Chaj  | pter 13. Fixed points for homeomorphisms of          |             |
|       | the annulus                                          | <b>139</b>  |
| 13.1. | Fixed points for the annulus                         | 139         |
| 13.2. | Outline proof of Brouwer's theorem                   | 144         |
| 13.3. | Comments and references                              | 146         |
| Cha   | pter 14. The variational principle                   | 147         |
|       | The variational principle for entropy                | 147         |
| 14.2. | The proof of the variational principle               | 147         |
| 14.3. | Comments and reference                               | 152         |
| Char  | pter 15. Invariant measures for commuting trans-     |             |
| •     | formations                                           | <b>153</b>  |
| 15.1. | Furstenberg's conjecture and Rudolph's theorem       | 153         |
| 15.2. | The proof of Rudolph's theorem                       | 153         |
| 15.3. | Comments and references                              | 159         |
| Char  | pter 16. Multiple recurrence and Szemeredi's         |             |
|       | theorem                                              | 161         |
| 16.1. | Szemeredi's theorem on arithmetic progressions       | 161         |
|       | An ergodic proof of Szemeredi's theorem              | 162         |
| 16.3. | The proof of Theorem 16.2                            | 163         |
|       | 16.3.1.(UMR) for weak-mixing systems, weak-mixing    |             |
|       | extensions and compact systems                       | 163         |
|       | 16.3.2.The non-weak-mixing case                      | 165         |
|       | 16.3.3.(UMR) for compact extensions                  | 165         |
|       | 16.3.4.The last step                                 | 165         |
| 16.4  | Appendix to section 16.3                             | 166         |
|       | 16.4.1. The proofs of Propositions 16.3 and 16.4     | 166         |

viii CONTENTS

| Index                                 | 177 |
|---------------------------------------|-----|
| 16.5. Comments and references         | 176 |
| 16.4.6. The proof of Proposition 16.9 | 175 |
| 16.4.5. The proof of Proposition 16.8 | 173 |
| 16.4.4. The proof of Proposition 16.7 | 172 |
| 16.4.3. The proof of Proposition 16.6 | 171 |
| 16.4.2. The proof of Proposition 16.5 | 171 |