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Dynamical Systems Method and a Homeomorphism
Theorem

A.G. Ramm

1 INTRODUCTION.

The aim of this paper is to demonstrate the power of the dynamical systems method
(DSM) as a tool for proving theoretical results. The DSM was introduced and applied to
solving nonlinear operator equations in [4]-[8], where the emphasis was on convergence
and stability of the DSM-based algorithms for solving operator equations, especially
nonlinear and ill-posed equations. The DSM for solving an operator equation F (u) = 0
consists of finding a nonlinear map u 7→ Φ(t, u), depending on a parameter t in [0,∞),
that has the following three properties:

(1) the Cauchy problem

u̇ = Φ(t, u), u(0) = u0 (u̇ :=
du(t)

dt
)

has a unique global solution u(t) for a given initial approximation u0;
(2) the limit u(∞) = limt→∞ u(t) exists; and
(3) this limit solves the original equation F (u) = 0: F (u(∞)) = 0.

The operator F : H → H is a nonlinear map of a Hilbert space H. It is assumed that
the equation F (u) = 0 has a solution, possibly nonunique.

The problem is to find a Φ such that the properties (1), (2), and (3) hold. Various
choices of Φ for which these properties hold are proposed in [4], where the DSM is justified
for wide classes of operator equations, in particular, for some classes of nonlinear ill-posed
equations (i.e., equations F (u) = 0 for which the linear operator F ′(u) is not boundedly
invertible). By F ′(u) we denote the Fréchet derivative of the nonlinear map F at the
element u. For the purposes of this note we assume that F is a map of a Hilbert space,
but similar techniques can be applied to a study of operator equations in Banach spaces
(see [7]).

In this note the DSM is used as a tool for proving certain theoretical results. Namely,
we give a proof of a Hadamard-type theorem on global homeomorphisms and a sufficient
condition for the surjectivity of a nonlinear map in a Hilbert space.

Although the global homeomorphism theorem that we prove is not new, its proof
is shorter and simpler than the published ones ( [1] or [3], for example). This proof



yields also a new result, formulated in Remark in Section 2, at the end of the paper.
J. Hadamard (see [2]) proved that a smooth map F : Rn → Rn with the property

‖[F ′(u)]−1‖ ≤ b (∀u ∈ Rn),

for a positive constant b is a global homeomorphism of Rn onto Rn. This result has been
generalized to Hilbert and Banach spaces under the weaker assumption that:

‖[F ′(u)]−1‖ ≤ a‖u‖+ b, (1.1)

where a and b are positive constants (see [1], [3], and the references therein).
We denote by F (j) the Frèchet derivative of F of order j. Our aim is to apply the

DSM to obtain a proof of the following:

Theorem 1.1. Assume that F : H → H is a twice-differentiable map of a real Hilbert
space H such that

sup
u∈B(u0,R)

‖F (j)(u)‖ ≤Mj(R) (1 ≤ j ≤ 2) (1.2)

and
sup

u∈B(u0,R)

‖[F ′(u)]−1‖ ≤ m(R), (1.3)

where B(u0, R) = {u : ||u− u0|| ≤ R}, R is in (0,∞), and u0 is a fixed element of H. If

sup
R>0

R

m(R)
= ∞, (1.4)

then F is surjective. If (1.1) holds, then F is a global homeomorphism of H onto H.

Remark. Condition (1.4) is essential. For example, if H = R1 and F (u) = eu, then the
equation eu = 0 does not have a solution, conditions (1.2) and (1.3) hold, but (1.4) does
not hold: m(R) = eR.

2 PROOFS.

Consider the problem

u̇ = −[F ′(u)]−1[F (u)− f ], u(0) = u0, (2.1)

where f is an arbitrary given element of H. Problem (2.1) is an example of the DSM
with the following choice of Φ:

Φ := −[F ′(u)]−1[F (u)− f ].
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From our arguments it will follow that, assuming (1.3) and (1.4), we can justify the DSM
with this choice of Φ, that is, we can prove that the three properties (1), (2), and (3),
mentioned in the introduction hold.

From (1.2) and (1.3) it follows that the right-hand side of the first equation in (2.1)
satisfies a Lipschitz condition as a function of u. Therefore, by a standard result, problem
(2.1) has a unique local solution. Using (1.4), we prove that this solution is global, that
is, that u(t) exists on [0,∞). This is done by establishing a uniform bound

sup
0≤t<T

‖u(t)‖ < c. (2.2)

Here and later we denote by c various positive constants. The supremum in (2.2) extends
over [0, T ) where [0, T ) is the maximal interval of existence of the local solution to (2.1). If
such an estimate is established, then it follows that T = ∞, which means that the solution
to (2.1) exists globally. Reason: if the maximal interval of existence of the solution u is
finite, say [0, T ) with T < ∞, then limt→T− ||u(t)|| = ∞, and the bound (2.2) does not
hold. Indeed, assuming that limt→T− ||u(t)|| ≤ c, where [0, T ) is the maximal interval of
existence of the solution u, one has a bound on the Lipschitz constant of the right-hand
side of equation (2.1) in the ball ||u|| ≤ c. Consequently the local solution u exists on
an interval of a fixed length, say ` > 0. Therefore equation (2.1) with the initial data
u(T −0.5`) at the point T −0.5` exists on the interval [T −0.5`, T +0.5`), so that u exists
on the interval [0, T + 0.5`). This contradicts the maximality of the interval of existence
[0, T ) and proves that limt→T− ||u(t)|| = ∞ if T <∞.

Furthermore, we prove that the limit u(∞) = limt→∞ u(t) exists, and that F (u(∞)) =
f , so that the properties (1), (2), and (3) hold. Since f in H is arbitrary, F is surjective.

We now give the arguments in detail. Write

g(t) = ‖F (u(t))− f‖.

Equation (2.1) implies that gġ = −g2. Thus,

g(t) ≤ g(0)e−t, ‖u̇‖ ≤ m(R)g(0)e−t, (2.3)

where m(R) is the constant from (1.3). If the solution u(t) does not leave the ball
B(u0, R) for any positive t, then by an earlier remark u(t) exists on (0,∞). Integrating
the second inequality in (2.3) yields

‖u(t)− u(0)‖ ≤
∫ t

0

||u̇(s)||ds ≤ m(R)g(0).

If there is an R > 0 such that
m(R)g(0) ≤ R, (2.4)

then u(t) lies in B(u0, R) for every positive t. Therefore, equation (2.4) implies that u(t)
is the global solution to (2.1). Condition (1.4) guarantees that for any fixed u0 there is
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an R in (0,∞) such that (2.4) holds. For this R one has u(t) in B(u0, R) for all positive
t, from which we infer that u(∞) = limt→∞ u(t) exists and that the following estimate
holds:

‖u(t)− u(∞)‖ ≤ m(R)g(0)e−t. (2.5)

Using the second inequality (2.3), invoking estimate (2.5), and letting t→∞ in (2.1), one
concludes that F (u(∞)) = f because limt→∞ ||F ′(u(t))u̇(t)|| = 0, as we have proved, the
limit limt→∞ u(t) = u(∞) exists, and F (u) is continuous. This establishes the surjectivity
of F .
Remark. Our argument shows that for any u0 for which (2.4) holds one can assert that
the element u(∞) := u(∞, u0) solves the equation F (u(∞)) = f . By the continuity of
F, one concludes that if m(R)g(u0) < R for some u0, then m(R)g(ũ0) < R for any ũ0

sufficiently close to u0. Therefore, small perturbations of u0 lead to elements u(∞, ũ0)
that also solve the equation F (u(∞, ũ0)) = f . If u(∞, ũ0) differs by a sufficiently small
amount from u(∞, u0), then, in fact, the two are equal because F is a local homeomor-
phism.

If (1.1) holds, then (2.3) is replaced with the inequality

‖u̇‖ ≤ (a‖u(t)‖+ b)g(0)e−t. (2.6)

Let h(t) = ‖u(t)‖. Then ḣ ≤ ||u̇||, because hḣ = <(u̇, u) ≤ ||u̇||||u|| = ||u̇||h. Therefore,
(2.6) yields (with g0 = g(0) and p = b/a)

ḣ ≤ (h+ p)ag0e
−t.

As a consequence

sup
t≥0

h(t) ≤ c1 (c1 := (‖u(0)‖+ p)eag0 − p))

and
‖u̇‖ ≤ c2e

−t (c2 := (ac1 + b)g(0)). (2.7)

Accordingly, u(t) belongs to B(u0, c2). It is well known and easy to prove that condition
(1.3) implies that F is a local homeomorphism (i.e., F maps a neighborhood of any
point from a sufficiently small neighborhood of an arbitrary point u homeomorphically
onto a neighborhood of the point F (u)). From (2.1) and the estimate ‖u̇‖ ≤ c2e

−t we
conclude as earlier that F is surjective. Therefore, in order to prove that F is a global
homeomorphism of H onto H it is sufficient to prove that F (u) = F (v) implies u = v.

The idea of our proof is to consider the path w(s) = (1 − s)u0 + sv from u0 to
v, to construct the solution u(t, s) to problem (2.1) with the initial data w(s) in place
of u0, and then to show that u(∞, s) = u for each s. If this is done, then we can
conclude that v = u(∞, 1) = u. In the last step we use assumption (1.3), which implies
that F is a local homeomorphism. Namely, if F (u(∞, s)) = F (u(∞, s + σ)) = f and
||u(∞, s)− u(∞, s+ σ)|| is sufficiently small, then u(∞, s) = u(∞, s+ σ).
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We now supply the details of the argument that we have sketched. If s = 0, then we
have u(∞, 0) = u and F (u) = f . If σ is sufficiently small, then

sup
t≥0

‖u(t, s+ σ)− u(t, s)‖ ≤ c‖u(0, s+ σ)− u(0, s)‖, (2.8)

where c does not depend on s, σ, or t, and σ does not depend on s. We return to
inequality (2.8) after giving the rest of the proof.

If (2.8) holds, then ‖u(∞, s+ σ)− u(∞, s)‖ can be made arbitrarily small, provided
that δ = ‖u(0, s+ σ)− u(0, s)‖ is chosen sufficiently small. Since

F (u(∞, s+ σ)) = F (u(∞, s)) = f

and since F is a local homeomorphism, it follows that

u(∞, s+ σ) = u(∞, s).

Because u(∞, 0) = u and σ does not depend on s, we can get to the point s + σ = 1 in
finitely many steps and conclude that

u = u(∞, s) = u(∞, 1) = v (0 ≤ s ≤ 1).

Thus, to complete the proof we have only to check (2.8).
Denote

x(t) = u(t, s+ σ)− u(t, s),

and let η(t) = ‖x(t)‖. Then using (2.7) and (1.2), and writing z = u(t, s + σ) and
y = u(t, s), we compute

ηη̇ = −([F ′(z)]−1(F (z)− f)− [F ′(y)]−1(F (y)− f), x(t))

= −(([F ′(z)]−1 − [F ′(y)]−1)(F (z)− f), x)− ([F ′(y)]−1(F (z)− F (y)), x)

≤ ce−tη2 − η2 + cη3,

(2.9)

where we have appealed to inequalities (1.2), (1.3), and (2.4), as well as the following
relations:

||[F ′(z)]−1−[F ′(y)]−1|| ≤ c||z−y||, F (z)−F (y) = F ′(y)(z−y)+K, ‖K‖ ≤ M2

2
‖z−y‖2.

Since η ≥ 0, we infer from (2.9) the inequality

η̇ ≤ −η + cη2 + ce−tη, η(0) = δ. (2.10)

Let η = qe−t. Then
q̇ ≤ ce−t(q2 + q), q(0) = δ. (2.11)

We integrate (2.11) to obtain q(t) ≤ c3δ, provided that δ > 0 is sufficiently small. For
such δ

η(t) ≤ c3e
−tδ,

which implies (2.8). Theorem 1.1 is thereby proved. 2

Remark. If ‖[F ′(u)]−1‖ ≤ ψ(||u||), where ψ is a positive continuous function on [0,∞)
such that

∫∞
0
ds/ψ(s) = ∞, then the conclusion of Theorem 1.1 still holds, and its proof

is essentially the same.
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