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Abstract

Consider an operator equation F(u) = 0 in a real Hilbert space. The problem of solving this equation is
ill-posed if the operator F'(u) is not boundedly invertible, and well-posed otherwise. A general method,
dynamical systems method for solving linear and non-linear ill-posed problems in a Hilbert space is pre-
sented. This method consists of the construction of a non-linear dynamical system, that is, a Cauchy
problem, which has the following properties: (1) it has a global solution, (2) this solution tends to a limit as
time tends to infinity, (3) the limit solves the original linear or non-linear problem. New convergence and
discretization theorems are obtained. Examples of the applications of this approach are given. The method
works for a wide range of well-posed problems as well.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper contains a recent development of the theory of dynamical systems method (DSM)
earlier developed in papers [1-11], see also [12,13]. DSM is a general method for solving operator
equations, especially non-linear, ill-posed, but also well-posed operator equations. The author
hopes that DSM will demonstrate its practical efficiency and allow one to solve ill-posed prob-
lems. This paper is intended for a broad audience: the presentation is simplified considerably, and
is non-technical in its present form. Most of the results are presented in a new way. Some of the
results and/or proofs are new (Theorems 1-3, 5, Theorems 9-11, Remarks 1, 2, and the discussion
of the stopping rules). We try to emphasize the basic ideas and methods of the proofs.
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What is the dynamical systems method for solving operator equations?
Consider an equation

F(u):=Bu)—f=0, fecH, (1)

where B is a linear or non-linear operator in a real Hilbert space H. Some of our results can be
generalized to more general spaces, though these generalizations are not discussed here.
Throughout the paper we assume that:

sup [|FV ()| <M;,  j=1,2, (2)

uEB(uO ,R)

where B(ug,R) := {u : |lu — uo|| <R}, FY)(u) is the Fréchet derivative, and

that is, we assume existence of a solution to (1), not necessarily unique globally.

Assumptions (2) and (3) are our standard assumptions below, unless otherwise stated. Only for
well-posed problems in Section 2 we do not assume existence of a solution, but prove it, and
sometimes we can assume in these problems j = 1 in (2), rather than j = 2. In all the ill-posed
problems we assume existence of the solution to (1).

Let u denote derivative with respect to time. Consider the following dynamical system (the
Cauchy problem):

u=®(t,u), u(0)=uy, 4)
where @(t,u) is locally Lipschitz with respect to u € H and continuous with respect to ¢ > 0:

sup || B(t,u) — B(t,0)|| <cllu—1v|, c=c(R uyT) > 0. (5)

u,veB(ug,R),t€[0,T)

One can relax “locally Lipschitz” assumption about @ (for example, use one-sided inequalities)
but we do not discuss this point. Problem (4) has a unique local solution if (5) holds. The DSM for
solving (1) consists of solving (4), where @ is so chosen that the following three conditions hold:

Ju(t)Vt > 0;  Ju(oo) := limu(t); F(u(oco)) =0. (6)
—00
Some of the basic results of this paper are the Theorems which provide the choices of @ for

which (6) holds, and the technical tools (Theorems 4, 8) basic for our proofs.
Problem (1) with noisy data f;, ||f5 — f|| <9, given in place of f, generates the problem:

iy = Ds(t,us),  us(0) = u, (7)
the solution u; to (7), calculated at ¢ = ¢5, will have the property
tim [Jus(15) — || = 0. (8)

The choice of #; with this property is called the stopping rule. One has usually lim;_, ¢5 = co.
In Section 2 we discuss well-posed problems (1), that is, the problems for which

sup ||[F'(u)]”" || <, ©)

u€B(up,R)



ARTICLE IN PRESS

A.G. Ramm | Communications in Nonlinear Science and Numerical Simulation xxx (2003) xxx—xxx 3

and in the other sections ill-posed problems (1), for which (9) fails, are discussed.
The motivations for this work are:

(1) to develop a general method for solving operator equations, especially non-linear and ill-
posed, and
(2) to develop a general approach to constructing convergent iterative schemes for solving these
equations.
If (6) holds, and if one constructs a convergent discretization scheme for solving Cauchy
problem (4), then one will get a convergent iterative scheme for solving the original Egs. (1).

2. Well-posed problems

Consider (1), let (2) hold, and assume
(F'(u)®(t,u),F(u)) < —gi(OIF @) Vu € Bluo, R), / g1 dt = oo, (10)
0

where g; > 0 is an integrable function, @ > 0 is a constant. Assume
[@(z, )| S @(OIFW)ll,  Vu € B(ug, R), (11)

where g, > 0 is such that
t
G(t) :== g(t) exp < —/ g ds) e L'(R,). (12)
0

Remark. Sometimes assumption (11) can be used in the following modified form:
0@, w)| < @IFW)|’,  Vue B,

where b > 0 is a constant. The statement and proof of Theorem 1 can be easily adjusted to this
assumption.

Our first basic result is the following:

Theorem 1.
(1) If (10)-(12) hold, and

IFw)l [ Gd<r a=2, (13
0
then (4) has a global solution, (6) holds, (1) has a solution y = u(oco) € B(uo, R), and

IIM(t)—yHéHF(uo)II/tOC G(x)dx, IIF(u(I))!KIIF(uo)HeXp(—/Otgl(X)dX>- (14)
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(i) If (10)~(12) hold, 0 < a < 2, and

T
1 (o) / ods<R
0

where T > 0 is defined by the equation

/0 21(5)ds = |F(u)|**/(2 — a),

then (4) has a global solution, (6) holds, (1) has a solution y = u(oc) € B(ug,R), and u(t) =y for
t=T.
(iii) If (10)~(12) hold, a > 2, and

/0 " gals)h(s) ds <R,

where

1

a

{HF(uo)“ +a-2) [ ab) ds] T b, Tmh() =0,

[—00

then (4) has a global solution, (6) holds, (1) has a solution y = u(co) € B(ug, R), and
Jute) ~ uloc)| < [ ex(oMh(s)ds =0
t
as t — oo.

Let us sketch the proof.

Proof. The assumptions about @ imply local existence and uniqueness of the solution u(¢) to (4).
To prove global existence of u, it is sufficient to prove a uniform with respect to # bound on ||u(¢)||.
Indeed, if the maximal interval of the existence of u(¢) is finite, say [0, 7), and ®(¢,u) is locally
Lipschitz with respect to u, then |ju(¢)|| — oo as t — T.

Assume a = 2. Let g(¢) := ||[F(u(t))||. Since H is real, one uses (4) and (10) to get gg¢ =
(F'(w)i, F) < — g1(t)g%, so ¢< — gi(t)g, after integrating one gets the second inequality (14),
because g(0) = ||F(uo)||- Using (11), (4) and the second inequality (14), one gets:

[[u(2) = u(s)l| < £(0) /Sl G(x)dx, G(x) = g(x)exp (—/Oxgl(Z)dZ) (15)

Because G € L'(R.), it follows from (15) that the limit y := lim, .. u(¢) = u(c0) exists, and y € B
by (13). From the second inequality (14) and the continuity of F one gets F(y) = 0, so y solves (1).
Taking t — oo and setting s = ¢ in (15) yields the first inequality (14). The inclusion u(¢) € B for all
t = 0 follows from (13) and (15). The first part of Theorem 1 is proved. The proof of the other
parts is similar. [

There are many applications of this theorem. We mention just a few, and assume that
g1 =c; =const > 0 and g, = ¢, = const > 0 (see [18§]).
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Example 1 (Continuous Newton-type method (Gavurin, 1958)). & = —[F'(u)]"'F(u). Assume that
(9) holds, then ¢; = 1, ¢; = my, (13) takes the form m; (R)||F(uo)|| < R. This inequality implies that
(4) has a global solution, (6) and (14) hold, and (1) has a solution in B(u, R).

Example 2 (Continuous simple iterations method). Let ® = —F, and assume F'(u) > ¢;(R) > 0 for
all u € B(ug,R). Then ¢, =1, ¢; = ¢;(R), (13) is: [e1(R)]'||F(uo)|| <R, and the conclusions of
Example 1 hold.

Example 3 (Continuous gradient method). Let ® = —[F'|'F, (2) and (9) hold, ¢; = m?, ¢, =
M, (R), (13) is Mym}||F (uy)|| < R. This inequality implies the conclusions of Example 1.

Example 4 (Continuous Gauss—Newton method). Let & = —([F']"F")"'[F']'F, (2) and (9) hold,
c1 =1, co = miMy, (13) is Mym3||F (up)|| < R. This inequality implies the conclusions of Example 1.

Example 5 (Continuous modified Newton method). Let &= —[F'(uy)] 'F(u). Assume
II[F"(uo)] ™" || < mo, and let (2) hold. Then ¢, = my. Choose R = (2Msmy) ", and ¢; = 0.5. Then (13)
is 2mo||F (uo)|| < (2Mamg) ™", that is, 4m2Ms||F (u)|| < 1. Thus, if 4m2M,||F(uo)|| < 1, then the con-
clusions of Example 1 hold.

Example 6 (Descent methods). Let @ = —(f/(f",h))h, where f = f(u(t)) is a differentiable
functional /' : H — [0,00), and /4 is an element of H. From (4) one gets f = (f’,i) = —f. Thus
f = foe', where fy := f(uo). Assume ||®|| < ca|f|”, b > 0. Then ||it]] < ca|fo| e . Therefore u(co)
does exist, f(u(c0)) =0, and ||u(co) — u()|| < ce™, ¢ = const > 0.

If h =, and f = ||[F(u)|]*, then f"(u) = 2[F']"(u)F(u), ® = —(f/||f'||")/", and (4) is a descent
method. For this @ one has ¢; = 1/2, and ¢; = m; /2, where m, is defined in (9). Condition (13) is:
my ||F (up)|| < R. If this inequality holds, then the conclusions of Example 1 hold.

In Example 6 we have obtained some results from [14]. Our approach is more general than the
one in [14], since the choices of f and 4 do not allow one, for example, to obtain @ used in
Example 5.

3. Linear ill-posed problems

We assume that (9) fails. Consider
Au=f. (16)
Let us denote by (/) the following assumption:

(): A is a linear, bounded operator in H, defined on all of H, the range R(A) is not closed, so (16)
is an ill-posed problem, there is a y such that Ay = f, y L N, where N is the null-space of A.

Let B:= A*A, q := By = A*f, A* is the adjoint of 4. Every solution to (16) solves
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and, if /' = Ay, then every solution to (17) solves (16). Choose a continuous, monotonically de-
caying to zero function €(¢) > 0, on R,.
Sometimes it is convenient to assume that

lim (ée72) = 0. (18)

1—00
For example, the functions € = ¢1(¢y + t)fb, 0 < b < 1, where ¢y and ¢; are positive constants,
satisfy (18). There are many such functions. One can prove [3,7] the following:

Claim. If €(t) > 0 is a continuous monotonically decaying function on R,, lim,_, €(¢) = 0, and (18)
holds, then

/OooedS— . (19)

In this section we do not use assumption (18): in the proof of Theorem 2 one uses only the
monotonicity of a continuous function € > 0 and (19). One can drop assumption (19), but then
convergence is proved in Theorem 2 to some element of N, not necessarily to the normal solution
y, that is, to the solution orthogonal to N, or, which is the same, to the minimal norm solution to
(16). However, (18) is used (in a slightly weaker form) in Section 4.

Consider problems (4) and (7) with

¢ := —[Bu+e(t)u—q|, ®s=—[Bus+ e(t)us — qs), (20)

where ||g — gs|| < [|4*]|0 := Co. Without loss of generality one may assume this C = 1, which we do
in what follows. Our main result in Section 3, is Theorem 2, stated below. It yields the following:

Conclusion. Given noisy data f;, every linear ill-posed problem (16) under assumptions (<) can be
stably solved by the DSM.

The result presented in Theorem 2 is essentially obtained in [7], but our proof is different and
much shorter.

Theorem 2. Problem (4) with ® from (20) has a unique global solution u(t), (6) holds, and u(co) = y.
Problem (7) with ®; from (20), has a unique global solution us(t), and there exists ts, such that

tim[Jus(15) — | = 0. (1)
This t5 can be chosen, for example, as a root of the equation
e()=08", be(0,1), (22)

or the equation (27) below.

Proof. Linear Eqgs. (4) with bounded operators have unique global solutions. If
@ = —[Bu + €(t)u — g, then the solution u to (4) is

1Bl

u(t) = (O U(6)uy + hl(t)/ exp(—t4) /Ote“h(s) ds/dE;y, (23)

0
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where A(t) := exp( f(; €(s)ds) — oo as t — oo, E; is the resolution of the identity corresponding to
the selfadjoint operator B, and U(¢) := e~"? is a non-expansive operator, because B > 0. Actually,
(23) can be used also when B is unbounded, ||B|| = occ.

Using L’Hospital’s rule one checks that

i o e*h(s)ds i 2 h(t)

i—oo  e"h(t) i—oc A& h(t) + e*h(t)e(t)
provided only that €(¢) > 0 and lim, .. €(z) = 0. From (23), (24), and the Lebesgue dominated
convergence theorem, one gets u(oco) = y — Py, where P is the orthogonal projection operator on
the null-space of B. Under our assumptions (.«7), Py = 0, so u(oo) = y. If v(z) := ||u(¢) — y||, then
lim, ., v(¢) = 0. In general, the rate of convergence of v to zero can be arbitrarily slow for a
suitably chosen f. Under an additional a priori assumption on f (for example, the source type
assumptions), this rate can be estimated.

Let us describe a method for deriving a stopping rule. One has:

[Jus () =yl < [Jus(t) — u(@)|| + v(2).
Since lim, ., v(¢) = 0, any choice of #; such that

Jim {us(15) — u(ss)| = 0,

=1 Vi>0, (24)

gives a stopping rule: for such #; one has lims_ ||us(¢) — y|| = 0.
To prove that (22) gives such a rule, it is sufficient to check that

0
(1) — < —
Juste) w0 < 25)
Let us prove (25). Denote w := us — u. Then
w=—[Bw+ew—p], w(0)=0, [p]<d. (26)

Integrating (26), and using the property B = 0, one gets (25).
Alternatively, multiply (26) by w, let |w|| := g, use B >0, and get ¢< — €(¢)g + 9, g(0) = 0.
Thus,

g(t)<56xp<—/0teds> /0[ exp(/osedr>ds< %

A more precise estimate, also used at the end of the proof of Theorem 3 below, yields:
o) — )] < 5.
2./¢€(1)
and the corresponding stopping time #; can be taken as the root of the equation:

2V/e(t) = 8", be(0,1). (27)
Theorem 2 is proved. [l

If the rate of decay of v is known, then a more efficient stopping rule can be derived: ¢; is the
minimizer of the problem:



ARTICLE IN PRESS

8 A.G. Ramm | Communications in Nonlinear Science and Numerical Simulation xxx (2003 ) xxx—xxx

v(t) + 0[e(t)]”" = min. (28)

For example, if v(z) < ce?(¢), then ¢; is the root of the equation

which one gets from (28) with v = ce”.

One can also use a stopping rule based on an a posteriori choice of the stopping time, for
example, the choice by a discrepancy principle.

A method, much more efficient numerically than Theorem 2, is given below in Theorem 5.

For linear Eq. (17) with exact data this method uses (4) with

O=—(B+e(t))  [Bu+e(t)u—q) = —u+ (B+e€(t)) g, (29)

and for noisy data it uses (7) with ®; = —u; + (B+ €(r)) '¢s. The linear operator B >0 is
monotone, so Theorem 5 is applicable. For exact data (4) with @, defined in (29), yields:

i=—u+B+e(l) g, u(0)=up, (30)

and (6) holds if €(z) > 0 is monotone, continuous, decreasing to 0 as t — oc.
Let us formulate the result:

Theorem 3. Assume (<7), and let B := A*A, q := A*f. Assume €(t) > 0 to be a continuous, mono-
tonically decaying to zero function on [0, 00). Then, for any uy € H, problem (30) has a unique global
solution, Ju(oo) = y, Ay = f, and y is the minimal-norm solution to (16). If f; is given in place of f,
\Lf — f5|| < 0, then (21) holds, with us(t) solving (30) with q replaced by qs := A* f5, and t; should be
chosen, for example, as the root of (27) (or by a discrepancy principle).

Proof. One has g = Bz, where Az = f, and the solution to (30) is

t 124
u(t) = uge—" + ¢ / (B + e(s)) ' Bzds 1= upe—" + / 1) dEsz, (31)
0 0
where
! e
= [ >
)= [ s (32)

and E; is the resolution of the identity of the selfadjoint operator B. One has
0<j(4)<l, limj(4t)=1 A>0, j0,7)=0. (33)
—00

From (31)—(33) it follows that Ju(c0), u(co) = z — Pyz = y, where y is the minimal-norm solution
to (16), N := N(B) = N(4) is the null-space of B and of 4, and Py is the orthoprojector onto N in
H. This proves the first part of Theorem 3.

To prove the second part, denote w := u; — u, g := f5 — f, where we dropped the dependence
on ¢ in w and g for brevity. Then w = —w + (B + €(f)) ' 4*g, w(0) = 0. Thus
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t
we e—f/ (B + e(s)) A gds,
0
SO

0

t es
J NCONRENCO)

where the known estimate (see e.g. [4,7]) was used: |[(B+¢) '4*|| <1/(2v/€). Theorem 3 is
proved. O

lwl| < de™*

4. Non-linear ill-posed problems with monotone operators

There is a large literature on Eqs. (1) and (4) with monotone operators. In the result we present
the problem is non-linear and ill-posed, the new technical tool, Theorem 4, is used, and the
stopping rules are discussed.

Consider (4) with monotone F under standard assumptions (2) and (3), and

@ = —A ) (W)[F (1) + (1) (u(t) — )], (34)
where 4 = A(u) := F'(u), A" is its adjoint, €(¢) is the same as in Theorem 3, and in Theorem 5 ¢(¢)
is further specified, #, € B(up,R) is an element we can choose to improve the numerical perfor-
mance of the method. If noisy data are given, then, as in Section 3, we take

Fu) = Bu) = f, @5 = —A(us)[Bus(t)) — f5 + e(t) (us(t) — o)),

where || f5; — f|| < J, B is a monotone non-linear operator, B(y) = f, and u; solves (7).
To prove that (4) with the above @ has a global solution and (6) holds, we use the following:

Theorem 4. Let y(t), o(¢), p(t) € Clty, 00) for some real number ty. If there exists a positive function
w(t) € C'ty, o) such that

0<a(f) < @ [y(t) - %l . BO)< %(t) !y(t) - %l , &ol(ty) <1, (35)

where gy is the initial condition in (36), then a non-negative solution g to the following differential
inequality:

§()< —y(0g(0) +a(0)g* (1) + B(1),  g(to) = &, (36)
satisfies the estimate:
0<g)< =20 1 (37)

u(e) o p()
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Sor all t € [ty, 00), where

(i 9 )
o= (1 o 1), (” ) u(S)>d )

There are several novel features in this result. First, differential equation, which one gets from
(36) by replacing the inequality sign by the equality sign, is a Riccati equation, whose solution
may blow up in a finite time, in general. Conditions (35) guarantee the global existence of the
solution to this Riccati equation with the initial condition (36). Secondly, this Riccati differential
equation cannot be integrated analytically by separation of variables. Thirdly, the coefficient ()
may grow to infinity as ¢t — oo, so that the quadratic term does not necessarily have a small
coefficient, or the coefficient smaller than y(¢). Without loss of generality one may assume f(z) > 0
in Theorem 4. The proof of Theorem 4 is given in [2].

The main result of this Section is new. It claims a global convergence in the sense that no
assumptions on the choice of the initial approximation u, are made. Usually one assumes that u is
sufficiently close to the solution of (1) in order to prove convergence. We take iy, = 0 in Theorem
5, because in this theorem #, does not play any role. The proof is valid for any choice of #,, but
then the definition of » in Theorem 5 is changed.

Theorem 5. If (2) and (3) hold, uy = 0, R = 3r, where r := ||y|| + ||uo||, and y € N :={z : F(z) = 0}
is the (unique) minimal norm solution to (1), then, for any choice of uy, problem (4) with @ defined in
(34), o =0, and €(t) = c1(co + t)_b with some positive constants cy,co, and b € (0, 1), specified in
the proof of Theorem S, has a global solution, this solution stays in the ball B(uy, R) and (6) holds. If
us(t) solves (4) with ®; in place of @, then there is a ts such that lim;_ ||us(t5) — y|| = 0.

Proof. Let us sketch the steps of the proof. Let 7 solve the equation

F(V)+e)V=0. (38)
Under our assumptions on F, it is well known that: (i) (38) has a unique solution for every ¢ > 0,
and (ii) sup,. o ||V <|ly|, (cf. [2]). If F is Fréchet differentiable, then ¥ is differentiable, and
1V (2)|| < |lyl||é(2)|/€(2). Tt is also known that if (3) holds, then lim,_., ||V (¢) — y|| = 0. We will show
that the global solution u to (4), with the @ from (34), does exist, and lim, .., ||u(z) — V(¢)|| = 0.
This is done by deriving a differential inequality for w:=u — ¥, and by applying Theorem 4
to g = ||w|. Since ||u(t) —y|| <|lu(t) = V()| + ||V (t) — y||, it then follows that (6) holds. We
also check that u(z) € B(uo,R), where R := 3(||y|| + ||uo||), for any choice of u, and a suitable
choice of e.

Let us derive the differential inequality for w. One has

W=V — Ay ()[F(u(t)) = F(V (1)) + e(t)w], (39)

and F(u) — F(V) = Aw + K, where |K| < M,g?/2, g := ||w|| and M, is the constant from (2).
Multiply (39) by w, use the monotonicity of F, that is, the property 4 >0, and the estimate
VI <llvllle]/e, and get:

) 0.5Mg? €

L ST (40)

)
€
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where M := M,. Inequality (40) is of the type (36): y =1, 0 = 0.5M /¢, B(¢) = ||y|||é|/e. Choose

2M
£ ="~.
u() 0
Clearly p — oo as t — oo. Let us check three conditions (35). One has ji(¢)/u(t) = |€é|/e. Take e =
c1(co + 1), where ¢; > 0 are constants, 0 < b < 1, and choose these constants so that |¢|/e < 1/2,
for example, b/cy = 1/4. Then the first condition (35) is satisfied. The second condition (35)
holds if

8M |lyll[éle> < 1. (41)
One has €(0) = ¢;¢;”. Choose

€(0) = 4Mr.
Then

1 1
| — — b—1 -1 -
€7 = bei' (eo + 1) <bey'er’el = g = T

so (41) holds. Thus, the second condition (35) holds. The last condition (35) holds because

2M ||lug — V| o 2Mr_l< |
€(0) SaMr 2 T

By Theorem 4 one concludes that g = ||w(?)|| < €(t)/2M — 0 when ¢ — oo, and
[u(?) = uoll <g + 1V — uol| <£(0) + < 3r. (42)

This estimate implies the global existence of the solution to (4), because if u(¢) would have a finite
maximal interval of existence, [0, 7), then u(¢) could not stay bounded when ¢ — T, which con-
tradicts the boundedness of ||u(¢)||, and from (42) it follows that ||u(¢)|| < 4r. We have proved the
first part of Theorem 5, namely properties (6).

To derive a stopping rule we argue as in Section 3. One has:

[Jus () =yl < llus () = V@I + [V (2) = ¥lI-

We have already proved that lim, ., v(¢) := lim,_, ||V (¢) — y|| = 0. The rate of decay of v can
be arbitrarily slow, in general. Additional assumptions, for example, the source-type ones, can be
used to estimate the rate of decay of v(f). One derives differential inequality (36) for g; :=
|lus(¢) — V (¢)]], and estimates g; using (37). The analog of (40) for gs; contains additional term 6 /¢
on the right-hand side. If §/¢* <1/16M, then conditions (35) hold, and g; < €(¢)/2M. Let t5 be
the root of the equation €*(f) = 16MJ. Then lim;s_ot5 = oo, and (8) holds because |jus(ts) —
vl <v(ts) + gs, lim,,_. g5(¢5) = 0 and lim,,_., v(¢;) = 0, but the convergence in (8) can be slow.
See [3.4] for the rate of convergence under source assumptions. If the rate of decay of v(z) is
known, then one chooses #; as the minimizer of the problem, similar to (28),

olt) + (1) = min,

where the minimum is taken over ¢ > 0 for a fixed small 6 > 0. This yields a quasioptimal stopping
rule. Theorem 5 is proved. [
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In [3] a local convergence result, similar to the first part of Theorem 4, was obtained, that is,
|lup — y|| was assumed sufficiently small, and no discussion of noisy data was given.
Let us give another result:

Theorem 6. Assume that ® = —F (u) — €(t)u, F is monotone, €(t) as in Theorem 3, and (18), (2) and
(3) hold. Then (6) holds.

Proof. As in the proof of Theorem 5, it is sufficient to prove that lim, ... g(¢) = 0, where g, w, and
V' are the same as in Theorem 5, and u solves (4) with the @ defined in Theorem 6. Similarly to the
derivation of (39), one gets:

W=V — [F(u) — F(V) + e(t)w]. (43)

Multiply (43) by w, use the monotonicity of F, the estimate || V|| < (|é(?)|/e(¢))||y||, which was used
also in the proof of Theorem 5, and get:

g — e<r>g+%uyn.

This implies
/ eho

From our assumptions relation (19) follows, and (44) together with (18) and (19) imply
lim, ., g(¢#) = 0. Theorem 6 is proved. O

g(t)<e

] (44)

Remark 1. One can drop assumption (2) in Theorem 6 and assume only that F' is a monotone
hemicontinuous operator defined on all of H.

Claim 1. If €(t) =e=const >0, then lim. o |u(t)—y| =0, where u(t) solves (4) with
& = —F(u) — eu, and t. is any number such that lim._ et, = co.

Proof. One has |ju(t) — y|| < ||lu(¢) — Vi|| + ||V — y||, where V; solves (38) with ¢(z) = e = const > 0.
Under our assumptions on F, Eq. (38) has a unique solution, and lim ., ||V, — || = 0. So, to
prove the claim, it is sufficient to prove that lim. g |[u(z.) — V|| = 0, provided that lim,_ e, = cc.
Let g:= ||u(t) — V||, and w:= u(¢) — V.. Because V, =0, one has the equation: w = —[F(u) —
F(V.) + ew]. Multiplying this equation by w, and using the monotonicity of F, one gets § < — eg,
so g(t)<g(0)e . Therefore lim,.,g(z) =0, provided that lim, .et. =oc. The claim is
proved. 0

Remark 2. One can prove claims (i) and (ii), formulated below formula (38), using DSM version
presented in Theorem 11 below.

Claim 2. Assume that F is monotone, (2) holds, and F(y) = 0. Then claims (i) and (ii), formulated
below formula (38), hold.
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Proof. First, note that (ii) follows from (i) easily, because the assumptions F(y) = 0, F is monotone,
and e > 0, imply, after multiplying F (V) — F(y) + €V = 0 by V — y, the inequality (V,V —y) <0,
from which claim (ii) follows. Claim (i) follows from Theorem 11, proved below. [

Claim 3. Assume that the operator F is monotone, hemicontinuous, defined on all of H, F(y) =0, y
is the minimal norm element of Np .= {z: F(z) =0}, ® = —F(u) — €(t)u, €(t) > 0, is monotone,
decaying to zero, and (18) holds. Then (6) holds for the solution to (4).

Proof. Existence of the unique global solution to (4) under our assumptions is known (see e.g. [15]).
Let w:=u—V,, g :=||w||, where V}, solves F(V}) + bV, =0, b = const > 0. It is known [15] that
1]l < [|yll, and limy_o ||V, — y|| = 0. One has |[u(z) — y|| <[fu(z) — V3| + [|Vs — yI|. Thus, to prove
lim, ., ||u(t) —y|| =0 it is sufficient to prove that lim, .. g(¢f) =0. One has w= —[F(u)+
e(t)u — F(V,) — bV,). Multiply this equation by w, use the monotonicity of F and get: g < — e(t)w +
|e(#) — b]||y||. Denote A(t) := exp( J €(s)ds). Then,

a@<gwm1@y+h%@[fmwa—bMﬂﬂw

Clearly, lim:_, g(0)2~'(¢) =0, because lim, .. A(¢) = co. In fact, e !<ct+cy, where ¢y :=
¢ '(0)>0, and one can choose 0<c<1 because of (I8), so &> (ct+cy)", and
lim, ., €(¢)h(¢) = co. Choose b = ¢(&) and apply L'Hospital’s rule to the last term in the above
inequality for g(&). L’Hospital’s rule is applicable, and one gets:

. )] €@ f hds
IO =i ag g

Claim 3 is proved. [

The result in Claim 3 contains the result from [16], where additional assumptions are made on
€(1), global existence of the solution to (4) is assumed, and the proof contains a gap, because it is
not shown that the L’Hospital’s rule can be applied twice.

5. Non-linear ill-posed problems with non-monotone operators

__ Assume that F(u) := B(u) — f, B is a non-monotone operator, 4 := F'(u), A:=F(y),T:=AA,

T :=A"A, T. := T + eI, where [ is the identity operator, € is as in Theorem 3 and |é(7)|/e(¢) < 1,
@ = T ()[4 (B(u) — f) + e(u — )], e=e(t) >0, (45)

and @; is defined similarly, with f; replacing f and u; replacing u.

The main result of this section is:

Theorem 7. If (2) and (3) hold, u,uy € B(y,R), y —iio = Tz, ||z|| < 1, and R < 1, then problem (4)
has a unique global solution and (6) holds. If us(t) solves (7), then there exists a ts such that
1im(5~>0 Hu5(t(3) - yH = 0
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The derivation of the stopping rule, that is, the choice of #;, is based on the ideas presented in
Section 4 (cf. [7,4]). R < 1 means that R is sufficiently small.

Sketch of proof. Proof of Theorem 7 consists of the following steps.

First we prove that g := ||w]|| := ||u(¢) — y|| satisfies a differential inequality (36), and, applying
(37), conclude that g(¢) < u~'(f) — 0 as t — oo. A new point in this derivation (compared with the
one for monotone operators) is the usage of the source assumption y — uy = 7Tz.

Secondly, we derive the stopping rule using the ideas from Section 4. The source assumption
allows one to get a rate of convergence (see [1,4]). Details of the proof are technical and are not
included. One can see [4] for some proofs.

Let us sketch the derivation of the differential inequality for g. Write B(u) — f" = B(u) —
sB(y) = Aw + K, where ||K|| < M>g*/2, and e(u — 1p) = ew + €(y — thy) = ew + €Tz. Then (45) can
be written as

®=—w—T'AK— el 'Tz, e:=¢(t). (46)

Multiplying (4), with @ defined in (46), by w, one gets:
: My o, 1
g8 < — &+ 2T AN + eIT T 2],

Since g = 0, one obtains:
M,
4./€(t)

where the estimate ||7'4%|| <1/(21/€) was used. Clearly,

g + eI Tz, (47)

g< —g+

1T TN <7 =TT+ 1T\ T, IT'TI<1, el i<,
and

T T =T Y44 -4 AT
One has:

4" — A" 4| <2MoMig, 2|l < 1.

Let 2M,M,||z|| < 1/2. This is possible since ||z|| < 1. Using the above estimates, one transforms
(47) into the following inequality:

R DR 7/
LN/

Now, apply Theorem 4 to (48), choosing

My ¢l 1 2M5|[uo — y||
=—, —<z, 16MM1, ||z e(0 <1, and
<y 16 V/e(O) -

g + lllle. (48)
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Then conditions (35) are satisfied, and Theorem 4 yields the estimate:

g(t) < 2;/;? .

This is the main part of the proof of Theorem 7. [J

6. Non-linear ill-posed problems: avoiding inverting of operators in the Newton-type continuous
schemes

In the Newton-type methods for solving well-posed non-linear problems, for example, in the
continuous Newton method (4) with & = —[F(u)]"'F(u), the difficult and expensive part of the

solution is inverting the operator F'(u). In this section we give a method to avoid inverting of this
operator. This is especially important in the ill-posed problems, where one has to invert some
regularized versions of F’, and to face more difficulties than in the well-posed problems.
Consider problem (1) and assume (2), (3) and (9). Thus, we discuss our method in the simplest
well-posed case.
Replace (4) by the following Cauchy problem (dynamical system):

i=—0F, u(0)=u, (49)

0=-T0+4", 0(0) =0y, (50)
where 4 := F'(u), T := A*A4, and Q = Q(t) is a bounded operator in H.
First let us state our new technical tool: an operator version of the Gronwall inequality (cf. [8]).
Theorem 8. Let
Q=-T(HQ(1) +G(1), 0(0) = O,

where T(t), G(t), and Q(t) are linear bounded operators on a real Hilbert space H. If there exists
€(t) > 0 such that

(T(0)h,h) = e(r)||h||> VheH,
then

o) <e‘f5“”“[Q<O>H + / 1G(s) e @9 ds| (51)

Let us turn now to a proof of Theorem 9, formulated at the end of this section. This theorem is
the main result of Section 6.
Applying (51) to (50), and using (2) and (9), which implies

(T(t)h,h) = c|h||” VheH, ¢=-const>0,
one gets:

0wl <e 100 + [ Mieds| < 1G] + Mic ] = .

as long as u(t) € B(uy, R).
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Let u(t)—y:=w, ||w|:=g, 4:=F(y). Since F(y)=0, one has F(u) = Aw+ K, where

|K]| <0.5M»g* := cog?, and M, is the constant from (2). Rewrite (49) as

w = —Q[Aw +K].
Let A :=1 — OA. Multiply (52) by w and get

g8 < — g+ (Aw,w) +cog’, ¢y = const > 0.
We prove below that

sup |4 <A< 1.
>0

From (53) and (54) one gets the following differential inequality:
g< —pg+eg, 0<y<l, p:=1-2,

which implies:
g()<re™, r:=g(0)[1 — g(0)cy] ",

provided that
2(0)c < 1.

Inequality (57) holds if u is sufficiently close to y.
From (56) and (55) it follows that u(co) = y. Thus, (6) holds.
The trajectory u(t) € B(uo, R), V¢ > 0, provided that

) [e9) 2
| = [ paldr<r+ G- <
0 0 2y

This inequality holds if u, is sufficiently close to y, that is, r is sufficiently small.
To complete the argument, let us prove (54). One has:

A=—QA=-TA+A4(A-A).
One has ||4 — A|| < M,g. Using (56) and Theorem 8, one gets

t
MKwMMHM%/wwq.
0

Thus,

ef“,'t _ efc't
[A]l <[ Aol| + Cr:= 4, C:= M M,sup —— .
>0 c—7y

(52)

(53)

(54)

If u, is sufficiently close to y and Q, is sufficiently close to 4™, then A > 0 can be made arbitrary

small. We have proved:

Theorem 9. If (2), (3) and (9) hold, Qy and uy are sufficiently close to A~ and y, respectively, then
problem (49) and (50) has a unique global solution, (6) holds, and u(t) converges to y, which solves

(1), exponentially fast.
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In [8] a generalization of Theorem 9 is given for ill-posed problems.

7. Iterative schemes

In this section we present a method for constructing convergent iterative schemes for a wide
class of well-posed Eq. (1). Some methods for constructing convergent iterative schemes for a wide
class of ill-posed problems are given in [2]. There is an enormous literature on iterative methods.

Consider a discretization scheme for solving (4) with @ = ®(u), so that we assume no explicit
time dependence in @:

Uy = Uy, + h®(u,), up=uy, h=const>0. (58)

One of our results from [2], concerning the well-posed Egs. (1) is Theorem 10, formulated below.
Its proof is shorter and simpler than in [2].

Theorem 10. Assume (2), (3), (9)—(13) with a=2, g =c;, =const >0, g, = ¢, = const > 0,
| @' (u)|| < Ly, for u € B(y,R). Then, if h > 0 is sufficiently small, and uy is sufficiently close to y, then
(58) produces a sequence u, for which

oy — ¥ <Re™™, || F ()| < [|Folle™™, (59)
where R := ;||| /c1, Fo = F(uo), ¢ = const > 0, and ¢ < ¢y.
Proof. The proof is by induction. For n = 0 estimates (59) are clear. Assuming these estimates for

j<mn, let us prove them for j =n+ 1. Let F, := F(u,), and let w,,(¢) solve problem (4) on the
interval (¢,,2,.1), t, := nh, with w,,(¢,) = u,. By (14) (with G = c,e'") and (59) one gets:

C ., il
I () = Y < 2Bl < Re ™, 4, <o <t (60)
1
One has:
b1 = VI < Nttsr = Wa1 (G )] + W1 (1) — V5 (61)

and

byt
||un+1—wn+1(tn+1)||</ [D(un) = P(Wasi1 (s)) || ds
ty

Int1
<Liesh / 1F (W (1)) dt
ty

< Lycih*Re™™, (62)
where we have used the formula R := ¢,||Fy||/c1, and the estimate:
IF (waia ()] < ([ fle™ ) < | Fplleme =t (63)
From (60)—(63) it follows that:
||un+1 _y” gRe—cnh(e—clh + C]Llhz) <R6_6<n+l)h,
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provided that
e_C‘h + ClLlhz < e_"h. (64)

Inequality (64) holds if % is sufficiently small and ¢ < ¢;. So, the first inequality (59), with n + 1 in
place of n, is proved if 4 is sufficiently small and ¢ < ¢;.

Now
1F () < W (i) = Ewuin O+ IE W O) - 20 SE< 1 (65)
Using (2) and (62), one gets:
1 (1) = F Wit (1)) | S Mty = W () || S MLy ]| Fyle™™. (66)

From (65) and (66) it follows that:
VG| < Falle (e + MicaLuh) <||Folle<+ ",
provided that
e "+ My Lih* <e™ . (67)

Inequality (67) holds if % is sufficiently small and ¢ < ¢;. So, the second inequality (59) with n + 1
in place of n is proved if 4 is sufficiently small and ¢ < ¢;. Theorem 10 is proved. [J

In the well-posed case, if F(y) = 0, the discrete Newton’s method

Upy1 = Uy — [ /(un)]ilF(un% Up = u(O)v
converges superexponentially if u, is sufficiently close to y. Indeed, if v, := u,, — y, then v, = v, —
[F'(u,)] ' [F'(u,)v, + K] where ||K||<M;||v,||°/2. Thus, g, :=||v,|| satisfies the inequality:
Zun1 < qg2, where g :=mM,/2. Therefore g, <q* 'g2’, and if 0 < ggy < 1, then the method
converges superexponentially.

If one uses the iterative method u, 1 = u, — A ’(un)]_lF (u,), with & # 1, then, in the well-posed
case, assuming that this method converges, it converges exponentially, that is, slower than in the
case h = 1.

The continuous analog of the above method

i = —alF'(u)]'F(u), u(0) = u,

where a = const > 0, converges at the rate O(e ). Indeed, if g(¢) := ||F(u())]|, then g&¢ = —ag?,
so g(t) = goe ™™, ||i|| < amigoe. Thus

lu(f) — u(o0)|| <migoe™, and F(u(c0)) =0.

In the continuous case one does not have superexponential convergence no matter what a > 0 is.

8. A spectral assumption (cf. [10])

In this section we introduce the spectral assumption which allows one to treat some non-linear
non-monotone operators.
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Assumption (). The set {r,¢p:n— ¢, < ¢ < 1+ @y, ¢, > 0,0 < r <ry}, where ¢, and r, are
arbitrarily small, fixed numbers, consists of the regular points of the operator 4 := F'(u) for all
u € B(ug, R).

Assumption (%) implies the estimate:

I(F'(u) + )| <

- , < ro(1 — sin @), = const > 0, 68
esin ¢, e <o Pg); € (68)

because ||(4 —z) || < 1/dist(z,s(4)), where s(4) is the spectrum of a linear operator 4, and
dist(z, s(4)) is the distance from a point z of a complex plane to the spectrum. In our case, z = —e,
and dist(z,s(4)) = esin ¢, if € < ro(1 — sin ¢y).

Theorem 11. If (2) and (68) hold, and 0 < e < ro(1 — sin @), then problem (38), with €(t) = € =
const > 0, is solvable, problem (4), with & defined in (34) and iy = 0, has a unique global solution,
Ju(oo), and F(u(o00)) + eu(oo) = 0. Every solution to the equation F(V) + eV = 0 is isolated.

Proof. Let g = g(¢) := ||F(u(¢)) + eu(?)||, where u = u(t) solves locally (4), where @ is defined in
(34) and #y = 0. Then:

g8 = —((F'(u) + ) (F'(u) + &) (F(u) + eu), F(u) + eu) = —&,

SO
_ . £o _
= ! = g(0); < — L
g=goe, g :=g(0); | Sing. S
Thus,
lu(t) — u(00)[| € —2—e,  [Ju(t) — upl| < —o—,  F(u(0)) + eu(s0) = 0.

esin ¢,

Therefore equation
F(V)+eV =0, €=const>D0, (69)
has a solution in B(ug, R), where R = gy/esin ¢,.

Every solution to Egs. (69) is isolated. Indeed, if F(W)+ eW =0, and ¢ :=V — W, then
F(V)—F(W)+epy =0, so [F'(V)+ ey +K =0, where ||K| <M|[y||>/2. Thus, using (68), one
gets ||y|| = 2esin ¢,/M,. Consequently, if ||| is sufficiently small, then = 0. Theorem 11 is
proved. 0

The author used assumption (%) in the theory of deconvolution [17].
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