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Abstract

Consider an operator equation F ðuÞ ¼ 0 in a real Hilbert space. The problem of solving this equation is

ill-posed if the operator F 0ðuÞ is not boundedly invertible, and well-posed otherwise. A general method,

dynamical systems method for solving linear and non-linear ill-posed problems in a Hilbert space is pre-

sented. This method consists of the construction of a non-linear dynamical system, that is, a Cauchy

problem, which has the following properties: (1) it has a global solution, (2) this solution tends to a limit as

time tends to infinity, (3) the limit solves the original linear or non-linear problem. New convergence and

discretization theorems are obtained. Examples of the applications of this approach are given. The method

works for a wide range of well-posed problems as well.
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1. Introduction

This paper contains a recent development of the theory of dynamical systems method (DSM)
earlier developed in papers [1–11], see also [12,13]. DSM is a general method for solving operator
equations, especially non-linear, ill-posed, but also well-posed operator equations. The author
hopes that DSM will demonstrate its practical efficiency and allow one to solve ill-posed prob-
lems. This paper is intended for a broad audience: the presentation is simplified considerably, and
is non-technical in its present form. Most of the results are presented in a new way. Some of the
results and/or proofs are new (Theorems 1–3, 5, Theorems 9–11, Remarks 1, 2, and the discussion
of the stopping rules). We try to emphasize the basic ideas and methods of the proofs.
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What is the dynamical systems method for solving operator equations?

Consider an equation

F ðuÞ :¼ BðuÞ � f ¼ 0; f 2 H ; ð1Þ

where B is a linear or non-linear operator in a real Hilbert space H . Some of our results can be
generalized to more general spaces, though these generalizations are not discussed here.
Throughout the paper we assume that:

sup
u2Bðu0;RÞ

kF ðjÞðuÞk6Mj; j ¼ 1; 2; ð2Þ

where Bðu0;RÞ :¼ fu : ku� u0k6Rg, F ðjÞðuÞ is the Fr�eechet derivative, and

F ðyÞ ¼ 0; y 2 Bðu0;RÞ; ð3Þ
that is, we assume existence of a solution to (1), not necessarily unique globally.

Assumptions (2) and (3) are our standard assumptions below, unless otherwise stated. Only for
well-posed problems in Section 2 we do not assume existence of a solution, but prove it, and
sometimes we can assume in these problems j ¼ 1 in (2), rather than j ¼ 2. In all the ill-posed
problems we assume existence of the solution to (1).

Let _uu denote derivative with respect to time. Consider the following dynamical system (the
Cauchy problem):

_uu ¼ Uðt; uÞ; uð0Þ ¼ u0; ð4Þ

where Uðt; uÞ is locally Lipschitz with respect to u 2 H and continuous with respect to tP 0:

sup
u;v2Bðu0;RÞ;t2½0;T �

kUðt; uÞ � Uðt; vÞk6 cku� vk; c ¼ cðR; u0; T Þ > 0: ð5Þ

One can relax ‘‘locally Lipschitz’’ assumption about U (for example, use one-sided inequalities)
but we do not discuss this point. Problem (4) has a unique local solution if (5) holds. The DSM for
solving (1) consists of solving (4), where U is so chosen that the following three conditions hold:

9uðtÞ8t > 0; 9uð1Þ :¼ lim
t!1

uðtÞ; F ðuð1ÞÞ ¼ 0: ð6Þ

Some of the basic results of this paper are the Theorems which provide the choices of U for
which (6) holds, and the technical tools (Theorems 4, 8) basic for our proofs.

Problem (1) with noisy data fd, kfd � f k6 d, given in place of f , generates the problem:

_uud ¼ Udðt; udÞ; udð0Þ ¼ u0; ð7Þ
the solution ud to (7), calculated at t ¼ td, will have the property

lim
d!0

kudðtdÞ � yk ¼ 0: ð8Þ

The choice of td with this property is called the stopping rule. One has usually limd!0 td ¼ 1.
In Section 2 we discuss well-posed problems (1), that is, the problems for which

sup
u2Bðu0;RÞ

k½F 0ðuÞ��1k6m1; ð9Þ
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and in the other sections ill-posed problems (1), for which (9) fails, are discussed.
The motivations for this work are:

(1) to develop a general method for solving operator equations, especially non-linear and ill-
posed, and

(2) to develop a general approach to constructing convergent iterative schemes for solving these
equations.

If (6) holds, and if one constructs a convergent discretization scheme for solving Cauchy
problem (4), then one will get a convergent iterative scheme for solving the original Eqs. (1).

2. Well-posed problems

Consider (1), let (2) hold, and assume

ðF 0ðuÞUðt; uÞ; F ðuÞÞ6 � g1ðtÞkF ðuÞka 8u 2 Bðu0;RÞ;
Z 1

0

g1 dt ¼ 1; ð10Þ

where g1 > 0 is an integrable function, a > 0 is a constant. Assume

kUðt; uÞk6 g2ðtÞkF ðuÞk; 8u 2 Bðu0;RÞ; ð11Þ

where g2 > 0 is such that

GðtÞ :¼ g2ðtÞ exp

�
�
Z t

0

g1 ds
�

2 L1ðRþÞ: ð12Þ

Remark. Sometimes assumption (11) can be used in the following modified form:

kUðt; uÞk6 g2ðtÞkF ðuÞkb; 8u 2 B;

where b > 0 is a constant. The statement and proof of Theorem 1 can be easily adjusted to this
assumption.

Our first basic result is the following:

Theorem 1.
(i) If (10)–(12) hold, and

kF ðu0Þk
Z 1

0

GðtÞdt6R; a ¼ 2; ð13Þ

then (4) has a global solution, (6) holds, (1) has a solution y ¼ uð1Þ 2 Bðu0;RÞ, and

kuðtÞ � yk6 kF ðu0Þk
Z 1

t
GðxÞdx; kF ðuðtÞÞk6 kF ðu0Þk exp

�
�
Z t

0

g1ðxÞdx
�
: ð14Þ
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(ii) If (10)–(12) hold, 0 < a < 2, and

kF ðu0Þk
Z T

0

g2 ds6R;

where T > 0 is defined by the equationZ T

0

g1ðsÞds ¼ kF ðu0Þk2�a
=ð2 � aÞ;

then (4) has a global solution, (6) holds, (1) has a solution y ¼ uð1Þ 2 Bðu0;RÞ, and uðtÞ ¼ y for
tP T .
(iii) If (10)–(12) hold, a > 2, andZ 1

0

g2ðsÞhðsÞds6R;

where

kF ðu0Þk2�a
�

þ ða� 2Þ
Z t

0

g1ðsÞds
� 1

2�a

:¼ hðtÞ; lim
t!1

hðtÞ ¼ 0;

then (4) has a global solution, (6) holds, (1) has a solution y ¼ uð1Þ 2 Bðu0;RÞ, and

kuðtÞ � uð1Þk6
Z 1

t
g2ðsÞhðsÞds ! 0

as t ! 1.

Let us sketch the proof.

Proof. The assumptions about U imply local existence and uniqueness of the solution uðtÞ to (4).
To prove global existence of u, it is sufficient to prove a uniform with respect to t bound on kuðtÞk.
Indeed, if the maximal interval of the existence of uðtÞ is finite, say ½0; T Þ, and Uðt; uÞ is locally
Lipschitz with respect to u, then kuðtÞk ! 1 as t ! T .

Assume a ¼ 2. Let gðtÞ :¼ kF ðuðtÞÞk. Since H is real, one uses (4) and (10) to get g _gg ¼
ðF 0ðuÞ _uu; F Þ6 � g1ðtÞg2, so _gg6 � g1ðtÞg, after integrating one gets the second inequality (14),
because gð0Þ ¼ kF ðu0Þk. Using (11), (4) and the second inequality (14), one gets:

kuðtÞ � uðsÞk6 gð0Þ
Z t

s
GðxÞdx; GðxÞ :¼ g2ðxÞ exp

�
�
Z x

0

g1ðzÞdz
�
: ð15Þ

Because G 2 L1ðRþÞ, it follows from (15) that the limit y :¼ limt!1 uðtÞ ¼ uð1Þ exists, and y 2 B
by (13). From the second inequality (14) and the continuity of F one gets F ðyÞ ¼ 0, so y solves (1).
Taking t ! 1 and setting s ¼ t in (15) yields the first inequality (14). The inclusion uðtÞ 2 B for all
tP 0 follows from (13) and (15). The first part of Theorem 1 is proved. The proof of the other
parts is similar. �

There are many applications of this theorem. We mention just a few, and assume that
g1 ¼ c1 ¼ const > 0 and g2 ¼ c2 ¼ const > 0 (see [18]).
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Example 1 (Continuous Newton-type method (Gavurin, 1958)). U ¼ �½F 0ðuÞ��1F ðuÞ. Assume that
(9) holds, then c1 ¼ 1; c2 ¼ m1, (13) takes the form m1ðRÞkF ðu0Þk6R. This inequality implies that
(4) has a global solution, (6) and (14) hold, and (1) has a solution in Bðu0;RÞ.

Example 2 (Continuous simple iterations method). Let U ¼ �F , and assume F 0ðuÞP c1ðRÞ > 0 for
all u 2 Bðu0;RÞ. Then c2 ¼ 1, c1 ¼ c1ðRÞ, (13) is: ½c1ðRÞ��1kF ðu0Þk6R, and the conclusions of
Example 1 hold.

Example 3 (Continuous gradient method). Let U ¼ �½F 0��F , (2) and (9) hold, c1 ¼ m�2
1 , c2 ¼

M1ðRÞ, (13) is M1m2
1kF ðu0Þk6R. This inequality implies the conclusions of Example 1.

Example 4 (Continuous Gauss–Newton method). Let U ¼ �ð½F 0��F 0Þ�1½F 0��F , (2) and (9) hold,
c1 ¼ 1, c2 ¼ m2

1M1, (13) is M1m2
1kF ðu0Þk6R. This inequality implies the conclusions of Example 1.

Example 5 (Continuous modified Newton method). Let U ¼ �½F 0ðu0Þ��1F ðuÞ. Assume
k½F 0ðu0Þ��1k6m0, and let (2) hold. Then c2 ¼ m0. Choose R ¼ ð2M2m0Þ�1

, and c1 ¼ 0:5. Then (13)
is 2m0kF ðu0Þk6 ð2M2m0Þ�1

, that is, 4m2
0M2kF ðu0Þk6 1. Thus, if 4m2

0M2kF ðu0Þk6 1, then the con-
clusions of Example 1 hold.

Example 6 (Descent methods). Let U ¼ �ðf =ðf 0; hÞÞh, where f ¼ f ðuðtÞÞ is a differentiable
functional f : H ! ½0;1Þ, and h is an element of H . From (4) one gets _ff ¼ ðf 0; _uuÞ ¼ �f . Thus
f ¼ f0e

�t, where f0 :¼ f ðu0Þ. Assume kUk6 c2jf jb, b > 0. Then k _uuk6 c2jf0jbe�bt. Therefore uð1Þ
does exist, f ðuð1ÞÞ ¼ 0, and kuð1Þ � uðtÞk6 ce�bt, c ¼ const > 0.

If h ¼ f 0, and f ¼ kF ðuÞk2
, then f 0ðuÞ ¼ 2½F 0��ðuÞF ðuÞ, U ¼ �ðf =kf 0k2Þf 0, and (4) is a descent

method. For this U one has c1 ¼ 1=2, and c2 ¼ m1=2, where m1 is defined in (9). Condition (13) is:
m1kF ðu0Þk6R. If this inequality holds, then the conclusions of Example 1 hold.

In Example 6 we have obtained some results from [14]. Our approach is more general than the
one in [14], since the choices of f and h do not allow one, for example, to obtain U used in
Example 5.

3. Linear ill-posed problems

We assume that (9) fails. Consider

Au ¼ f : ð16Þ
Let us denote by (A) the following assumption:

(A): A is a linear, bounded operator in H , defined on all of H , the range RðAÞ is not closed, so (16)
is an ill-posed problem, there is a y such that Ay ¼ f , y ? N , where N is the null-space of A.

Let B :¼ A�A, q :¼ By ¼ A�f , A� is the adjoint of A. Every solution to (16) solves

Bu ¼ q; ð17Þ
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and, if f ¼ Ay, then every solution to (17) solves (16). Choose a continuous, monotonically de-
caying to zero function �ðtÞ > 0, on Rþ.

Sometimes it is convenient to assume that

lim
t!1

ð _����2Þ ¼ 0: ð18Þ

For example, the functions � ¼ c1ðc0 þ tÞ�b
, 0 < b < 1, where c0 and c1 are positive constants,

satisfy (18). There are many such functions. One can prove [3,7] the following:

Claim. If �ðtÞ > 0 is a continuous monotonically decaying function on Rþ, limt!1 �ðtÞ ¼ 0, and (18)
holds, thenZ 1

0

�ds ¼ 1: ð19Þ

In this section we do not use assumption (18): in the proof of Theorem 2 one uses only the
monotonicity of a continuous function � > 0 and (19). One can drop assumption (19), but then
convergence is proved in Theorem 2 to some element of N , not necessarily to the normal solution
y, that is, to the solution orthogonal to N , or, which is the same, to the minimal norm solution to
(16). However, (18) is used (in a slightly weaker form) in Section 4.

Consider problems (4) and (7) with

U :¼ �½Buþ �ðtÞu� q�; Ud ¼ �½Bud þ �ðtÞud � qd�; ð20Þ
where kq� qdk6 kA�kd :¼ Cd. Without loss of generality one may assume this C ¼ 1, which we do
in what follows. Our main result in Section 3, is Theorem 2, stated below. It yields the following:

Conclusion. Given noisy data fd, every linear ill-posed problem (16) under assumptions (A) can be
stably solved by the DSM.

The result presented in Theorem 2 is essentially obtained in [7], but our proof is different and
much shorter.

Theorem 2. Problem (4) with U from (20) has a unique global solution uðtÞ, (6) holds, and uð1Þ ¼ y.
Problem (7) with Ud from (20), has a unique global solution udðtÞ, and there exists td, such that

lim
d!0

kudðtdÞ � yk ¼ 0: ð21Þ

This td can be chosen, for example, as a root of the equation

�ðtÞ ¼ db; b 2 ð0; 1Þ; ð22Þ
or the equation (27) below.

Proof. Linear Eqs. (4) with bounded operators have unique global solutions. If
U ¼ �½Buþ �ðtÞu� q�, then the solution u to (4) is

uðtÞ ¼ h�1ðtÞUðtÞu0 þ h�1ðtÞ
Z kBk

0

expð�tkÞ
Z t

0

eskhðsÞdskdEky; ð23Þ
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where hðtÞ :¼ expð
R t

0
�ðsÞdsÞ ! 1 as t ! 1, Ek is the resolution of the identity corresponding to

the selfadjoint operator B, and UðtÞ :¼ e�tB is a non-expansive operator, because BP 0. Actually,
(23) can be used also when B is unbounded, kBk ¼ 1.

Using L�Hôospital�s rule one checks that

lim
t!1

k
R t

0
eskhðsÞds
etkhðtÞ ¼ lim

t!1

ketkhðtÞ
ketkhðtÞ þ etkhðtÞ�ðtÞ ¼ 1 8k > 0; ð24Þ

provided only that �ðtÞ > 0 and limt!1 �ðtÞ ¼ 0. From (23), (24), and the Lebesgue dominated
convergence theorem, one gets uð1Þ ¼ y � Py, where P is the orthogonal projection operator on
the null-space of B. Under our assumptions (A), Py ¼ 0, so uð1Þ ¼ y. If vðtÞ :¼ kuðtÞ � yk, then
limt!1 vðtÞ ¼ 0. In general, the rate of convergence of v to zero can be arbitrarily slow for a
suitably chosen f . Under an additional a priori assumption on f (for example, the source type
assumptions), this rate can be estimated.

Let us describe a method for deriving a stopping rule. One has:

kudðtÞ � yk6 kudðtÞ � uðtÞk þ vðtÞ:
Since limt!1 vðtÞ ¼ 0, any choice of td such that

lim
td!1

kudðtdÞ � uðtdÞk ¼ 0;

gives a stopping rule: for such td one has limd!0 kudðtÞ � yk ¼ 0.
To prove that (22) gives such a rule, it is sufficient to check that

kudðtÞ � uðtÞk6 d
�ðtÞ : ð25Þ

Let us prove (25). Denote w :¼ ud � u. Then

_ww ¼ �½Bwþ �w� p�; wð0Þ ¼ 0; kpk6 d: ð26Þ
Integrating (26), and using the property BP 0, one gets (25).

Alternatively, multiply (26) by w, let kwk :¼ g, use BP 0, and get _gg6 � �ðtÞg þ d, gð0Þ ¼ 0.
Thus,

gðtÞ6 d exp

�
�
Z t

0

�ds
�Z t

0

exp

Z s

0

�ds

� �
ds6

d
�ðtÞ :

A more precise estimate, also used at the end of the proof of Theorem 3 below, yields:

kudðtÞ � uðtÞk6 d

2
ffiffiffiffiffiffiffiffi
�ðtÞ

p ;

and the corresponding stopping time td can be taken as the root of the equation:

2
ffiffiffiffiffiffiffiffi
�ðtÞ

p
¼ db; b 2 ð0; 1Þ: ð27Þ

Theorem 2 is proved. �.

If the rate of decay of v is known, then a more efficient stopping rule can be derived: td is the
minimizer of the problem:

A.G. Ramm / Communications in Nonlinear Science and Numerical Simulation xxx (2003) xxx–xxx 7

ARTICLE IN PRESS



vðtÞ þ d½�ðtÞ��1 ¼ min : ð28Þ
For example, if vðtÞ6 c�aðtÞ, then td is the root of the equation

�ðtÞ ¼ d
ca

� � 1
1þa

;

which one gets from (28) with v ¼ c�a.
One can also use a stopping rule based on an a posteriori choice of the stopping time, for

example, the choice by a discrepancy principle.
A method, much more efficient numerically than Theorem 2, is given below in Theorem 5.
For linear Eq. (17) with exact data this method uses (4) with

U ¼ �ðBþ �ðtÞÞ�1½Buþ �ðtÞu� q� ¼ �uþ ðBþ �ðtÞÞ�1q; ð29Þ

and for noisy data it uses (7) with Ud ¼ �ud þ ðBþ �ðtÞÞ�1qd. The linear operator BP 0 is
monotone, so Theorem 5 is applicable. For exact data (4) with U, defined in (29), yields:

_uu ¼ �uþ ðBþ �ðtÞÞ�1q; uð0Þ ¼ u0; ð30Þ

and (6) holds if �ðtÞ > 0 is monotone, continuous, decreasing to 0 as t ! 1.
Let us formulate the result:

Theorem 3. Assume (A), and let B :¼ A�A, q :¼ A�f . Assume �ðtÞ > 0 to be a continuous, mono-
tonically decaying to zero function on ½0;1Þ. Then, for any u0 2 H , problem (30) has a unique global
solution, 9uð1Þ ¼ y, Ay ¼ f , and y is the minimal-norm solution to (16). If fd is given in place of f ,
kf � fdk6 d, then (21) holds, with udðtÞ solving (30) with q replaced by qd :¼ A�fd, and td should be
chosen, for example, as the root of (27) (or by a discrepancy principle).

Proof. One has q ¼ Bz, where Az ¼ f , and the solution to (30) is

uðtÞ ¼ u0e
�t þ e�t

Z t

0

esðBþ �ðsÞÞ�1Bzds :¼ u0e
�t þ

Z kBk

0

jðk; tÞdEkz; ð31Þ

where

jðk; tÞ :¼
Z t

0

kes

½k þ �ðsÞ�et ds; ð32Þ

and Ek is the resolution of the identity of the selfadjoint operator B. One has

06 jðk; tÞ6 1; lim
t!1

jðk; tÞ ¼ 1 k > 0; jð0; tÞ ¼ 0: ð33Þ

From (31)–(33) it follows that 9uð1Þ, uð1Þ ¼ z� PNz ¼ y, where y is the minimal-norm solution
to (16), N :¼ NðBÞ ¼ NðAÞ is the null-space of B and of A, and PN is the orthoprojector onto N in
H . This proves the first part of Theorem 3.

To prove the second part, denote w :¼ ud � u, g :¼ fd � f , where we dropped the dependence
on d in w and g for brevity. Then _ww ¼ �wþ ðBþ �ðtÞÞ�1A�g, wð0Þ ¼ 0. Thus
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w ¼ e�t

Z t

0

esðBþ �ðsÞÞ�1A�gds;

so

kwk6 de�t

Z t

0

es

2
ffiffiffiffiffiffiffiffi
�ðsÞ

p ds6
d

2
ffiffiffiffiffiffiffiffi
�ðtÞ

p ;

where the known estimate (see e.g. [4,7]) was used: kðBþ �Þ�1A�k6 1=ð2
ffiffi
�

p
Þ. Theorem 3 is

proved. �

4. Non-linear ill-posed problems with monotone operators

There is a large literature on Eqs. (1) and (4) with monotone operators. In the result we present
the problem is non-linear and ill-posed, the new technical tool, Theorem 4, is used, and the
stopping rules are discussed.

Consider (4) with monotone F under standard assumptions (2) and (3), and

U ¼ �A�1
�ðtÞðuÞ½F ðuðtÞÞ þ �ðtÞðuðtÞ � ~uu0Þ�; ð34Þ

where A ¼ AðuÞ :¼ F 0ðuÞ, A� is its adjoint, �ðtÞ is the same as in Theorem 3, and in Theorem 5 �ðtÞ
is further specified, ~uu0 2 Bðu0;RÞ is an element we can choose to improve the numerical perfor-
mance of the method. If noisy data are given, then, as in Section 3, we take

F ðuÞ :¼ BðuÞ � f ; Ud ¼ �A�1
�ðtÞðudÞ½BðudðtÞÞ � fd þ �ðtÞðudðtÞ � ~uu0Þ�;

where kfd � f k6 d, B is a monotone non-linear operator, BðyÞ ¼ f , and ud solves (7).
To prove that (4) with the above U has a global solution and (6) holds, we use the following:

Theorem 4. Let cðtÞ, rðtÞ, bðtÞ 2 C½t0;1Þ for some real number t0. If there exists a positive function
lðtÞ 2 C1½t0;1Þ such that

06 rðtÞ6 lðtÞ
2

cðtÞ
"

� _llðtÞ
lðtÞ

#
; bðtÞ6 1

2lðtÞ cðtÞ
"

� _llðtÞ
lðtÞ

#
; g0lðt0Þ < 1; ð35Þ

where g0 is the initial condition in (36), then a non-negative solution g to the following differential
inequality:

_ggðtÞ6 � cðtÞgðtÞ þ rðtÞg2ðtÞ þ bðtÞ; gðt0Þ ¼ g0; ð36Þ

satisfies the estimate:

06 gðtÞ6 1 � mðtÞ
lðtÞ <

1

lðtÞ ; ð37Þ
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for all t 2 ½t0;1Þ, where

0 < mðtÞ ¼ 1

1 � lðt0Þgðt0Þ

 
þ 1

2

Z t

t0

cðsÞ
 

� _llðsÞ
lðsÞ

!
ds

!�1

:

There are several novel features in this result. First, differential equation, which one gets from
(36) by replacing the inequality sign by the equality sign, is a Riccati equation, whose solution
may blow up in a finite time, in general. Conditions (35) guarantee the global existence of the
solution to this Riccati equation with the initial condition (36). Secondly, this Riccati differential
equation cannot be integrated analytically by separation of variables. Thirdly, the coefficient rðtÞ
may grow to infinity as t ! 1, so that the quadratic term does not necessarily have a small
coefficient, or the coefficient smaller than cðtÞ. Without loss of generality one may assume bðtÞP 0
in Theorem 4. The proof of Theorem 4 is given in [2].

The main result of this Section is new. It claims a global convergence in the sense that no
assumptions on the choice of the initial approximation u0 are made. Usually one assumes that u0 is
sufficiently close to the solution of (1) in order to prove convergence. We take ~uu0 ¼ 0 in Theorem
5, because in this theorem ~uu0 does not play any role. The proof is valid for any choice of ~uu0, but
then the definition of r in Theorem 5 is changed.

Theorem 5. If (2) and (3) hold, ~uu0 ¼ 0, R ¼ 3r, where r :¼ kyk þ ku0k, and y 2 N :¼ fz : F ðzÞ ¼ 0g
is the (unique) minimal norm solution to (1), then, for any choice of u0, problem (4) with U defined in
(34), ~uu0 ¼ 0, and �ðtÞ ¼ c1ðc0 þ tÞ�b with some positive constants c1; c0; and b 2 ð0; 1Þ, specified in
the proof of Theorem 5, has a global solution, this solution stays in the ball Bðu0;RÞ and (6) holds. If
udðtÞ solves (4) with Ud in place of U, then there is a td such that limd!0 kudðtdÞ � yk ¼ 0.

Proof. Let us sketch the steps of the proof. Let V solve the equation

F ðV Þ þ �ðtÞV ¼ 0: ð38Þ
Under our assumptions on F , it is well known that: (i) (38) has a unique solution for every t > 0,
and (ii) suptP 0 kV k6 kyk, (cf. [2]). If F is Fr�eechet differentiable, then V is differentiable, and
k _VV ðtÞk6 kykj _��ðtÞj=�ðtÞ. It is also known that if (3) holds, then limt!1 kV ðtÞ � yk ¼ 0. We will show
that the global solution u to (4), with the U from (34), does exist, and limt!1 kuðtÞ � V ðtÞk ¼ 0.
This is done by deriving a differential inequality for w :¼ u� V , and by applying Theorem 4
to g ¼ kwk. Since kuðtÞ � yk6 kuðtÞ � V ðtÞk þ kV ðtÞ � yk, it then follows that (6) holds. We
also check that uðtÞ 2 Bðu0;RÞ, where R :¼ 3ðkyk þ ku0kÞ, for any choice of u0 and a suitable
choice of �.

Let us derive the differential inequality for w. One has

_ww ¼ � _VV � A�1
�ðtÞðuÞ½F ðuðtÞÞ � F ðV ðtÞÞ þ �ðtÞw�; ð39Þ

and F ðuÞ � F ðV Þ ¼ Awþ K, where kKk6M2g2=2, g :¼ kwk and M2 is the constant from (2).
Multiply (39) by w, use the monotonicity of F , that is, the property AP 0, and the estimate
k _VV k6 kykj _��j=�, and get:

_gg6 � g þ 0:5Mg2

�
þ kyk j _��j

�
; ð40Þ
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where M :¼ M2. Inequality (40) is of the type (36): c ¼ 1, r ¼ 0:5M=�, bðtÞ ¼ kykj _��j=�. Choose

lðtÞ ¼ 2M
�ðtÞ :

Clearly l ! 1 as t ! 1. Let us check three conditions (35). One has _llðtÞ=lðtÞ ¼ j _��j=�. Take � ¼
c1ðc0 þ tÞ�b

, where cj > 0 are constants, 0 < b < 1, and choose these constants so that j _��j=� < 1=2,
for example, b=c0 ¼ 1=4. Then the first condition (35) is satisfied. The second condition (35)
holds if

8Mkykj _��j��2
6 1: ð41Þ

One has �ð0Þ ¼ c1c�b
0 . Choose

�ð0Þ ¼ 4Mr:

Then

j _��j��2 ¼ bc�1
1 ðc0 þ tÞb�1

6 bc�1
0 c�1

1 cb0 ¼
1

4�ð0Þ ¼
1

16Mr
;

so (41) holds. Thus, the second condition (35) holds. The last condition (35) holds because

2Mku0 � V0k
�ð0Þ 6

2Mr
4Mr

¼ 1

2
< 1:

By Theorem 4 one concludes that g ¼ kwðtÞk < �ðtÞ=2M ! 0 when t ! 1, and

kuðtÞ � u0k6 g þ kV � u0k6 gð0Þ þ r6 3r: ð42Þ

This estimate implies the global existence of the solution to (4), because if uðtÞ would have a finite
maximal interval of existence, ½0; T Þ, then uðtÞ could not stay bounded when t ! T , which con-
tradicts the boundedness of kuðtÞk, and from (42) it follows that kuðtÞk6 4r. We have proved the
first part of Theorem 5, namely properties (6).

To derive a stopping rule we argue as in Section 3. One has:

kudðtÞ � yk6 kudðtÞ � V ðtÞk þ kV ðtÞ � yk:
We have already proved that limt!1 vðtÞ :¼ limt!1 kV ðtÞ � yk ¼ 0. The rate of decay of v can

be arbitrarily slow, in general. Additional assumptions, for example, the source-type ones, can be
used to estimate the rate of decay of vðtÞ. One derives differential inequality (36) for gd :¼
kudðtÞ � V ðtÞk, and estimates gd using (37). The analog of (40) for gd contains additional term d=�
on the right-hand side. If d=�2

6 1=16M , then conditions (35) hold, and gd < �ðtÞ=2M . Let td be
the root of the equation �2ðtÞ ¼ 16Md. Then limd!0 td ¼ 1, and (8) holds because kudðtdÞ�
yk6 vðtdÞ þ gd, limtd!1 gdðtdÞ ¼ 0 and limtd!1 vðtdÞ ¼ 0, but the convergence in (8) can be slow.
See [3,4] for the rate of convergence under source assumptions. If the rate of decay of vðtÞ is
known, then one chooses td as the minimizer of the problem, similar to (28),

vðtÞ þ gdðtÞ ¼ min;

where the minimum is taken over t > 0 for a fixed small d > 0. This yields a quasioptimal stopping
rule. Theorem 5 is proved. �
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In [3] a local convergence result, similar to the first part of Theorem 4, was obtained, that is,
ku0 � yk was assumed sufficiently small, and no discussion of noisy data was given.

Let us give another result:

Theorem 6. Assume that U ¼ �F ðuÞ � �ðtÞu, F is monotone, �ðtÞ as in Theorem 3, and (18), (2) and
(3) hold. Then (6) holds.

Proof. As in the proof of Theorem 5, it is sufficient to prove that limt!1 gðtÞ ¼ 0, where g;w; and
V are the same as in Theorem 5, and u solves (4) with the U defined in Theorem 6. Similarly to the
derivation of (39), one gets:

_ww ¼ � _VV � ½F ðuÞ � F ðV Þ þ �ðtÞw�: ð43Þ

Multiply (43) by w, use the monotonicity of F , the estimate k _VV k6 ðj _��ðtÞj=�ðtÞÞkyk, which was used
also in the proof of Theorem 5, and get:

_gg6 � �ðtÞg þ j _��ðtÞj
�ðtÞ kyk:

This implies

gðtÞ6 e
�
R t

0
�ðsÞds gð0Þ

"
þ
Z t

0

e

R s

0
�ðxÞ dx j _��ðsÞj

�ðsÞ kykds

#
: ð44Þ

From our assumptions relation (19) follows, and (44) together with (18) and (19) imply
limt!1 gðtÞ ¼ 0. Theorem 6 is proved. �

Remark 1. One can drop assumption (2) in Theorem 6 and assume only that F is a monotone
hemicontinuous operator defined on all of H .

Claim 1. If �ðtÞ ¼ � ¼ const > 0, then lim�!0 kuðt�Þ � yk ¼ 0, where uðtÞ solves (4) with
U :¼ �F ðuÞ � �u, and t� is any number such that lim�!0 �t� ¼ 1.

Proof. One has kuðtÞ � yk6 kuðtÞ � V�k þ kV� � yk, where V� solves (38) with �ðtÞ ¼ � ¼ const > 0.
Under our assumptions on F , Eq. (38) has a unique solution, and lim�!0 kV� � yk ¼ 0. So, to
prove the claim, it is sufficient to prove that lim�!0 kuðt�Þ � V�k ¼ 0, provided that lim�!0 �t� ¼ 1.
Let g :¼ kuðtÞ � V�k, and w :¼ uðtÞ � V�. Because _VV� ¼ 0, one has the equation: _ww ¼ �½F ðuÞ�
F ðV�Þ þ �w�. Multiplying this equation by w, and using the monotonicity of F , one gets _gg6 � �g,
so gðtÞ6 gð0Þe��t. Therefore lim�!0 gðt�Þ ¼ 0, provided that lim�!0 �t� ¼ 1. The claim is
proved. �

Remark 2. One can prove claims (i) and (ii), formulated below formula (38), using DSM version
presented in Theorem 11 below.

Claim 2. Assume that F is monotone, (2) holds, and F ðyÞ ¼ 0. Then claims (i) and (ii), formulated
below formula (38), hold.
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Proof. First, note that (ii) follows from (i) easily, because the assumptions F ðyÞ ¼ 0, F is monotone,
and � > 0, imply, after multiplying F ðV Þ � F ðyÞ þ �V ¼ 0 by V � y, the inequality ðV ; V � yÞ6 0,
from which claim (ii) follows. Claim (i) follows from Theorem 11, proved below. �

Claim 3. Assume that the operator F is monotone, hemicontinuous, defined on all of H , F ðyÞ ¼ 0, y
is the minimal norm element of NF :¼ fz : F ðzÞ ¼ 0g, U ¼ �F ðuÞ � �ðtÞu, �ðtÞ > 0, is monotone,
decaying to zero, and (18) holds. Then (6) holds for the solution to (4).

Proof. Existence of the unique global solution to (4) under our assumptions is known (see e.g. [15]).
Let w :¼ u� Vb, g :¼ kwk, where Vb solves F ðVbÞ þ bVb ¼ 0, b ¼ const > 0. It is known [15] that
kVbk6 kyk, and limb!0 kVb � yk ¼ 0. One has kuðtÞ � yk6 kuðtÞ � Vbk þ kVb � yk. Thus, to prove
limt!1 kuðtÞ � yk ¼ 0 it is sufficient to prove that limt!1 gðtÞ ¼ 0. One has _ww ¼ �½F ðuÞþ
�ðtÞu� F ðVbÞ � bVb�. Multiply this equation by w, use the monotonicity of F and get: _gg6 � �ðtÞwþ
j�ðtÞ � bkjyk. Denote hðtÞ :¼ expð

R t
0
�ðsÞdsÞ. Then,

gðnÞ6 gð0Þh�1ðnÞ þ h�1ðnÞ
Z n

0

hðsÞj�ðsÞ � bjdskyk:

Clearly, limn!1 gð0Þh�1ðnÞ ¼ 0, because limt!1 hðtÞ ¼ 1. In fact, ��1
6 ct þ c0, where c0 :¼

��1ð0Þ > 0, and one can choose 0 < c < 1 because of (18), so hP ðct þ c0Þ1=c
, and

limt!1 �ðtÞhðtÞ ¼ 1. Choose b ¼ �ðnÞ and apply L�Hôospital�s rule to the last term in the above
inequality for gðnÞ. L�Hôospital�s rule is applicable, and one gets:

lim
n!1

gðnÞ ¼ lim
n!1

j _��ðnÞj
�2ðnÞ

�ðnÞ
R n

0
hds

hðnÞ ¼ 0:

Claim 3 is proved. �

The result in Claim 3 contains the result from [16], where additional assumptions are made on
�ðtÞ, global existence of the solution to (4) is assumed, and the proof contains a gap, because it is
not shown that the L�Hôospital�s rule can be applied twice.

5. Non-linear ill-posed problems with non-monotone operators

Assume that F ðuÞ :¼ BðuÞ � f , B is a non-monotone operator, A :¼ F 0ðuÞ, ~AA :¼ F 0ðyÞ, T :¼ A�A,eTT :¼ ~AA� ~AA, T� :¼ T þ �I, where I is the identity operator, � is as in Theorem 3 and j _��ðtÞj=�ðtÞ < 1,

U :¼ �T�1
� ðuÞ½A�ðBðuÞ � f Þ þ �ðu� ~uu0Þ�; � ¼ �ðtÞ > 0; ð45Þ

and Ud is defined similarly, with fd replacing f and ud replacing u.
The main result of this section is:

Theorem 7. If (2) and (3) hold, u; u0 2 Bðy;RÞ, y � ~uu0 ¼ eTT z, kzk � 1, and R � 1, then problem (4)
has a unique global solution and (6) holds. If udðtÞ solves (7), then there exists a td such that
limd!0 kudðtdÞ � yk ¼ 0.
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The derivation of the stopping rule, that is, the choice of td, is based on the ideas presented in
Section 4 (cf. [7,4]). R � 1 means that R is sufficiently small.

Sketch of proof. Proof of Theorem 7 consists of the following steps.
First we prove that g :¼ kwk :¼ kuðtÞ � yk satisfies a differential inequality (36), and, applying

(37), conclude that gðtÞ < l�1ðtÞ ! 0 as t ! 1. A new point in this derivation (compared with the
one for monotone operators) is the usage of the source assumption y � u0 ¼ eTT z.

Secondly, we derive the stopping rule using the ideas from Section 4. The source assumption
allows one to get a rate of convergence (see [1,4]). Details of the proof are technical and are not
included. One can see [4] for some proofs.

Let us sketch the derivation of the differential inequality for g. Write BðuÞ � f ¼ BðuÞ�
sBðyÞ ¼ Awþ K, where kKk6M2g2=2, and �ðu� ~uu0Þ ¼ �wþ �ðy � ~uu0Þ ¼ �wþ �eTT z. Then (45) can
be written as

U ¼ �w� T�1
� A�K � �T�1

�
eTT z; � :¼ �ðtÞ: ð46Þ

Multiplying (4), with U defined in (46), by w, one gets:

g _gg6 � g2 þM2

2
kT�1

�ðtÞA
�kg3 þ �ðtÞkT�1

�ðtÞ
eTT kkzkg:

Since gP 0, one obtains:

_gg6 � g þ M2

4
ffiffiffiffiffiffiffiffi
�ðtÞ

p g2 þ �ðtÞkT�1
�
eTT kkzk; ð47Þ

where the estimate kT�1
� A�k6 1=ð2

ffiffi
�

p
Þ was used. Clearly,

kT�1
�
eTT k6 kðT�1

� � eTT �1
� ÞeTT k þ keTT �1

�
eTT k; keTT �1

�
eTT k6 1; �kT�1

� k6 1;

and

T�1
� � eTT �1

� ¼ T�1
� ðA�A� ~AA� ~AAÞeTT �1

� :

One has:

kA�A� ~AA� ~AAk6 2M2M1g; kzk � 1:

Let 2M1M2kzk6 1=2. This is possible since kzk � 1. Using the above estimates, one transforms
(47) into the following inequality:

_gg6 � 1

2
g þ M2

4
ffiffiffiffiffiffiffiffi
�ðtÞ

p g2 þ kzk�: ð48Þ

Now, apply Theorem 4 to (48), choosing

l ¼ 2M2ffiffi
�

p ;
j _��j
�
<

1

2
; 16M2kzk

ffiffiffiffiffiffiffiffi
�ð0Þ

p
< 1; and

2M2ku0 � ykffiffiffiffiffiffiffiffi
�ð0Þ

p < 1:
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Then conditions (35) are satisfied, and Theorem 4 yields the estimate:

gðtÞ <
ffiffiffiffiffiffiffiffi
�ðtÞ

p
2M2

:

This is the main part of the proof of Theorem 7. �

6. Non-linear ill-posed problems: avoiding inverting of operators in the Newton-type continuous
schemes

In the Newton-type methods for solving well-posed non-linear problems, for example, in the
continuous Newton method (4) with U ¼ �½F 0ðuÞ��1F ðuÞ, the difficult and expensive part of the
solution is inverting the operator F 0ðuÞ. In this section we give a method to avoid inverting of this
operator. This is especially important in the ill-posed problems, where one has to invert some
regularized versions of F 0, and to face more difficulties than in the well-posed problems.

Consider problem (1) and assume (2), (3) and (9). Thus, we discuss our method in the simplest
well-posed case.

Replace (4) by the following Cauchy problem (dynamical system):

_uu ¼ �QF ; uð0Þ ¼ u0; ð49Þ

_QQ ¼ �TQþ A�; Qð0Þ ¼ Q0; ð50Þ
where A :¼ F 0ðuÞ, T :¼ A�A, and Q ¼ QðtÞ is a bounded operator in H .

First let us state our new technical tool: an operator version of the Gronwall inequality (cf. [8]).

Theorem 8. Let
_QQ ¼ �T ðtÞQðtÞ þ GðtÞ; Qð0Þ ¼ Q0;

where T ðtÞ, GðtÞ, and QðtÞ are linear bounded operators on a real Hilbert space H . If there exists
�ðtÞ > 0 such that

ðT ðtÞh; hÞP �ðtÞkhk2 8h 2 H ;

then

kQðtÞk6 e
�
R t

0
�ðsÞ ds kQð0Þk

�
þ
Z t

0

kGðsÞke

R s

0
�ðxÞ dx

ds
�
: ð51Þ

Let us turn now to a proof of Theorem 9, formulated at the end of this section. This theorem is
the main result of Section 6.

Applying (51) to (50), and using (2) and (9), which implies

ðT ðtÞh; hÞP ckhk2 8h 2 H ; c ¼ const > 0;

one gets:

kQðtÞk6 e�ct kQð0Þk
�

þ
Z t

0

M1e
st ds
�
6 ½kQ0k þM1c�1� :¼ c1;

as long as uðtÞ 2 Bðu0;RÞ.
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Let uðtÞ � y :¼ w, kwk :¼ g, ~AA :¼ F 0ðyÞ. Since F ðyÞ ¼ 0, one has F ðuÞ ¼ ~AAwþ K, where
kKk6 0:5M2g2 :¼ c0g2, and M2 is the constant from (2). Rewrite (49) as

_ww ¼ �Q½ ~AAwþ K�: ð52Þ

Let K :¼ I � Q ~AA. Multiply (52) by w and get

g _gg6 � g2 þ ðKw;wÞ þ c0g3; c0 ¼ const > 0: ð53Þ

We prove below that

sup
tP 0

kKk6 k < 1: ð54Þ

From (53) and (54) one gets the following differential inequality:

_gg6 � cg þ c0g2; 0 < c < 1; c :¼ 1 � k; ð55Þ
which implies:

gðtÞ6 re�ct; r :¼ gð0Þ½1 � gð0Þc0��1
; ð56Þ

provided that

gð0Þc0 < 1: ð57Þ
Inequality (57) holds if u0 is sufficiently close to y.

From (56) and (55) it follows that uð1Þ ¼ y. Thus, (6) holds.
The trajectory uðtÞ 2 Bðu0;RÞ, 8t > 0, provided thatZ 1

0

k _uukdt ¼
Z 1

0

k _wwkdt6 r þ c0r2

2c
6R:

This inequality holds if u0 is sufficiently close to y, that is, r is sufficiently small.
To complete the argument, let us prove (54). One has:

_KK ¼ � _QQ ~AA ¼ �TK þ A�ðA� ~AAÞ:
One has kA� ~AAk6M2g. Using (56) and Theorem 8, one gets

kKk6 e�ct kK0k
�

þ rM1M2

Z t

0

eðc�cÞs ds
�
:

Thus,

kKk6 kK0k þ Cr :¼ k; C :¼ M1M2 sup
t>0

e�ct � e�ct

c� c
:

If u0 is sufficiently close to y and Q0 is sufficiently close to ~AA�1, then k > 0 can be made arbitrary
small. We have proved:

Theorem 9. If (2), (3) and (9) hold, Q0 and u0 are sufficiently close to ~AA�1 and y, respectively, then
problem (49) and (50) has a unique global solution, (6) holds, and uðtÞ converges to y, which solves
(1), exponentially fast.
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In [8] a generalization of Theorem 9 is given for ill-posed problems.

7. Iterative schemes

In this section we present a method for constructing convergent iterative schemes for a wide
class of well-posed Eq. (1). Some methods for constructing convergent iterative schemes for a wide
class of ill-posed problems are given in [2]. There is an enormous literature on iterative methods.

Consider a discretization scheme for solving (4) with U ¼ UðuÞ, so that we assume no explicit
time dependence in U:

unþ1 ¼ un þ hUðunÞ; u0 ¼ u0; h ¼ const > 0: ð58Þ
One of our results from [2], concerning the well-posed Eqs. (1) is Theorem 10, formulated below.
Its proof is shorter and simpler than in [2].

Theorem 10. Assume (2), (3), (9)–(13) with a ¼ 2, g1 ¼ c1 ¼ const > 0, g2 ¼ c2 ¼ const > 0,
kU0ðuÞk6 L1, for u 2 Bðy;RÞ. Then, if h > 0 is sufficiently small, and u0 is sufficiently close to y, then
(58) produces a sequence un for which

kun � yk6Re�chn; kF ðunÞk6 kF0ke�chn; ð59Þ
where R :¼ c2kF0k=c1, F0 ¼ F ðu0Þ, c ¼ const > 0, and c < c1.

Proof. The proof is by induction. For n ¼ 0 estimates (59) are clear. Assuming these estimates for
j6 n, let us prove them for j ¼ nþ 1. Let Fn :¼ F ðunÞ, and let wnþ1ðtÞ solve problem (4) on the
interval ðtn; tnþ1Þ, tn :¼ nh, with wnþ1ðtnÞ ¼ un. By (14) (with G ¼ c2e

�c1t) and (59) one gets:

kwnþ1ðtÞ � yk6 c2

c1

kFnke�c1t 6Re�cnh�c1t; tn 6 t6 tnþ1: ð60Þ

One has:

kunþ1 � yk6 kunþ1 � wnþ1ðtnþ1Þk þ kwnþ1ðtnþ1Þ � yk; ð61Þ
and

kunþ1 � wnþ1ðtnþ1Þk6
Z tnþ1

tn

kUðunÞ � Uðwnþ1ðsÞÞkds

6 L1c2h
Z tnþ1

tn

kF ðwnþ1ðtÞÞkdt

6 L1c1h2Re�cnh; ð62Þ
where we have used the formula R :¼ c2kF0k=c1, and the estimate:

kF ðwnþ1ðtÞÞk6 kFnke�c1ðt�tnÞ
6 kF0ke�cnh�c1ðt�tnÞ: ð63Þ

From (60)–(63) it follows that:

kunþ1 � yk6Re�cnhðe�c1h þ c1L1h2Þ6Re�cðnþ1Þh;
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provided that

e�c1h þ c1L1h2
6 e�ch: ð64Þ

Inequality (64) holds if h is sufficiently small and c < c1. So, the first inequality (59), with nþ 1 in
place of n, is proved if h is sufficiently small and c < c1.

Now

kF ðunþ1Þk6 kF ðunþ1Þ � F ðwnþ1ðtÞÞk þ kF ðwnþ1ðtÞÞk; tn 6 t6 tnþ1: ð65Þ

Using (2) and (62), one gets:

kF ðunþ1Þ � F ðwnþ1ðtnþ1ÞÞk6M1kunþ1 � wnþ1ðtnþ1Þk6M1c2L1h2kF0ke�cnh: ð66Þ
From (65) and (66) it follows that:

kF ðunþ1Þk6 kF0ke�cnhðe�c1h þM1c2L1h2Þ6 kF0ke�cðnþ1Þh;

provided that

e�c1h þM1c2L1h2
6 e�ch: ð67Þ

Inequality (67) holds if h is sufficiently small and c < c1. So, the second inequality (59) with nþ 1
in place of n is proved if h is sufficiently small and c < c1. Theorem 10 is proved. �

In the well-posed case, if F ðyÞ ¼ 0, the discrete Newton�s method

unþ1 ¼ un � ½F 0ðunÞ��1F ðunÞ; u0 ¼ uð0Þ;
converges superexponentially if u0 is sufficiently close to y. Indeed, if vn :¼ un � y, then vnþ1 ¼ vn �
½F 0ðunÞ��1½F 0ðunÞvn þ K� where kKk6M2kvnk2

=2. Thus, gn :¼ kvnk satisfies the inequality:
gnþ1 6 qg2

n, where q :¼ m1M2=2. Therefore gn 6 q2n�1g2n

0 , and if 0 < qg0 < 1, then the method
converges superexponentially.

If one uses the iterative method unþ1 ¼ un � h½F 0ðunÞ��1F ðunÞ, with h 6¼ 1, then, in the well-posed
case, assuming that this method converges, it converges exponentially, that is, slower than in the
case h ¼ 1.

The continuous analog of the above method

_uu ¼ �a½F 0ðuÞ��1F ðuÞ; uð0Þ ¼ u0;

where a ¼ const > 0, converges at the rate Oðe�atÞ. Indeed, if gðtÞ :¼ kF ðuðtÞÞk, then g _gg ¼ �ag2,
so gðtÞ ¼ g0e

�at, k _uuk6 am1g0e
�at. Thus

kuðtÞ � uð1Þk6m1g0e
�at; and F ðuð1ÞÞ ¼ 0:

In the continuous case one does not have superexponential convergence no matter what a > 0 is.

8. A spectral assumption (cf. [10])

In this section we introduce the spectral assumption which allows one to treat some non-linear
non-monotone operators.
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Assumption (S). The set fr;u : p � u0 < u < p þ u0;u0 > 0; 0 < r < r0g, where u0 and r0 are

arbitrarily small, fixed numbers, consists of the regular points of the operator A :¼ F 0ðuÞ for all
u 2 Bðu0;RÞ.

Assumption (S) implies the estimate:

kðF 0ðuÞ þ �Þ�1k6 1

� sin u0

; � < r0ð1 � sin u0Þ; � ¼ const > 0; ð68Þ

because kðA� zÞ�1k6 1=distðz; sðAÞÞ, where sðAÞ is the spectrum of a linear operator A, and
distðz; sðAÞÞ is the distance from a point z of a complex plane to the spectrum. In our case, z ¼ ��,
and distðz; sðAÞÞ ¼ � sin u0, if � < r0ð1 � sin u0Þ.

Theorem 11. If (2) and (68) hold, and 0 < � < r0ð1 � sin u0Þ, then problem (38), with �ðtÞ ¼ � ¼
const > 0, is solvable, problem (4), with U defined in (34) and ~uu0 ¼ 0, has a unique global solution,
9uð1Þ, and F ðuð1ÞÞ þ �uð1Þ ¼ 0. Every solution to the equation F ðV Þ þ �V ¼ 0 is isolated.

Proof. Let g ¼ gðtÞ :¼ kF ðuðtÞÞ þ �uðtÞk, where u ¼ uðtÞ solves locally (4), where U is defined in

(34) and ~uu0 ¼ 0. Then:

g _gg ¼ �ððF 0ðuÞ þ �ÞðF 0ðuÞ þ �Þ�1ðF ðuÞ þ �uÞ; F ðuÞ þ �uÞ ¼ �g2;

so

g ¼ g0e
�t; g0 :¼ gð0Þ; k _uuk6 g0

� sin u0

e�t:

Thus,

kuðtÞ � uð1Þk6 g0

� sin u0

e�t; kuðtÞ � u0k6
g0

� sin u0

; F ðuð1ÞÞ þ �uð1Þ ¼ 0:

Therefore equation

F ðV Þ þ �V ¼ 0; � ¼ const > 0; ð69Þ
has a solution in Bðu0;RÞ, where R ¼ g0=� sin /0.

Every solution to Eqs. (69) is isolated. Indeed, if F ðW Þ þ �W ¼ 0, and w :¼ V � W , then
F ðV Þ � F ðW Þ þ �w ¼ 0, so ½F 0ðV Þ þ ��w þ K ¼ 0, where kKk6M2kwk2

=2. Thus, using (68), one
gets kwkP 2� sin u0=M2. Consequently, if kwk is sufficiently small, then w ¼ 0. Theorem 11 is
proved. �

The author used assumption (S) in the theory of deconvolution [17].
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