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The main purpose of this paper is to classify the dynamical
systems on the plane which satisfy a certain type of stability
criterion, Such flows are referred to as dynamical systems of
characteristic 0", The classification is based on the considera-
tion of three mutually exclusive and exhaustive cases;: Dynam-
ical systems of characteristic 0* which have no critical points,
Those whose critical points form nonempty compact sets, and
those whose critical points do not form compact sets,

Dynamical systems of characteristic 0+ are those dynamical systems
in which all closed positively invariant sets are positively D-stable,
i.e., stable in Ura’s sense (see [11]). If the phase space of a flow is
regular, then a closed positively invariant set, which is positively
stable in Liapunov’s sense, is also positively D-stable. Thus, some
simple examples of flows of characteristic 0* are those where the phase
spaces are regular and all closed invariant sets are positively stable
in Liapunov’s sense.

In §2 we give some of the basic definitions and notations that are
used throughout the paper. In §3 we prove some results of a more
general nature which are later applied to flows of characteristic 0* on
the plane. It is proved that if the phase space X of a flow is normal
and connected and a closed invariant set F is globally + asympto-
tically stable, then F' is connected. Further, if the phase space X of
a flow of characteristic 0* is connected and locally compact, then a
compact subset M of X is a positive attractor implies that M is glob-
ally + asymptotically stable.

In §4 we discuss flows of characteristic 0t on the plane. It is
shown that if the set of critical points S of such a flow is empty,
then the flow is parallelizable. If S is compact, then it either con-
sists of a single point which is a Poincaré center, or it is globally +
asymptotically stable. If S is not compact, then either R*= S, or S
is + asymptotically stable; S and the region of positive attraction
A*(S) of S each has a countable number of components. Further,
each component of A*(S) is homeomorphic to R’ At the end of this
section, we summarize all the results of this section in the form of a
complete classifieation of such flows.

In § 5 we discuss flows of characteristic 0 on the plane, i.e., those
in which every closed invariant set is positively and negatively stable
in Ura’s sense. We prove that such a flow is either parallelizable, or
it has a single critical point which is a global Poincaré center, or all
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points are critical points.

2. Notations and definitions. Let B, BR*, and R~ denote the
sets of real numbers, nonnegative, and nonpositive real numbers, re-
spectively. Given a topological space X and a mapping 7 of the prod-
uct space X x R into X, we say (X, w) defines a dynamical system
or flow on the phase space X if the following conditions are satisfied.

1. Identity axziom: =(z,0) = .

2. Homomorphism axiom: 7(n(x,1),s) = m(x, s + ).

3. Continuity axiom: w is continuous on X X R.

For brevity, we denote 7(xz, t) by xt. For each ze X, we let C(z)
denote the trajectory or orbit through =z, i.e., C(x) = #R. Similarly,
the positive and negative semi-trajectories through x are represented
by C*(z) and C—(x), respectively, i.e., C*(x) = xR* and C—(x) = 2R~
We let L*(x) denote the positive (or w-) limit set of z,i.e., L*(x) =
N{C(xt): te R}. Similarly, L~(x) denotes the mnegative (or a-) limit
set of . A vpoint z is called a critical or rest point if 2R =2, A
subset M of X is said to be invariant if C(M) = M, and positively
(negatively) invariant if C+(M) = M(C—-(M) = M). A closed invariant
set M is minimal if it has no proper subset which is closed and in-
variant.,

Throughout this paper, we use éM and M to represent the bound-
ary and closure of M. Given a Jordan curve C on the plane R? we
let int (C) denote the bounded component of B*—C. Let (R)* = R*U{w}
be the one point compactification of the plane.

A closed positively invariant set M is said to be positively
Ligpunov stable, or more simply, positively stable, if for every neigh-
borhocod U of M, there exists a neighborhood V' of M such that
CHV)YcU. M is said to be a positive atitractor if there exists a
neighborhood U of M such that ¢ = L(x)c M for all « in U. The
largest such neighborhood U is called the wregion of positive
attraction of M and will be denoted by A*(M). M is said to be -+
asymptotically stable if it is both positively stable and a positive attrac-
tor. It is said to be globally -+ asymptotically stable if it is + asymp-
totically stable and A*(M) = X.

For each ze X, the (first) positive (negative) prolongation D*(x)
(D~(x)) of z is given by

Drx) = N {C*(N)} (D(w= {C=(N)D
Nen(z) Nen(x)
where 7(x) is the neighborhood filter of z.

The (first) positive (negative) prolongational limit set of x is given
by
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Jr@) = 0D} (@) = () D) -

It is known and easy to verify that L*(x)cJ*(x). Further, if X
is a Hausdorff space, then D*(x) = C*(x) U J*(x).

A closed positively invariant set M is said to be positively D-stable
if D*(M) = M.

It is easy to verify that if X is regular and a closed positively
invariant set M is positively stable (i.e., stable in Liapunov’s sense as
defined above), it is also positively D-stable. The converse is false.

The following theorem, which we use several times in this paper,
is due to Ura [11].

THEOREM (Ura). Let (X, ) be a dynamical system on a locally
compact space X, and let M be a compact subset of X. Then M is
positively stable if and only if it is positively D-stable.

REMARK. The statement “X is locally compact” is used in the
Bourbaki sense throughout this paser, i.e., X is assumed to be a

Hausdorff space.

3. Flows of characteristic 0*. Before discussing flows of char-
acteristic 0t, we prove a lemma and a proposition concerning flows in
general.

LemMMA 1. Let (X, 7 be any dynamical system. If xe X and
Yy Y. € L* (@), then y, € D*(y) and y.€ D*(y)).

Proof. We note that
D+(y) = N {C*(N)},

Neyluy)

where 7(y,) denotes the neighborhood filter of y,. Since ¥, y,€ L*(),
for each N en(y,) and M e 7(y,), there exist t, ¢, € R* with «t, ¢ N and

(xt)t, = x(t, + t,) € M. Hence y,€ C*(N), and consequently, y,c Dt(y,).
Similarly, y, € D*(y,).

ProprosiTioN 3.1. Let (X, ) be a dynamical system on a normal
(and HausdorfF) connected topological space X. If a closed invariant
subset F of X is globally + asymptotically stable, then F is connected.

Proof. Suppose F' is not connected. Then there exist two non-

1 The theory of prolongation and D-stability is due to Ura (see [11], [12], and [13]).
Ura [11] refers to D-stability as stability and to Liapunov stability as L-stability.
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empty disjoint closed sets F, and F, such that ¥ = F, U F,. Since X
is normal, there exist two disjoint open neighborhoods U, and U, of
F, and F,, respectively. On the other hand, since F is positively stable,
corresponding to the neighborhood U = U, U U, of F, there is an open
neighborhood V' of F such that C+(V)c U. Therefore, if welet V; =
VnU,i=1,2, then for each ze¢ V,, C*(x) < U, since C*(x) is con-
nected. Thus, L*(x) C F; i.e., V,C A*(F;) since U,NF; = 0,1 # j.
Hence, we have shown that F, and F, are positive attractors; conse-
quently A*(F) and A*(F, are open, since the boundary of each is
closed and invariant. But this contradicts the assumption that X is
connected, since X = AY(F') = A*(F) U A™(F,), where A*(F,) and A*(F)
are clearly nonempty disjoint open sets. This completes the proof of
Proposition 3.1.

DEFINITION 3.1. A dynamical system (X, ) is said to have char-
acteristic 0+ if and only if D*(x) = C*(z) for all x e X.

The above definition is equivalent to saying that (X, w) has char-
acteristic 0* if and only if every closed positively invariant subset of
X is positively D-stable.

It follows that if the phase space X of a flow of characteristic 0+
is a Hausdorff space, then D*(x) = C*(x) U L*(x), for all ze X.

LEmMA 2. Let (X, 7) be a flow of characteristic 0v. If xe X
such that L—(x) =+ @, then x e L—(x).

Proof. Suppose L~(x) = @ and let ye L~(x). Then, yec D (x),
and hence ze D*(y) = C*(y). On the other hand, ye L—(x) implies

that C+(y) c L~(x), since L—(x) is a closed invariant set. Therefore,
xe L~(x).

ProprosiTION 3.2. Let (X, ) be a flow of characteristic 0t on «
connected locally compact space X. If M is a compact positively
invariant subset of X and M s a positive attractor, then M s glob-
ally + asymptotically stable.

Proof. Since M is a closed positively invariant set, we have
D+(M) = M. Therefore, M is positively stable by Ura’s theorem. It
is sufficient to show that 0A4+(M) = . Suppose that JAY (M) = @,
and let x ¢ 0AT(M). Let 5, (x) be the trace of the neighborhood filter
N(x) of x on A = A*(M). Then, for each N, e, (x), @ == L*(N)C M.
Since M is compact, the cluster set of the filter base {L*(NV,) | N, € n,(z)}
is a nonempty subset of M; hence J*@)N M = @. However, this
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contradicts the assumption that (X, z) has characteristic 0+, since
0AT(M) is a closed invariant set disjoint with M. Therefore, 0AT(M)= g
and the proof of Proposition 3.2 is complete.

4. Flows of characteristic 0 on the plane. Throughout this
section, we assume the phase space to be the plane R? and (R? 7) to
be a fixed flow of characteristic 0. We let S denote the set of rest
points of this flow.

LeMMA 3. For each ze X, iof L*(x) + @&, then L*(x) is either a
periodic orbit or it consists of a single rest point.

Proof. If L*(x) contains a rest point s,, then L*(x) = {s,}. For,
ye L*(x) implies that ye D*(s) = {s;}, by Lemma 1. Suppose that
L*(x) consists of regular points only. Then, to complete the proof of
the lemma, it is sufficient to prove that L*(x) is compact. We note
that if yeL*(x), then C*(y) = L*(x). For, ze L*(x) implies that
ze D (y) = C*(y). Also, C*(y) < L*(x) since L*(x) is a closed invariant
set, and hence C*(y) = L*(z). Since C7(y) = C(y) = L*(x), we have
C(y) = L*(x). Therefore, L*(x) is a minimal set. We recall that if M
is a minimal subset of R* which is not compact, then for each
meM, L¥(m) = ¢ (e.f. p. 37 of [6]). Suppose that L*(x) is not
compact, and let y, and ¥, be two distinct points in L*(z). Then,
y, € D*(y,) = C*(y,) and w,e D*(y) = C*(y). But, if ¢, and ¢, are
positive numbers such that y, = %,t, and y, = 9,t,, then y, = ¥y (¢, + &.);
showing that C*+(y,) is a periodic orbit. Hence, L*(x) is a periodic orbit,
since L*(x) = C*(y,), as it is a minimal set; thus contradicting the as-
sumption that L*(x) is not compact.

For a proof of the following theorem see [5].

THEOREM (Bhatia). A flow F on a metric space X is dispersive
if and only if for each xe X, D' (x) = C*(x) and there are no rest
potnts or periodic orbits,

THEOREM 4.1. If S = @&, then the flow (R, ) is parallelizable.

Proof. We note that for each xzeR? L*(z) = &, and hence
D+(z) = C*(x) = C*(x). For, if L*(x) # @&, then by Lemma 3, it must
be a periodic orbit since it consists of regular points only. But this
is impossible since the bounded component of a periodic orbit contains
a rest point. Thus, the proof of our assertion follows from Bhatia’s
Theorem, stated above (c.f. Auslander [2]) and the fact that the notions
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of parallelizability and dispersiveness are equivalent for a flow on the
plane (see Antosiewicz and Dugundji [1]).

TaeoreM 4.2. If R? contains a periodic point, then S is a sin-
gleton. Further, if S = {s,}, then one of the following holds.

1. s, 18 a global Poincaré center.”

2. 8 18 a local Poincaré center. The netghborhood N of s, con-
sisting of s, and periodic orbits surrounding s, is a globally +
asymptotically stable simply connected continuum. Further, if x¢ N,
then L*(x) = oN.

Proof. Let @, be any periodic point, and let S, = int (C*(x,) N S.
We note that int (C+(x,)) = S, since S is closed; and for each regular
point x in int (C*(x,)), C*(x) is a periodic orbit, by virtue of Lemma
2.2 Let (B,)a., be the family of all periodic orbits such that for each
acl int (B)NS =8, Let B= U,.;int(B,). If 0B= ¢, then B =
R*. Suppose that 6B =+ @. Then 0B is a closed invariant set since
B is invariant. Further, 6BN S = @. For, if b,c0B NS, then one
can choose a simple closed curve C such that int (C)N S, = &, since
S, Cint (C*(x,)) C B and S, is closed. Clearly, there is no neighborhood
W of b, with C(W) cint (C), since e WN B — S, would imply that
x is a periodic point, by Lemma 2, and int (C*(@)) N S, = ©. But this
contradicts the fact that {b} is positively stable, as D*(b,) = {b,}; thus
showing that 06BN S = ¢. This also shows that 6B is not a singleton
since it is invariant and consists of regular points.

We note that if xe B and z¢S,, then x is a periodic point, by
Lemma 2, with C*(x) © B and int (C*(x)) N S, = ©@. For, x belongs to
int (B,) for some aecl. Thus, x¢S since int(B,) NS = S,. Further
L~(z) #+ @ and C*(x) C B since 2 is surrounded by the periodic orbit
B,. Thus, z is a periodic point with int(C*@))N S, = & since
C*(x)cint (B, and int (B) NS = S,. Now we wish to show that ¢B
is a periodic orbit. In order to accomplish this, we consider two cases.

Case 1. Suppose 6B C*t(x,) # @. Then, since 0B is invariant,
we must have C*(x) C ¢B. On the other hand, 6B C*(z,). For, as-
sume 0B ¢ C*(x,), and let beoB — C*(x,). Then, b¢int (C*(x,)) since
int (C*(x,)) © B. Thus, one can choose a neighborhood U of b such
that U Nint (CH () = @ since beint (CH{(x,)), as be CH(z,) and

2 g is a global Poincaré center if for each =+ so, C(x) is a periodic orbit surround-
ing so. It is a local Poincaré center if it has a neighborhood M such that for each
t € M—1{so}, C(x) is a periodic orbit surrounding so.

3 1t is a known fact about flows on the plane that a point is positively (or nega-
tively) Poisson stable if and only if it is either a rest point or a periodic point (see
[10)).
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beint (C+(x,)). Let e UNB. Then, x¢S, since S, int (C*(x,)).
Thus C*(x) is a periodic orbit. Since int (C*(x,)) is connected,

int (CH(x)) Nint (CH(x,) = @, as int (CH(x)) NS, = @ and
dint (C+(x)) Nint (C*(z,) = CHx) Nint (C*(xy) = & ,

it follows that int (C+(x,)) Cint (C*+(x)). But, C*(z) Cint(C(z)) < B
contradicts the assumption that 6B N C*(x,) %= &, as B is open; hence
0B = C*(x,).

Case 2. Suppose 0BN C*(x,) = @, and let b, b,coB. First we
show that b,e D*(b,) and b, € D*(b,). In order to show that b,e D*(b,),
it is sufficient to show that if C, and C, are any simple closed curves
with b, eint (C)) and b, € int (C,), then there exist x, € int (C,) and ¢, ¢ R*
such that «.¢, eint (C)). Let y, cint(C)) N B — int(C*(x,)), so that y,is a
periodic point with int (C*(y)) N S =S,. Since B is open and b, b, € B,
there exists a point y,cint (C;) N BN (B — int (C*(yy)). Then, ¥, is
a periodic point with C+(y,) C R* — int (C*(y,)) and int (C*(y)) NS, = @.
Since int (C*(yy) N int (CH(y)) #= @, int (C*(y)) is connected and
dint (C*(y,)) Nint (C*(y,)) = @, we must have int (C*(y,)) C int (C*(y.)).
This implies that int (C) Nint (C*(y,)) = @. It is also clear that
int (C) N (R* — int (C*(y,)) = O since b, € 0B and B is open. Therefore,
C*(y,) Nint (C)) = @ since int (C)) is connected. Certainly, for each
2, € Ct(y,) Nint (C), there exists ¢, ¢ R* such that x, int (C,) since
C*(x,) = C*(y,) and ¥, is a periodic point. This shows that b,c D*+(b).
Similarly, b, e D+*(b,). If L*(b) = &, then it is a periodic orbit, by
Lemma 3, since 06BN S = @ and L*(b) coB. That L*(b,) c oB follows
from the fact that B is a closed invariant set, as B is invariant.
Further, dBc L*(b), since bedB and ye L+(b) implies be D (y) =
C+(y) = L*(,), as L*(b,) is a periodic orbit contained in 6B. There-
fore 0B = L*(b) is a periodic orbit. Similarly, if L*(b,) = &, then 6B
is a periodic orbit. Suppose L*(b) = L*(b,) = ©@. Then we must have
b, e C*(b,) and b,e C*(b), which again implies that C+(b,) is a periodic
orbit containing b, (see proof of Lemma 3). Thus, we conclude that
6B is a periodic orbit.

Let N = 0B U int (30B). We wish to show that N = B. Since S is
closed, one can choose a simple closed curve C such that N cint (C)
and (int (C) — N)NS = @. We note the N is positively stable since
D+*(N) = N. Thus, there exists a neighborhood V of N such that
CH(V)cint(C). It follows that (V-N)NB=g. For,ifxe(V-N)NB,
then « is a periodic point, by Lemma 2, since « is surrounded by some
periodic orbit B,. Therefore, we must have 0B Cint (C+(x)), since
CH(x) Cint(C) and (int(C) — N)N S = @. But, it is impossible to have
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0B < int (C+(z)) since int (C*(x)) — B. Thus, we have established that
(V- N)NnB= &, and hence int (0B) N B+ @, since 60BN B = ¢, as
B is open. We note that B is connected since it is the union of the
family of connected sets (int (B,))ee; With & £ .S, C MNeeint (B,). There-
fore, B int (6B) since B d(int (0B)) = BNoB = @. Now, suppose
int (0B) # B. Then, clearly, int (0B) N B is a nonempty open set. Also,
int (0B) — B is a nonempty open set. For, « € int (dB) — B implies that
z¢ 0B and x¢ B; hence v ¢ B. Let V be a neighborhood of x such
that VN B = @. Then U = V Nint(0B) is a neighborhood of x and
U cint(0B) — B. Hence, int (6B) is disconnected; a contradiction to
the Jordan Curve Theorem. We have thus shown that N = ¢B U B.

N is a simply connected continuum, by Schoenflie’s Theorem. We
wish to show that N is globally + asymptotically stable. In view of
Proposition 3.2, it is sufficient to show that N is a positive attractor.
Since N is compact and S is closed, we can choose a compact neigh-
borhood U, of N such that U,N (S — Sy = @. Then, there exists a
neighborhood V, of N such that C+(V,) < U,. For each ze¢ V, — N,
Ltz = @ and L*(@) NS = @. Hence, L™(x) is a periodic orbit and
S, Cint (L*(z)). Similarly, if y eint (L*(z)) — N, then S, Cint (L*(y)).
It follows from the way N was constructed that L*(x) = oN.

We note that if B = R?, then S=S,. Also, if B# R? then S =S5,
since NN(S—8S,) = @ and N is a globally + asymptotically stable
neighborhood of S,. In particular, since z, was an arbitrary periodic
point, it follows that S is contained in the interior of every periodic
orbit. Now, we wish to show that S is a singleton. This will com-
plete the proof of the theorem, since B = R* will then imply the first
and B # R? the second assertion of the theorem. Let D = N..,int (B,).
Then, we have S D. Suppose that D contains a regular point d.
Then, L~(d) #+ @ since d is surrounded by periodic orbits, and hence
C*(d) is a periodic orbit (see footnote 3). But this would imply that
d eint (C™(d)), which is impossible. For, as we pointed out ahove,
S = S, and S, is contained in the interior of every periodic orbit. Hence
every periodic orbit belongs to the family (B,) ., and, consequently, D
is contained in the interior of every periodic orbit. Therefore, D = S.
Let d, ¢ 0D, and suppose that D contains a point d, distinet from d,.
Let C, be a simple closed curve such that d, €int (C)) and d, ¢ int (C)).
Since {d,} is positively stable, there exists a neighborhood W, of d,
with C+(W,)) cint (C). But, if « is a regular point in W, N B, then
we must have D C int (C*(x)), and in particular, d,cint (C7(x)), which
is impossible. This ecompletes the proof of Theorem 4.2.

For flows of characteristic 0+, the following theorem is a rather
strong generalization of Bendixson’s theorem (see [4]), which states
that for every isolated critical point s on the plane, either there exists
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a point y # s such that L*(y) = {s} or L~(y) = {s}, or every neighbor-
hood of s contains a periodic orbit surrounding s.

TuEOREM 4.3. If S has a compact component S, which is isolated
from S — S,, then one of the following holds.*

(1) S is a singleton and one of the two assertions of Theorem
4.2 holds.

(2) S, is globally + asymptotically stable, and consequently,
S, = S.

Proof. Let V be a compact neighborhood of S, such that
VNS —-8)=@. Since D*(S,) = S,, S, 1s positively stable. Let U
be a neighborhood of S, such that C+*(U)< V. Then, for each z¢ U,
Lt(x) = . If a periodic orbit exists, then the proof follows from
Theorem 4.2. If there are no periodic orbits, then for each x¢ U,
L+(x) consists of a single rest point, by Lemma 3. Further, L*(z) < S,
since L*(x) V. Therefore, S, is globally + asymptotically stable, by
Proposition 3.2, and hence S, = S.

COROLLARY. If S contains a point s, which ts isolated from
S — {s,}, then S = {s;}.

THEOREM 4.4. If S is compact, then either S 1s a singleton and
one of the two assertions of Theorem 4.2 holds, or S is globally +
asymptotically stable.

Proof. Let C be a simple closed curve such that S Cint(C).
Sinee S is positively stable, as D*(S) = S, there exists a neighborhood
V of S such that C+(V)Zint(C). Therefore, for each x ¢ V, L*(2) + @.
If a periodic orbit exists, then the proof follows from Theorem 4.2.
If there are no periodic orbits, then L*(x) consists of a single rest
point, by Lemma 3. Hence, S is globally + asymptotically stable,
by Proposition 3.2.

ReEMARK. If S is + asymptotically stable, then for each sedS,
there is a regular point y with L*(y) = {s}. For, if z is a regular
point, then it follows from Lemma 2 and Theorem 4.2 that C—(x) is
unbounded. Thus, if C is a simple closed curve surrounding s, then
one can choose sequences {x,} and {¢,} in R* and R~, respectively, such
that {z,} converges to s and {x,t,} converges to some point z,cC.
But this would imply that x, € D=(s) or se D*(z,), and hence L*(z,) = {s}.

+ S is isolated from S — Sy if Sp has a neighborhood disjoint from S — So.
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LEMMA 4. IFf S is + asympiotically stable, then A(S) is an open
set.

Proof. We note that 6A*(S) is a closed invariant set, since
A*(S) is invariant. Thus, for each x€dA"(S), L (x) C dA™(S).
But, d4+(S)YN S = & since S is -+ asymptotically stable. Therefore,
0A7(S) N A7(S) = @, and hence A*(S) is open.

THEOREM 4.5. If S is unbounded, then the following hold.

(1) Fither S = R* or R*— S is unbounded.

(2) If S== R} then S is + asymptotically stable.
Further, if S is disconnected, then it 1s not globally -+ asymptotically
stable.

(3) x& AT(S) tmplies that L¥(x) = O.

Proof. The first assertion follows from the fact that there are
no periodie orbits, and consequently, if © is a regular point, then C—(x)
is unbounded. To prove (2), let scoS and let C be a simple closed
curve such that seint (C). Since {s} is positively stable, there exists
a neighborhood U of s such that C*(U) Cint(C). Therefore, for each
xec U, Lt(x) # @, and hence L*(x) < S since there are no periodic orbits.
The last assertion of (2) follows from Proposition 3.1. Statement (3)
follows from Lemma 4 and the fact that 0A*(S) is positively invariant
and there are no periodic orbits.

THEOREM 4.6. If S == R* and S is unbounded, then A™(S) has a
countable number of componenis. The boundary of each component
is constituted by a countable number of orbits C(x) such that L=(x) = .

Proof. Since by Lemma 4, A*(S) is open, the first statement
follows immediately from the fact that the components of A*(S) form
a collection of mutually disjoint open subsets of R:. To prove the
second assertion, let K be any component of A*(S). We note that 0K
is invariant and is thus constituted by whole trajectories. For each
x e oK, L*(z) = ¢, since « cannot belong to any component of A*(S)
and there are no periodic orbits. Thus, C, = C(x) U {w} constitutes a
simple closed curve in (B*»* and K is contained in one of the compo-
nents of (R)* — C,. Let K, denote the component of (R** — C, which
is disjoint from K, i.e., K, N K = &. Then we must have K, N 0K= .
IfyedK — C,, then K, N K, = . For, suppose K, N K, % @&. Then,
K.NoK, = K, NC, = @ since yc oK, 0K N K, = ¢ and oK is invariant.
Hence, K, K,. Similarly, K, K, and thus K, = K,. Now, y¢C,
and y ¢ K, since K,N0K= . Therefore, the component (R})*—(K,UC,)
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must be a neighborhood of y. But this is a contradiction to y €K,
since (R)* — (K, U C,) contains no point of K, = K,. This shows that
K.NK,= . The second assertion of Theorem 4.6 now follows from
the fact that (R®»* is a Lindelof of space, and hence the collection
(K )ewesx 18 countable.

THEOREM 4.7. If S +# R* and S ts unbounded, then every com-
ponent of AT(S) is homeomorphic to R°.

Proof. Let K, be any component of A*(S). Since K, is an open
subset of R? it is sufficient to show that K, is simply connected. Let
C, be any simple closed curve such that C,c K,. If z is a regular point
in int (C,), then L—~(x) = @ since there are no periodic orbits. There-
fore, C-(x) N C, = @. But z,¢ C—(z) N C, implies that x,e A*(S), and
hence z e A*(S) since z€C*(x,). This shows that int (C,) < A*(S),
since S c A*(S). Since int(C,) is connected, int(C) < K,, i.e., C, is
retractible,

THEOREM 4.8. If S# R* and S is unbounded, then S has a
countable number of components, each being simply connected. Fur-
ther, the set of critical points in each component of A*(S) form a
component of S.

Proof. We note that S A*(S), and by Theorem 4.6, A*(S) is
partitioned into a countable number of components. Therefore, in order
to prove the first assertion, it is sufficient to show that if K, is any
component of A*(S) and S, = K,N S, then S, is a component of S.
To show that S, is a component of S, it is sufficient to show that S,
is connected. For, it follows from the proof of Theorem 4.6 that
oK, N S = ¢, and consequently, the component of S containing S, is
contained in K,. However, we note that S, is +asymptotically stable,
globally, in K,. Therefore, the fact that S, is connected follows from
Proposition 3.1.

To prove that components of S are simply connected, let S, be
any component of S and let C, be any simple closed curve such that
C,c S,. Suppose int(C,) contains a regular point z. Then L~(x)== @
since & is surrounded by the simple closed curve C, consisting of rest
points. But this implies that x is a periodic point (see footnote on
page 10). Therefore, int (C,) consists of rest points and is hence con-
tained in S,, since S, is a maximal connected subset of S. This com-

pletes the proof.

It follows from Theorem 4.6 and the proof of Theorem 4.7 that
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each component of S is isolated from other points of S. Thus, using
Theorem 4.3, we have the following sharpening of Theorem 4.3.

THEOREM 4.9. If S has a compact component, then one of the
two possibilities stated in Theorem 4.3 holds.

We now summarize the results of this section.
Case 1. S = » and (R% ) is parallelizable.

Case 2. S is compact implies one of the following.

(a) S = {s)} is a singleton and s, is a global Poincaré center.

(b) S =/{s) is a singleton and s, is a local Poincaré center.
Further, the set N consisting of s, and periodic orbits surrounding s,
is a globally -+ asymptotically stable simply connected continuum.

(e) S is a globally 4 asymptotically simply connected continuum.

Case 3. If S is unbounded, then either (A) S = R* or (B) the
following hold.

(a) R*— S is unbounded.

(b) S is -+asymptotically stable.

(e) A*(S) has a countable number of components each being
homeomorphic to &* and unbounded.

(d) S has a countable number of components, each being non-
compact and simply connected. For each scdS, there is a regular
point vy with L*(y) = {s}.

(e) A7(S,) is a component of A*(S) if and only if S, is a com-
ponent of S.

(f) For each xe R L*(x) is either empty or consists of a single
rest point. Further, L*(x) = @ for all x¢ A*(S) and L(x) = & for
all xe R*— S.

The above theorems indicate that imposing characteristic 0t on a
dynamical system on R® is a fairly strong restriction. However, for
more general phase spaces the situation is different. By way of illust-
ration, we give the following example.

ExampLE 1. Consider the subspace of E® consisting of the zy-
plane and the negative z-axis. Consider the flow in which the origin
0 is a rest point, points on the xy-plane are periodic whose trajec-
tories surround 0 and points on the negative z-axis tend positively to
0,i.e., L*(x) = 0 for all # on the negative z-axis.

We have clearly defined a flow of characteristic 0 which has only
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one rest point, and yet none of the conditions of Theorems 4.2 or 4.3
hold.

5. Flow of characteristic 0* on the plane.

DEFINITION 5.1. A flow (R% ®) on the plane is of characteristic
0% if for each e R?, D*(z) = C*(x) and D~ (x) = C—(x).

The above definition is equivalent to saying that a flow is of
characteristic 0% if and only if every closed invariant subset M of R?
is positively and negatively D-stable (i.e., D*(M) = D~(M) = M). The
following theorem completely classifies such flows. The proof of this
theorem follows immediately from the previous section and is hence
omitted.

THEOREM 5.1. Let (R* 7) be a dynamical system of characteristic
0% on the plane. Then one of the following holds.

(1) S= @ and the flow is parallelizable.

(2) S=R:.

(3) S ={s} is a singleton and s, 1s a global Poincaré center.

The author is grateful to Professor Taro Ura for suggesting this
problem. His guidance and suggestions have been invaluable. The
author also thanks the referee, particularly, for his suggestions con-
cerning the exposition of this paper.

REFERENCES

1. H. Antosiewicz and J. Dugundji, Parallelizable flows and Liapunov’s second method,
Ann. of Math. 73 (1961), 543-555.

2. J. Auslander, Generalized recurrence in dynamical systems, Contributions to Differ-
ential Equations III, no. 1 (1964), 65-74.

3. J. Auslander and P. Seibert, Prolongations and stability in dynamical systems,
Ann. Inst. Fourier (Grenoble) 14 (1964), 237-268.

4. 1. Bendixson, Sur les courbes définie par des équations différentielles, Acta Math.
24 (1901), 26.

5. Nam P. Bhatia, Criteria for dispersive flows, Math. Nachr. 32 (1966), 89-93.

6. N. P. Bhatia and G. P. Szegs, Dynamical systems: stability theory and applica-
tions, Springer-Verlag, Berlin, 1967.

7. W. H. Gottschalk and G. A. Hedlund, Topological dymamics, Amer. Math. Soc.
Colloquium Publications, vol. 36, 1955,

8. I. Kimura and T. Ura, Sur le courant extérieur a une région imvariante; Théoréme
de Bendirson, Comment. Math. Univ. St. Paul. 8 (1960), 23-39.

9. V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations,
Moscow, 1947-49; English translation, Princeton University Press, Princeton, New
Jersey, 1960.

10. P. Seibert and P. Tulley, On dynamical systems on the plane, Arch. Math. 18
(1967), 290-292.

11. T. Ura, Sur le courant ectériewr & une région imvariante; Prolongement d'une



574 SHAIR AHMAD

caractéristique et Uordre de stabilité, Funkcial. Ekvac. 9 (1966), 171-179.

12. ————, Sur le courant extérieur & ume région invariante; Prolongement d’ une
charactéristique et U'ordre de stabilité, Funkcial. Ekvac. 2 (1959), 143-200; nouv. edition
105-143.

13, ——, Sur le courant extérieur @ une région invariante, Funkeial. Ekvac. 2 (1959)

95-142,
Received January 5, 1969, and in revised form August 15, 1969.

OKLAHOMA STATE UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DucuUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
RICHARD PIERCE BAsIL GORDON*
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUGTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, double spaced with large margins. Underline Greek
letters in red, German in green, and script in blue. The first paragraph or two must be capable
of being used separately as a synopsis of the entire paper. It should not contain references to
the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four
editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other
communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (8 numbers) is $8.00; single issues, $8.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: = $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,
Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

*  Acting Managing Editor.



Pacific Journal of Mathematics

Vol. 32, No. 3 March, 1970

Shair Ahmad, Dynamical systems of characteristic OV .................... 561
Charles A. Akemann and Bernard Russo, Geometry of the unit sphere of a

C*-algebraanditsdual .................ccouiiuiiiiiiiniiannnnnn.. 575
Philip Bacon, The compactness of countably compact spaces.............. 587
Richard Blaine Barrar and Henry Loeb, On the continuity of the nonlinear

Tschebyscheff operator ....... ... ... i .. 593
L. Carlitz, Factorization of a special polynomial over a finite field . . . ... ... 603
Joe Ebeling Cude, Compact integral domains . ........................... 615
Frank Rimi DeMeyer, On automorphisms of separable algebras. II . . .. .. .. 621
James B. Derr, Generalized Sylow tower groups . ........................ 633
Raouf Doss, Some inclusions in multipliers.............................. 643
Mary Rodriguez Embry, The numerical range of an operator. ............. 647
John Froese, Domain-perturbed problems for ordinary linear differential

OPCFALOTS . . o oo e ettt e et e e e e e e et et e 651
Zdenék Frolik, Absolute Borel and Souslin sets . ......................... 663
Ronald Owen Fulp, Tensor and torsion products of semigroups ............ 685
George Gritzer and J. Ptonka, On the number of polynomials of an

idempotent algebra. I........... ... . ... . . i 697

Newcomb Greenleaf and Walter Read, Positive holomorphic differentials on

Klein surfaces ............ ... . 0o ..
John Willard Heidel, Uniqueness, continuation, and nono

second order nonlinear differential equation . . . ... ..
Leon A. Henkin, Extending Boolean operations. . . ......
R. Hirshon, On hopfian groups . ..................... ..,
Melvin Hochster, Totally integrally closed rings and extre
R. Mohanty and B. K. Ray, On the convergence of a trigo

integral . ... ... ...
Michael Rich, On a class of nodal algebras . ............
Emile B. Roth, Conjugate space representations of Banac
Rolf Schneider, On the projections of a convex polytope . .
Bertram Manuel Schreiber, On the coset ring and strong
Edgar Lee Stout, Some remarks on varieties in polydiscs

holomorphic functions . .....................c....
James Edward Ward, Two-groups and Jordan algebras . . .




