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Abstract

We propose dynamical systems trees (DSTs) as a flexible model for
describing multiple processes that interact via a hierarchy of aggre-
gating processes. DSTs extend nonlinear dynamical systems to an
interactive group scenario. Various individual processes interact as
communities and sub-communities in a tree structure that is un-
rolled in time. To accommodate nonlinear temporal activity, each
individual leaf process is modeled as a dynamical system contain-
ing discrete and/or continuous hidden states with discrete and/or
Gaussian emissions. Subsequent, higher level parent processes act
like hidden Markov models that mediate the interaction between
leaf processes or between other parent processes in the hierarchy.
Aggregator chains are parents of the child processes the combine
and mediate, yielding a compact overall parameterization. We pro-
vide tractable inference and learning algorithms for arbitrary DSTs
topologies via structured mean-field. Experiments are shown for
real trajectory data of tracked American football plays where a
DST tracks players as dynamical systems mediated by their team
processes mediated in turn by a top-level game process.

1 INTRODUCTION

Dynamical Bayesian networks are popular instantiations of graphical models and
have shown promise in many applied settings such as computational biology, speech,
and vision. Recently, graphical models and approximate inference methods have
extended traditional dynamical systems, improving upon classical linear Kalman
filters and hidden Markov models (HMMs) and exploring couplings and interactions
between multiple hidden Markov chains. Such extensions include factorial HMMs [2]
which indirectly link multiple Markov chains through a common output emission
stream (Figure 1(a)). Meanwhile, coupled HMMs [8] directly link hidden states
of multiple interacting processes that have Markovian temporal dynamics which
generate different output emission streams (Figure 1(b)). Other extensions involve
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Figure 1: Switched and Interacting Dynamical Systems.

linking discrete and continuous Markov chains through so-called switched dynamical
systems (SLDSs) that combine Kalman filters and HMMs [9, 1, 7, 5] to obtain
nonlinear continuous dynamics (Figure 1(c)). All the above systems basically link
(directly or indirectly) hidden Markov chains together so they can influence each
other in time. But, unlike simpler models, these variants involve hard inference and
may require sampling [7] or structured mean field approximations [10].

In this article we propose a novel variant of dynamical systems for characterizing
interacting processes that form groups and sub-groups. For instance, consider a
football game where players are each modeled as a switched dynamical system.
Players could interact with other members of their team through a hidden parent
team state which has its own Markovian dynamics. The other team has its own
Markovian team state which couples its players. Finally, an overall game state is a
parent of and couples the two team states mediating their interaction. We call this
model a dynamical systems tree (DST) since it permits the interacting processes
to couple to each other by being mediated through an arbitrary tree hierarchy of
aggregating hidden processes. The DST’s arbitrary hierarchical tree structure has
high level aggregating hidden states coupling groups of hidden Markov states that
are parents of sub-group of leaf dynamical systems (i.e. SLDSs or HMMs). Since
higher level Markov chains are parents of lower level chains, a recursive structured
mean field algorithm for inference is easy to derive for arbitrary tree structures
and group/sub-group arrangements for the interacting processes. Thus, we are free
to consider various ways that the individual leaf dynamical systems interact in a
group scenario. This article describes and motivates the generative model for DSTs.
Parameter estimation for DSTs is then derived via Expectation-Maximization and
a structured mean field inference algorithm which can be applied recursively on any
DST topology. We then provide and discuss promising experimental results with
DSTs on football data from real player trajectories.

2 DYNAMICAL SYSTEMS TREES

Instead of modeling interaction by direct coupling (as in coupled HMMs) or through
shared outputs (as in factorial HMMs), we propose that processes interact through
parent hidden Markov chains that act as mediators or aggregators of the sub-
processes. These parent chains have their own Markovian dynamics and we can
also consider tree-like hierarchies of parent chains (hidden parent chains coupling
multiple hidden lower-level parent chains). We call this graphical model a dynamical
system tree (DST) (see Figure 2(a)). For example, multiple agents can interact and
be aggregated by writing messages on some form of common bulletin board which
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Figure 2: A Dynamical Systems Tree Graphical Model.

evolves with hidden Markovian dynamics. Alternatively, a mediator or aggregator
state could represent a coach directing a team of players or a script guiding multi-
ple actors. One advantage of such a topology is it has few parameters and avoids
over-fitting. Conversely, a full HMM (as well as coupled and factorial HMMs to
a certain extent) over all interacting agents must model the cross-product of their
individual states which is inefficient. Furthermore, the DST’s mediated interaction
approach lends itself nicely to hierarchical extensions. DSTs can have aggregators
that themselves aggregate lower-level mediating chains to allow multiple scales of
influence or layers of interaction. For instance, when modeling a university one may
describe interacting people by mediating chains representing their research groups
which are in turn aggregated and mediated by various departments, then schools
and then a single mediating hidden state representing the evolution of the university
as a whole. Alternatively, one may model the dynamics of a human, via a hierarchy
over the individual limbs, fusing into upper and lower torso, etc. Admittedly, me-
diating variables could be reinterpreted as children (not parents) of the individual
dynamical systems, but we prefer the DST’s mediating-parent style of establishing
interaction between processes. It avoids moralizing large cliques during inference,
is nicely compatible with structured mean field derivations, and permits estimation
of model parameters for an arbitrary tree hierarchy of interaction.

To construct a DST’s probability distribution, we start from the bottom up by
first considering a collection of simple independent dynamical systems we call leaf-
processes. These individual systems are either continuous linear dynamical systems,
or discrete HMMs or a hybrid as in a switched linear dynamical system (SLDS).
Without loss of generality, we will assume all leaf-processes are SLDSs (as in [9]
and in Figure 1(c)) since these basically subsume both HMMs and Kalman fil-
ters. Furthermore, we assume that transitions between continuous hidden states
are given by conditioned Gaussians and that emissions are continuous vectors from
a Gaussian distribution given the continuous hidden state. On their own, the indi-
vidual SLDSs do not capture the interactive nature of group dynamical behavior.
To couple individual leaf-processes and model complex interaction, we have a hier-
archy of aggregating Markovian processes that couple leaf-processes (or lower level
aggregating-processes) as their children. Each aggregating process a is denoted by
its discrete Markovian hidden variables sa and defined as follows:



Definition 1 An aggregating-process is a Markov chain of hidden discrete states
with at most one parent process and one or more children processes. Children pro-
cesses may be either other aggregating-processes themselves or leaf-processes. An
aggregating-process’ states are denoted by sa = {sa0 , . . . , s

a
T }. Given its (possibly

null) parent process π(a) which has discrete hidden states sπ(a) = {s
π(a)
0 , . . . , s

π(a)
T }

the aggregating-process has the following conditional distribution:

p
(

sa|sπ(a)
)

= p
(

sa0 |s
π(a)
0

)

T
∏

t=1

p
(

sat |s
a
t−1, s

π(a)
t

)

The hierarchy of aggregating-processes is terminated by leaf-processes which contain
both discrete and continuous hidden Markov dynamics as well as the actual emission
or observation variables which we specify as follows:

Definition 2 A leaf-process is a switched linear dynamical system at the lowest
level in the dynamical systems tree hierarchy. A leaf-process has at most one parent
process and no children processes. The i’th leaf-process has discrete Markovian
hidden states si = {si0, . . . , s

i
T } as parents of continuous Markovian hidden states

xi = {xi0, . . . , x
i
T } as parents of independent emissions yi = {yi0, . . . , y

i
T }. Given

its parent process π(i) with discrete hidden states sπ(i) = {s
π(i)
0 , . . . , s

π(i)
T } the leaf-

process has the following conditional distribution:

p(si, xi, yi|sπ(i)) = p(si0|s
π(i)
0 )p(xi0|s

i
0)p(y

i
0|x

i
0)

T
∏

t=1

p(sit|s
i
t−1, s

π(i)
t )p(xit|x

i
t−1, s

i
t)p(y

i
t|x

i
t)

Given A aggregating processes and L leaf-processes, the joint distribution
P(S,X ,Y) over all variables in the DST (namely {S,X ,Y} which correspond to
discrete hidden, continuous hidden and emission variables, respectively) is given by:

P(S,X ,Y) =

A
∏

a=1

p(sa|sπ(a))
L
∏

i=1

p(si, xi, yi|sπ(i))

An example of a DST graphical model is shown in Figure 2(a) (unrolled time steps
t = 0 . . . 1). This DST has 4 leaf-processes and 3 aggregating-processes. The bottom
aggregating processes s(1,2) and s(3,4) are parents of the pair of leaf processes in their
superscripts. The bottom aggregating processes are themselves aggregated through
one final parent process called s((1,2),(3,4)). To avoid drawing DSTs unrolled in
time, we plot them more compactly by only showing a single time instance of the
DST at time t and drawing a replicator box that indicates the network is repeated
t = 1 . . . T times. Traditionally, replicator boxes show independent (iid) nodes
(possibly linked to parent parameter nodes which we omit for clarity). We indicate
Markovian dynamics between nodes in box t−1 to nodes in box t by drawing extra
replicator circles around all the nodes who inherit a link from their instantiation
at the previous time step t − 1. Nodes without the extra replicator circle (such
as emission nodes) only have parents in the current replicator box t. Figure 2(b)
depicts the DST in this compact replicator notation.

We now specify parameters for the aforementioned DST conditional distributions.
Our discrete distributions are multinomials while our continuous distributions are
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Figure 3: A Variational Q Distribution for DSTs and an Update Algorithm.

conditioned Gaussians. The parameters for the aggregating-processes (indexed by
a) and the SLDS leaf-processes (indexed by i) are:

p(sa0 = j|s
π(a)
0 = k) = φa(j, k) p(sat = j|sat−1 = k, s

π(a)
t = l) = Φa(j, k, l)

p(si0 = j|s
π(i)
0 = k) = ψi(j, k) p(sit = j|sit−1 = k, s

π(i)
t = l) = Ψi(j, k, l)

p(xi0|s
i
0 = j) = N (xi0|µ

i
j , q

i
j) p(xit|x

i
t−1, s

i
t = j) = N (xit|A

i
jx
i
t−1, Q

i
j)

p(yi0|x
i
0) = N (y

i
0|Cx

i
0, R) p(yit|x

i
t) = N (y

i
t|Cx

i
t, R)

Basic operations needed for DSTs include computing the likelihood of observations,
inferring hidden states from an observation and estimating parameters from data.
Essentially, EM learning and computing likelihood hinge on performing inference
over the hidden states. It is immediately evident that DST inference involves an
intractable network since even the sub-component SLDSs are intractable. Therefore
we appeal to structured mean field for inference and perform approximate E-steps.

3 A STRUCTURED MEAN FIELD ALGORITHM

To avoid the intractabilities in the DST, we perform inference with a surrogate
variational distribution that approximates our posterior P(S,X|Y) over the hidden
variables given the observed data. We denote the simpler optimized surrogate dis-
tribution Q(S,X ) and display it in Figure 3(a) unrolled in time for 3 time steps
or in Figure 3(b) using replicator notation. This distribution resembles P except
that all Markov chains are unlinked from each other and thus only require forward-
backward algorithms for inference [1]. Given a current setting of all our model
parameters Θ and observation sequences, we can update a variational distribution
on our DST by using the elegant formalisms outlined by [6, 1, 4]. More specifically,
we have the following inequality on the incomplete log-likelihood:

logP(Y|Θ) ≥
∑

S

∫

X

Q(S,X ) log
P(S,X ,Y|Θ)

Q(S,X )
dX

Where the right hand side is denoted by B(Q,Θ) for short and is a variational
bound that makes contact with the left hand side at Θ = Θ∗ when Q(S,X ) =
P(S,X|Y,Θ∗). Since Q is a simpler and more factorized distribution than
P(S,X|Y,Θ∗), the bound will be lowered and in general can no longer make tangen-
tial contact. We instead optimize the parameters of Q to get it as close as possible
to the posterior in terms of Kullback-Leibler divergence KL(Q(S,X )‖P(S,X|Y)).



Update rules for Q are easily derived using the Hamiltonians (the energy function
in the log domain) of the probability distributions [1]:

P(S,X ,Y) = 1
Z
exp(−H(S,X ,Y)) Q(S,X ) = 1

ZQ
exp(−HQ(S,X ))

The Q distribution has the following variational parameters (which vary with each
time replicator) for each aggregating-process and leaf-processes:

Q (sa0 = j) = φ̂a(j) Q
(

sat = j|sat−1 = k
)

= Φ̂at (j, k)

Q(si0 = j) = ψ̂i(j) Q(sit = j|sit−1 = k) = Ψ̂it(j, k)

Q(xi0) = N (x
i
0|µ̂

i, q̂i) Q(xit|x
i
t−1) = N (x

i
t|Â

i
tx
i
t−1, Q̂

i
t)

As in [1] to find a Q that minimizes the KL-divergence, we set to zero the derivatives
of the difference of Hamiltonians D = HQ − H. These derivatives are taken with
respect to the sufficient statistics 1 of Q and give update rules:

∂〈D〉

∂〈sat 〉
=

∂〈D〉

∂〈sat s
a
t−1〉

=
∂〈D〉

∂〈sit〉
=

∂〈D〉

∂〈sits
i
t−1〉

=
∂〈D〉

∂〈xit〉
=

∂〈D〉

∂〈xitx
i
t−1〉

= 0

Solving the above updates the variational parameters for each aggregator-processes
(indexed by a) and each leaf-processes (indexed by i) as follows:

Φ̂at (j,k) ∝ exp
(
∑

l
〈s
π(a)
t

(l)〉 log Φa(j,k,l) +
∑

c∈Child(a)

∑

h,i
〈sct(h)s

c
t−1(i)〉 log Φ

c(h,i,j)

)

φ̂a(j) ∝ exp
(
∑

l
〈s
π(a)
t

(l)〉 log φa(j,l) +
∑

c∈Child(a)

∑

h
〈sc0(h)〉 log Φ

c(h,j)

)

Ψ̂it(j,k) ∝ exp
(
∑

l
〈s
π(i)
t

(l)〉 log Ψi(j,k,l)− 1
2 log |Q

i
j | − 1

2 〈(x
i
t−A

i
jx
i
t−1)

′(Qij)
−1(xit−A

i
jx
i
t−1)〉)

ψ̂i(j) ∝ exp
(
∑

l
〈s
π(i)
t

(l)〉 logψi(j,l)− 1
2 log |q

i
j | − 1

2 〈(x
i
0−µ

i
j)
′(qij)

−1(xi0−µ
i
j)〉)

Âit = Q̂it

∑

j
〈sit(j)〉(Q

i
j)
−1Aij

(Q̂it)
−1 =

∑

j
〈sit(j)〉(Q

i
j)
−1
+
∑

j
〈sit+1(j)〉(A

i
j)
′(Qij)

−1
Aij −(Â

i
t+1)

′(Q̂it+1)
−1
Âit+1

µ̂i = q̂i
∑

j
〈si0(j)〉(q

i
j)
−1µij

q̂i =
∑

j
〈si0(j)〉(q

i
j)
−1
+
∑

j
〈si1(j)〉(A

i
j)
′(Qij)

−1
Aij −(Â

i
1)
′(Q̂i1)

−1
Âi1

Note that these are conditional distributions and should be properly normalized.
After iterating the variational parameter updates, we perform forward-backward
inference on Q to get normalized probabilities and marginals. We use these to
compute expectations over our hidden variables. Since Q is a set of disconnected
chains, we need the following marginals: p(xt), p(xt, xt−1), p(st) and p(st, st−1) for
all hidden variables. After the above approximate E-step, an M-step update of the
parameters Θ is trivial via expectations of the complete likelihood using the current
Q distribution. The update rules for the model parameters for a Kalman filter (with
continuous dynamics and continuous emission models) are shown in [1]. Similarly,
updating the discrete Markov chain’s transition matrix (or tensor) is immediate.

Computing the model’s true log-likelihood, however, remains intractable. We in-
stead evaluate the bound, B(Q,Θ). During learning, the bound increases mono-
tonically as we iterate variational parameter updates in Q and model parameter

1Note sufficient statistics for M-state discrete variables are not expectations 〈st〉 and
〈st, st−1〉. In the exponential family, they are the M − 1 dimensional truncation of the
multinomial variable st which we call st. Therefore, rewrite Hamiltonians with st and

replace st(M) with 1−
∑

M−1

m=1
st(m) before computing expectations and derivatives.
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updates in Θ to achieve a local maximum. We compute the bound via the ex-
pected Hamiltonian H under Q summed with the entropy of the Q distribution:
B(Q,Θ) = EQ(S,X ){H(S,X ,Y)−HQ(S,X )}. These expectations are easy to com-
pute and only involve expectations over (at most pairwise) cliques of Q. In all the
above computations, it is easy to recurse through the DST to compute the B(Q,Θ)
terms for each leaf-process and aggregator-process. Furthermore, variational pa-
rameter updates are nicely decoupled and M-steps for Θ parameters are indepen-
dent given the inferred expectations under the Q distribution. In Figure 3(c) we
show pseudo-code for propagating through the hierarchy tree to update variational
parameters. This is interleaved with re-estimation of the model parameters.

4 EXPERIMENTS

We evaluated DSTs and other dynamical models on real-world trajectory data from
American football plays [3]. Players are tracked using computer vision to obtain
spatial coordinates in the football field (with some normalization). Each human
generates a continuous time series of two dimensional coordinates. Our training
data consisted of 5 example plays of dig maneuvers and testing data was two new
dig exemplars. Figure 4(a) shows the trajectories for multiple players during a play.
A naive approach to modeling our data is to stack or concatenate each player’s
time series into a single multivariate series. We start with the simplest multivari-
ate time series model, a single Kalman Filter (LDS) or single SLDS (which do not
treat players as individual temporal processes). The table below shows low test log-
likelihoods for single LDSs and SLDSs as we evaluate them on the two unseen dig
plays, even as we increase dimensionality of hidden states x or s. To instead model
players as separate temporal processes, we trained multiple independent SLDSs for
each player in isolation. Each has 2 dimensional continuous xt state and 2 states
for the switches st. Yet such SLDSs completely ignore interactions between players.
A DST, however, can couple many separate temporal interactions by fusing SLDS
structures (as above) with two additional binary-state team-chains aggregating the
two teams of players and a top level binary-state game-chain aggregating the two
teams. In Figure 4(b) we show the monotonic convergence of the EM-style algo-
rithm while training on 5 example plays for both the DST and the independent
SLDSs. Unlike LDSs, both SLDSs and DSTs estimate (conservative) lower bounds
on test likelihoods and require approximate inference (variationals converge in 5-10
iterations for each test play). Five random initializations are done and we show
the mean and standard deviation of the log-likelihood bound for both the DST and



SLDSs. Test results in the table below show that independent SLDSs improve on
single LDSs and SLDSs yet the DST has the best generalization on testing data2.

Model Log-Likelihoods Test Play 1 Log-Likelihoods Test Play 2
Single LDS dimX = 1 -1.9E5 -1.5E5
Single LDS dimX = 2 -1.9E5 -1.5E5
Single LDS dimX = 3 -2.7E7 -3.2E7
Single SLDS dimS = 2 -7.7E5 ±ε -1.5E6 ±ε

Single SLDS dimS = 4 -1.8E5 ±ε -1.5E5 ±ε

Multi SLDSs dimS = 2 -1.4E4 ± 3.4E2 -1.6E4 ± 1.0E3
DST dimS = 2 -5.6E3 ± 1.8E2 -6.1E3 ± 1.4E2

The weakness of single LDSs and SLDSs suggests we treat each time series for each
player separately (not as a single multivariate series). Using independent multi
SLDS models for each player does improve modeling yet still fails to capture interac-
tions between players. Thus, it is important to fuse (not just concatenate) multiple
interacting time series at a higher level as in DSTs which ultimately yielded high-
est test likelihoods. We find DSTs are promising and flexible dynamical Bayesian
networks for coupling multiple interacting processes in a tree structured hierar-
chy of influence. Results indicate that, for certain real temporal datasets, they are
more appropriate than simpler alternatives and capture elaborate interdependencies
without compromising computational tractability. Perhaps most interestingly, they
provide an easily reconfigurable and intuitive architecture for modeling temporal
interaction data.
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