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Preface to the Second Edition

On July 2, 2001, I received an email from Jun Suzuki, a recent grad-
uate in theoretical physics from the University of Tokyo. It contained a
request to reprint “Dynamical Theories of Brownian Motion”, which was
first published by Princeton University Press in 1967 and was now out
of print. Then came the extraordinary statement: “In our seminar, we
found misprints in the book and I typed the book as a TeX file with mod-
ifications.” One does not receive such messages often in one’s lifetime.

So, it is thanks to Mr. Suzuki that this edition appears. I modified
his file, taking the opportunity to correct my youthful English and make
minor changes in notation. But there are no substantive changes from
the first edition.

My hearty thanks also go to Princeton University Press for permis-
sion to post this volume on the Web. Together with all mathematics
books in the Annals Studies and Mathematical Notes series, it will also
be republished in book form by the Press.

Fine Hall
August 25, 2001





Contents

1. Apology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Robert Brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. The period before Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Albert Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5. Derivation of the Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6. Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7. The Wiener integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8. A class of stochastic differential equations . . . . . . . . . . . . . . . . . . . 37

9. The Ornstein-Uhlenbeck theory of Brownian motion . . . . . . . . . 45

10. Brownian motion in a force field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11. Kinematics of stochastic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12. Dynamics of stochastic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13. Kinematics of Markovian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

14. Remarks on quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

15. Brownian motion in the aether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

16. Comparison with quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . 111





Chapter 1

Apology

It is customary in Fine Hall to lecture on mathematics, and any major
deviation from that custom requires a defense.

It is my intention in these lectures to focus on Brownian motion as a
natural phenomenon. I will review the theories put forward to account
for it by Einstein, Smoluchowski, Langevin, Ornstein, Uhlenbeck, and
others. It will be my conjecture that a certain portion of current physical
theory, while mathematically consistent, is physically wrong, and I will
propose an alternative theory.

Clearly, the chances of this conjecture being correct are exceedingly
small, and since the contention is not a mathematical one, what is the
justification for spending time on it? The presence of some physicists in
the audience is irrelevant. Physicists lost interest in the phenomenon of
Brownian motion about thirty or forty years ago. If a modern physicist is
interested in Brownian motion, it is because the mathematical theory of
Brownian motion has proved useful as a tool in the study of some models
of quantum field theory and in quantum statistical mechanics. I believe
that this approach has exciting possibilities, but I will not deal with it
in this course (though some of the mathematical techniques that will be
developed are relevant to these problems).

The only legitimate justification is a mathematical one. Now “applied
mathematics” contributes nothing to mathematics. On the other hand,
the sciences and technology do make vital contribution to mathematics.
The ideas in analysis that had their origin in physics are so numerous and
so central that analysis would be unrecognizable without them.

A few years ago topology was in the doldrums, and then it was re-
vitalized by the introduction of differential structures. A significant role
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2 CHAPTER 1

in this process is being played by the qualitative theory of ordinary dif-
ferential equations, a subject having its roots in science and technology.
There was opposition on the part of some topologists to this process, due
to the loss of generality and the impurity of methods.

It seems to me that the theory of stochastic processes is in the dol-
drums today. It is in the doldrums for the same reason, and the remedy
is the same. We need to introduce differential structures and accept the
corresponding loss of generality and impurity of methods. I hope that a
study of dynamical theories of Brownian motion can help in this process.

Professor Rebhun has very kindly prepared a demonstration of Brown-
ian motion in Moffet Laboratory. This is a live telecast from a microscope.
It consists of carmine particles in acetone, which has lower viscosity than
water. The smaller particles have a diameter of about two microns (a
micron is one thousandth of a millimeter). Notice that they are more
active than the larger particles. The other sample consists of carmine
particles in water—they are considerably less active. According to the-
ory, nearby particles are supposed to move independently of each other,
and this appears to be the case.

Perhaps the most striking aspect of actual Brownian motion is the ap-
parent tendency of the particles to dance about without going anywhere.
Does this accord with theory, and how can it be formulated?

One nineteenth century worker in the field wrote that although the
terms “titubation” and “pedesis” were in use, he preferred “Brownian
movements” since everyone at once knew what was meant. (I looked up
these words [1]. Titubation is defined as the “act of titubating; specif.,
a peculiar staggering gait observed in cerebellar and other nervous dis-
turbance”. The definition of pedesis reads, in its entirety, “Brownian
movement”.) Unfortunately, this is no longer true, and semantical con-
fusion can result. I shall use “Brownian motion” to mean the natural
phenomenon. The common mathematical model of it will be called (with
ample historical justification) the “Wiener process”.

I plan to waste your time by considering the history of nineteenth
century work on Brownian motion in unnecessary detail. We will pick
up a few facts worth remembering when the mathematical theories are
discussed later, but only a few. Studying the development of a topic in
science can be instructive. One realizes what an essentially comic activity
scientific investigation is (good as well as bad).
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Chapter 2

Robert Brown

Robert Brown sailed in 1801 to study the plant life of the coast of Aus-
tralia. This was only a few years after a botanical expedition to Tahiti
aboard the Bounty ran into unexpected difficulties. Brown returned to
England in 1805, however, and became a distinguished botanist. Al-
though Brown is remembered by mathematicians only as the discoverer
of Brownian motion, his biography in the Encyclopaedia Britannica makes
no mention of this discovery.

Brown did not discover Brownian motion. After all, practically anyone
looking at water through a microscope is apt to see little things moving
around. Brown himself mentions one precursor in his 1828 paper [2] and
ten more in his 1829 paper [3], starting at the beginning with Leeuwen-
hoek (1632–1723), including Buffon and Spallanzani (the two protago-
nists in the eighteenth century debate on spontaneous generation), and
one man (Bywater, who published in 1819) who reached the conclusion
(in Brown’s words) that “not only organic tissues, but also inorganic sub-
stances, consist of what he calls animated or irritable particles.”

The first dynamical theory of Brownian motion was that the particles
were alive. The problem was in part observational, to decide whether
a particle is an organism, but the vitalist bugaboo was mixed up in it.
Writing as late as 1917, D’Arcy Thompson [4] observes: “We cannot,
indeed, without the most careful scrutiny, decide whether the movements
of our minutest organisms are intrinsically ‘vital’ (in the sense of being
beyond a physical mechanism, or working model) or not.” Thompson
describes some motions of minute organisms, which had been ascribed to
their own activity, but which he says can be explained in terms of the
physical picture of Brownian motion as due to molecular bombardment.
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6 CHAPTER 2

On the other hand, Thompson describes an experiment by Karl Przibram,
who observed the position of a unicellular organism at fixed intervals. The
organism was much too active, for a body of its size, for its motion to
be attributed to molecular bombardment, but Przibram concluded that,
with a suitable choice of diffusion coefficient, Einstein’s law applied!

Although vitalism is dead, Brownian motion continues to be of interest
to biologists. Some of you heard Professor Rebhun describe the problem
of disentangling the Brownian component of some unexplained particle
motions in living cells.

Some credit Brown with showing that the Brownian motion is not vital
in origin; others appear to dismiss him as a vitalist. It is of interest to
follow Brown’s own account [2] of his work. It is one of those rare papers
in which a scientist gives a lucid step-by-step account of his discovery and
reasoning.

Brown was studying the fertilization process in a species of flower
which, I believe likely, was discovered on the Lewis and Clark expedi-
tion. Looking at the pollen in water through a microscope, he observed
small particles in “rapid oscillatory motion.” He then examined pollen
of other species, with similar results. His first hypothesis was that Brow-
nian motion was not only vital but peculiar to the male sexual cells of
plants. (This we know is not true—the carmine particles that we saw
were derived from the dried bodies of female insects that grow on cactus
plants in Mexico and Central America.) Brown describes how this view
was modified:

“In this stage of the investigation having found, as I believed, a pecu-
liar character in the motions of the particles of pollen in water, it occurred
to me to appeal to this peculiarity as a test in certain Cryptogamous
plants, namely Mosses, and the genus Equisetum, in which the existence
of sexual organs had not been universally admitted. . . . But I at the same
time observed, that on bruising the ovules or seeds of Equisetum, which at
first happened accidentally, I so greatly increased the number of moving
particles, that the source of the added quantity could not be doubted. I
found also that on bruising first the floral leaves of Mosses, and then all
other parts of those plants, that I readily obtained similar particles, not
in equal quantity indeed, but equally in motion. My supposed test of the
male organ was therefore necessarily abandoned.

“Reflecting on all the facts with which I had now become acquainted,
I was disposed to believe that the minute spherical particles or Molecules
of apparently uniform size, . . . were in reality the supposed constituent
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or elementary molecules of organic bodies, first so considered by Buffon
and Needham . . . ”

He examined many organic substances, finding the motion, and then
looked at mineralized vegetable remains: “With this view a minute por-
tion of silicified wood, which exhibited the structure of Coniferae, was
bruised, and spherical particles, or molecules in all respects like those
so frequently mentioned, were readily obtained from it; in such quantity,
however, that the whole substance of the petrifaction seemed to be formed
of them. From hence I inferred that these molecules were not limited to
organic bodies, nor even to their products.”

He tested this inference on glass and minerals: “Rocks of all ages,
including those in which organic remains have never been found, yielded
the molecules in abundance. Their existence was ascertained in each of
the constituent minerals of granite, a fragment of the Sphinx being one
of the specimens observed.”

Brown’s work aroused widespread interest. We quote from a report
[5] published in 1830 of work of Muncke in Heidelberg:

“This motion certainly bears some resemblance to that observed in
infusory animals, but the latter show more of a voluntary action. The idea
of vitality is quite out of the question. On the contrary, the motions may
be viewed as of a mechanical nature, caused by the unequal temperature
of the strongly illuminated water, its evaporation, currents of air, and
heated currents, &c. ”

Of the causes of Brownian motion, Brown [3] writes:

“I have formerly stated my belief that these motions of the particles
neither arose from currents in fluid containing them, nor depended on that
intestine motion which may be supposed to accompany its evaporation.

“These causes of motion, however, either singly or combined with
other,—as, the attractions and repulsions among the particles themselves,
their unstable equilibrium in the fluid in which they are suspended, their
hygrometrical or capillary action, and in some cases the disengagement
of volatile matter, or of minute air bubbles,—have been considered by
several writers as sufficiently accounting for the appearance.”

He refutes most of these explanations by describing an experiment in
which a drop of water of microscopic size immersed in oil, and containing
as few as one particle, exhibits the motion unabated.

Brown denies having stated that the particles are animated. His the-
ory, which he is careful never to state as a conclusion, is that matter is
composed of small particles, which he calls active molecules, which exhibit
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a rapid, irregular motion having its origin in the particles themselves and
not in the surrounding fluid.

His contribution was to establish Brownian motion as an important
phenomenon, to demonstrate clearly its presence in inorganic as well as
organic matter, and to refute by experiment facile mechanical explana-
tions of the phenomenon.
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Chapter 3

The period before Einstein

I have found no reference to a publication on Brownian motion be-
tween 1831 and 1857. Reading papers published in the sixties and sev-
enties, however, one has the feeling that awareness of the phenomenon
remained widespread (it could hardly have failed to, as it was something
of a nuisance to microscopists). Knowledge of Brown’s work reached lit-
erary circles. In George Eliot’s “Middlemarch” (Book II, Chapter V,
published in 1872) a visitor to the vicar is interested in obtaining one of
the vicar’s biological specimens and proposes a barter: “I have some sea
mice. . . . And I will throw in Robert Brown’s new thing,—‘Microscopic
Observations on the Pollen of Plants,’—if you don’t happen to have it
already.”

From the 1860s on, many scientists worked on the phenomenon. Most
of the hypotheses that were advanced could have been ruled out by con-
sideration of Brown’s experiment of the microscopic water drop enclosed
in oil. The first to express a notion close to the modern theory of Brown-
ian motion was Wiener in 1863. A little later Carbonelle claimed that the
internal movements that constitute the heat content of fluids is well able
to account for the facts. A passage emphasizing the probabilistic aspects
is quoted by Perrin [6, p. 4]:

“In the case of a surface having a certain area, the molecular col-
lisions of the liquid which cause the pressure, would not produce any
perturbation of the suspended particles, because these, as a whole, urge
the particles equally in all directions. But if the surface is of area less
than is necessary to ensure the compensation of irregularities, there is no
longer any ground for considering the mean pressure; the inequal pres-
sures, continually varying from place to place, must be recognized, as the
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10 CHAPTER 3

law of large numbers no longer leads to uniformity; and the resultant will
not now be zero but will change continually in intensity and direction.
Further, the inequalities will become more and more apparent the smaller
the body is supposed to be, and in consequence the oscillations will at
the same time become more and more brisk . . . ”

There was no unanimity in this view. Jevons maintained that pedesis
was electrical in origin. Ord, who attributed Brownian motion largely
to “the intestine vibration of colloids”, attacked Jevons’ views [7], and I
cannot refrain from quoting him:

“I may say that before the publication of Dr. Jevons’ observations I
had made many experiments to test the influence of acids [upon Brownian
movements], and that my conclusions entirely agree with his. In stating
this, I have no intention of derogating from the originality of of Professor
Jevons, but simply of adding my testimony to his on a matter of some
importance. . . .

“The influence of solutions of soap upon Brownian movements, as
set forth by Professor Jevons, appears to me to support my contention
in the way of agreement. He shows that the introduction of soap in
the suspending fluid quickens and makes more persistent the movements
of the suspended particles. Soap in the eyes of Professor Jevons acts
conservatively by retaining or not conducting electricity. In my eyes it is
a colloid, keeping up movements by revolutionary perturbations. . . . It is
interesting to remember that, while soap is probably our best detergent,
boiled oatmeal is one of its best substitutes. What this may be as a
conductor of electricity I do not know, but it certainly is a colloid mixture
or solution.”

Careful experiments and arguments supporting the kinetic theory were
made by Gouy. From his work and the work of others emerged the fol-
lowing main points (cf. [6]):

1. The motion is very irregular, composed of translations and rota-
tions, and the trajectory appears to have no tangent.

2. Two particles appear to move independently, even when they ap-
proach one another to within a distance less than their diameter.

3. The motion is more active the smaller the particles.

4. The composition and density of the particles have no effect.

5. The motion is more active the less viscous the fluid.
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6. The motion is more active the higher the temperature.

7. The motion never ceases.

In discussing 1, Perrin mentions the mathematical existence of no-
where differentiable curves. Point 2 had been noticed by Brown, and it is
a strong argument against gross mechanical explanations. Perrin points
out that 6 (although true) had not really been established by observation,
since for a given fluid the viscosity usually changes by a greater factor
than the absolute temperature, so that the effect 5 dominates 6. Point 7
was established by observing a sample over a period of twenty years,
and by observations of liquid inclusions in quartz thousands of years old.
This point rules out all attempts to explain Brownian motion as a non-
equilibrium phenomenon.

By 1905, the kinetic theory, that Brownian motion of microscopic par-
ticles is caused by bombardment by the molecules of the fluid, seemed the
most plausible. The seven points mentioned above did not seem to be
in conflict with this theory. The kinetic theory appeared to be open to
a simple test: the law of equipartition of energy in statistical mechan-
ics implied that the kinetic energy of translation of a particle and of a
molecule should be equal. The latter was roughly known (by a determina-
tion of Avogadro’s number by other means), the mass of a particle could
be determined, so all one had to measure was the velocity of a particle
in Brownian motion. This was attempted by several experimenters, but
the result failed to confirm the kinetic theory as the two values of kinetic
energy differed by a factor of about 100,000. The difficulty, of course,
was point 1 above. What is meant by the velocity of a Brownian par-
ticle? This is a question that will recur throughout these lectures. The
success of Einstein’s theory of Brownian motion (1905) was largely due
to his circumventing this question.
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Chapter 4

Albert Einstein

It is sad to realize that despite all of the hard work that had gone into
the study of Brownian motion, Einstein was unaware of the existence of
the phenomenon. He predicted it on theoretical grounds and formulated
a correct quantitative theory of it. (This was in 1905, the same year he
discovered the special theory of relativity and invented the photon.) As
he describes it [12, p. 47]:

“Not acquainted with the earlier investigations of Boltzmann and
Gibbs, which had appeared earlier and actually exhausted the subject,
I developed the statistical mechanics and the molecular-kinetic theory of
thermodynamics which was based on the former. My major aim in this
was to find facts which would guarantee as much as possible the exis-
tence of atoms of definite finite size. In the midst of this I discovered
that, according to atomistic theory, there would have to be a movement
of suspended microscopic particles open to observation, without know-
ing that observations concerning the Brownian motion were already long
familiar.”

By the time his first paper on the subject was written, he had heard
of Brownian motion [10, §3, p. 1]:

“It is possible that the movements to be discussed here are identical
with the so-called ‘Brownian molecular motion’; however, the information
available to me regarding the latter is so lacking in precision, that I can
form no judgment in the matter.”

There are two parts to Einstein’s argument. The first is mathematical
and will be discussed later (Chapter 5). The result is the following: Let
ρ = ρ(x, t) be the probability density that a Brownian particle is at x at
time t. Then, making certain probabilistic assumptions (some of them

13
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implicit), Einstein derived the diffusion equation

∂ρ

∂t
= D∆ρ (4.1)

where D is a positive constant, called the coefficient of diffusion. If the
particle is at 0 at time 0

(
so that ρ(x, 0) = δ(x)

)
then

ρ(x, t) =
1

(4πDt)3/2
e−
|x|2
4Dt (4.2)

(in three-dimensional space, where |x| is the Euclidean distance of x from
the origin).

The second part of the argument, which relates D to other physical
quantities, is physical. In essence, it runs as follows. Imagine a suspension
of many Brownian particles in a fluid, acted on by an external force K,
and in equilibrium. (The force K might be gravity, as in the figure, but
the beauty of the argument is that K is entirely virtual.)

Figure 1

In equilibrium, the force K is balanced by the osmotic pressure forces
of the suspension,

K = kT
grad ν

ν
. (4.3)

Here ν is the number of particles per unit volume, T is the absolute
temperature, and k is Boltzmann’s constant. Boltzmann’s constant has
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the dimensions of energy per degree, so that kT has the dimensions of
energy. A knowledge of k is equivalent to a knowledge of Avogadro’s
number, and hence of molecular sizes. The right hand side of (4.3) is
derived by applying to the Brownian particles the same considerations
that are applied to gas molecules in the kinetic theory.

The Brownian particles moving in the fluid experience a resistance
due to friction, and the force K imparts to each particle a velocity of the
form

K

mβ
,

where β is a constant with the dimensions of frequency (inverse time) and
m is the mass of the particle. Therefore

νK

mβ

particles pass a unit area per unit of time due to the action of the force K.
On the other hand, if diffusion alone were acting, ν would satisfy the
diffusion equation

∂ν

∂t
= D∆ν

so that

−D grad ν

particles pass a unit area per unit of time due to diffusion. In dynamical
equilibrium, therefore,

νK

mβ
= D grad ν. (4.4)

Now we can eliminate K and ν between (4.3) and (4.4), giving Einstein’s
formula

D =
kT

mβ
. (4.5)

This formula applies even when there is no force and when there is only
one Brownian particle (so that ν is not defined).
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Parenthetically, if we divide both sides of (4.3) by mβ, and use (4.5),
we obtain

K

mβ
= D

grad ν

ν
.

The probability density ρ is just the number density ν divided by the
total number of particles, so this can be rewritten as

K

mβ
= D

grad ρ

ρ
.

Since the left hand side is the velocity acquired by a particle due to the
action of the force,

D
grad ρ

ρ
(4.6)

is the velocity required of the particle to counteract osmotic effects.
If the Brownian particles are spheres of radius a, then Stokes’ theory

of friction gives mβ = 6πηa, where η is the coefficient of viscosity of the
fluid, so that in this case

D =
kT

6πηa
. (4.7)

The temperature T and the coefficient of viscosity η can be measured,
with great labor a colloidal suspension of spherical particles of fairly uni-
form radius a can be prepared, and D can be determined by statistical
observations of Brownian motion using (4.2). In this way Boltzmann’s
constant k (or, equivalently, Avogadro’s number) can be determined. This
was done in a series of difficult and laborious experiments by Perrin and
Chaudesaigues [6, §3]. Rather surprisingly, considering the number of
assumptions that went into the argument, the result obtained for Avo-
gadro’s number agreed to within 19% of the modern value obtained by
other means. Notice how the points 3–6 of Chapter 3 are reflected in the
formula (4.7).

Einstein’s argument does not give a dynamical theory of Brownian
motion; it only determines the nature of the motion and the value of
the diffusion coefficient on the basis of some assumptions. Smoluchowski,
independently of Einstein, attempted a dynamical theory, and arrived
at (4.5) with a factor of 32/27 of the right hand side. Langevin gave
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another derivation of (4.5) which was the starting point for the work of
Ornstein and Uhlenbeck, which we shall discuss later (Chapters 9–10).
Langevin is the founder of the theory of stochastic differential equations
(which is the subject matter of these lectures).

Einstein’s work was of great importance in physics, for it showed in
a visible and concrete way that atoms are real. Quoting from Einstein’s
Autobiographical Notes again [12, p. 49]:

“The agreement of these considerations with experience together with
Planck’s determination of the true molecular size from the law of radiation
(for high temperatures) convinced the sceptics, who were quite numerous
at that time (Ostwald, Mach) of the reality of atoms. The antipathy of
these scholars towards atomic theory can indubitably be traced back to
their positivistic philosophical attitude. This is an interesting example
of the fact that even scholars of audacious spirit and fine instinct can be
obstructed in the interpretation of facts by philosophical prejudices.”

Let us not be too hasty in adducing any other interesting example
that may spring to mind.

Reference
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Chapter 5

Derivation of the Wiener
process

Einstein’s basic assumption is that the following is possible [10, §3,
p. 13]: “We will introduce a time-interval τ in our discussion, which is to
be very small compared with the observed interval of time [i.e., the inter-
val of time between observations], but, nevertheless, of such a magnitude
that the movements executed by a particle in two consecutive intervals
of time τ are to be considered as mutually independent phenomena.”
He then implicitly considers the limiting case τ → 0. This assumption
has been criticized by many people, including Einstein himself, and later
on (Chapter 9–10) we shall discuss a theory in which this assumption is
modified. Einstein’s derivation of the transition probabilities proceeds by
formal manipulations of power series. His neglect of higher order terms is
tantamount to the assumption (5.2) below. In the theorem below, pt may
be thought of as the probability distribution at time t of the x-coordinate
of a Brownian particle starting at x = 0 at t = 0. The proof is taken from
a paper of Hunt [13], who showed that Fourier analysis is not the natural
tool for problems of this type.

THEOREM 5.1 Let pt, 0 ≤ t < ∞, be a family of probability measures
on the real line R such that

pt ∗ ps = pt+s; 0 ≤ t, s <∞, (5.1)

where ∗ denotes convolution; for each ε > 0,

pt({x : |x| ≥ ε}) = o(t), t→ 0; (5.2)
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and for each t > 0, pt is invariant under the transformation x 7→ −x.
Then either pt = δ for all t ≥ 0 or there is a D > 0 such that, for all
t > 0, pt has the density

p(t, x) =
1√

4πDt
e−

x2

4Dt ,

so that p satisfies the diffusion equation

∂p

∂t
= D

∂2p

∂x2
, t > 0.

First we need a lemma:

THEOREM 5.2 Let X be a real Banach space, f ∈X , D a dense linear
subspace of X , u1, . . . , un continuous linear functionals on X , δ > 0.
Then there exists a g ∈ D with

‖f − g‖ ≤ δ

(u1, f) = (u1, g), . . . , (un, f) = (un, g).

Proof. Let us instead prove that if X is a real Banach space, D a
dense convex subset, M a closed affine hyperplane, then D ∩M is dense
in M . Then the general case of finite co-dimension follows by induction.

Without loss of generality, we can assume that M is linear (0 ∈M ),
so that, if we let e be an element of X not in M ,

X = M ⊕ Re.

Let f ∈M , ε > 0. Choose g+ in D so that

‖(f + e)− g+‖ ≤ ε

and choose g− in D so that

‖(f − e)− g−‖ ≤ ε.

Set

g+ = m+ + r+e, m+ ∈M

g− = m− + r−e, m− ∈M .
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Since M is closed, the linear functional that assigns to each element of X
the corresponding coefficient of e is continuous. Therefore r+ and r− tend
to 1 as ε → 0 and so are strictly positive for ε sufficiently small. By the
convexity of D ,

g =
r−g+ + r+g−
r− + r+

is then in D . But

g =
r−m+ + r+m−

r− + r+

is also in M , and it converges to f as ε→ 0. QED.

We recall that if X is a Banach space, then a contraction semigroup
on X (in our terminology) is a family of bounded linear transforma-
tions P t of X into itself, defined for 0 ≤ t < ∞, such that P 0 = 1,
P tP s = P t+s, ‖P tf − f‖ → 0, and ‖P t‖ ≤ 1, for all 0 ≤ t, s < ∞ and
all f in X . The infinitesimal generator A is defined by

Af = lim
t→0+

P tf − f
t

on the domain D(A) of all f for which the limit exists.

If X is a locally compact Hausdorff space, C(X) denotes the Banach
space of all continuous functions vanishing at infinity in the norm

‖f‖ = sup
x∈X
|f(x)|,

and Ẋ denotes the one-point compactification of X. We denote by
C2

com(R`) the set of all functions of class C2 with compact support on R`,
by C2(R`) its completion in the norm

‖f‖† = ‖f‖+
∑̀
i=1

‖ ∂f
∂xi
‖+

∑̀
i,j=1

‖ ∂2f

∂xi∂xj
‖,

and by C2(Ṙ
`
) the completion of C2

com(Ṙ
`
) together with the constants,

in the same norm.
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A Markovian semigroup on C(X) is a contraction semigroup on C(X)
such that f ≥ 0 implies P tf ≥ 0 for 0 ≤ t < ∞, and such that for all x
in X and 0 ≤ t <∞,

sup
0≤f≤1
f∈C(X)

P tf(x) = 1.

If X is compact, the last condition is equivalent to P t1 = 1, 0 ≤ t < ∞.
By the Riesz theorem, there is a unique regular Borel probability measure
pt(x, ·) such that

P tf(x) =

∫
f(y) pt(x, dy),

and pt is called the kernel of P t.

THEOREM 5.3 Let P t be a Markovian semigroup on C(Ṙ
`
) commuting

with translations, and let A be the infinitesimal generator of P t. Then

C2(Ṙ
`
) ⊆ D(A).

Proof. Since P t commutes with translations, P t leaves C2(Ṙ
`
) invari-

ant and is a contraction semigroup on it. Let A† be the infinitesimal

generator of P t on C2(Ṙ
`
). Clearly D(A†) ⊆ D(A), and since the domain

of the infinitesimal generator is always dense, D(A) ∩ C2(Ṙ
`
) is dense in

C2(Ṙ
`
).

Let ψ be in C2(Ṙ
`
) and such that ψ(x) = |x|2 in a neighborhood

of 0, ψ(x) = 1 in a neighborhood of infinity, and ψ is strictly positive

on Ṙ
` − {0}. Apply Theorem 5.2 to X = C2(Ṙ

`
), D = D(A) ∩ C2(Ṙ

`
),

f = ψ, and to the continuous linear functionals mapping ϕ in X to

ϕ(0),
∂ϕ

∂xi
(0),

∂2ϕ

∂xi∂xj
(0).

Then, for all ε > 0, there is a ϕ in D(A) ∩ C2(Ṙ
`
) with

ϕ(0) =
∂ϕ

∂xi
(0) = 0,

∂2ϕ

∂xi∂xj
(0) = 2δij,
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and ‖ϕ − ψ‖ ≤ ε. If ε is small enough, ϕ must be strictly positive on

Ṙ
`−{0}. Fix such a ϕ, and let δ > 0, f ∈ C2(Ṙ

`
). By Theorem 5.2 again

there is a g in D(A) ∩ C2(Ṙ
`
) with

|f(y)− g(y)| ≤ δϕ(y)

for all y in Ṙ
`
. Now

1

t

∫
|f(y)− g(y)| pt(0, dy) ≤ δ

t

∫
ϕ(y) pt(0, dy)

and since ϕ ∈ D(A) with ϕ(0) = 0, the right hand side is O(δ). Therefore

1

t

∫
[f(y)− f(0)] pt(0, dy) (5.3)

and

1

t

∫
[g(y)− g(0)] pt(0, dy) (5.4)

differ by O(δ). Since g ∈ D(A), (5.4) has a limit as t → 0. Since δ is
arbitrary, (5.3) has a limit as t→ 0. Therefore (5.3) is bounded as t→ 0.

Since this is true for each f in the Banach space C2(Ṙ
`
), by the principle

of uniform boundedness there is a constant K such that for all f in C2(Ṙ
`
)

and t > 0, ∣∣∣∣1t (P tf − f)(0)

∣∣∣∣ ≤ K‖f‖†.

By translation invariance,∣∣∣∣1t (P tf − f)

∣∣∣∣ ≤ K‖f‖†.

Now 1
t
(P tg − g) → Ag for all g in the dense set D(A†) ∩ C2(Ṙ

`
), so by

the Banach-Steinhaus theorem, 1
t
(P tf − f) converges in C(Ṙ

`
) for all f

in C2(Ṙ
`
). QED.

THEOREM 5.4 Let P t be a Markovian semigroup on C(Ṙ
`
), not neces-

sarily commuting with translations, such that C2
com(R`) ⊆ D(A), where A

is the infinitesimal generator of P t. If for all x in R` and all ε > 0

pt(x, {y : |y − x| ≥ ε}) = o(t), (5.5)
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then

Af(x) =
∑̀
i=1

bi(x)
∂

∂xi
f(x) +

∑̀
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) (5.6)

for all f in C2
com(R`), where the aij and bi are real and continuous, and

for each x the matrix aij(x) is of positive type.

A matrix aij is of positive type (positive definite, positive semi-definite,
non-negative definite, etc.) in case for all complex ζi,

∑̀
i,j=1

ζ̄ia
ijζj ≥ 0.

The operator A is not necessarily elliptic since the matrix aij(x) may be
singular. If P t commutes with translations then aij and bi are constants,
of course.

Proof. Let f ∈ C2
com(R`) and suppose that f together with its first

and second order partial derivatives vanishes at x. Let g ∈ C2
com(R`) be

such that g(y) = |y−x|2 in a neighborhood of x and g ≥ 0. Let ε > 0 and
let U = {y : |f(y)| ≤ εg(y)}, so that U is a neighborhood of x. By (5.5),
pt(x,R` \ U) = o(t) and so

Af(x) = lim
t→0

1

t

∫
f(y)pt(x, dy)

= lim
t→0

1

t

∫
U

f(y)pt(x, dy) ≤ ε lim
t→0

1

t

∫
U

g(y)pt(x, dy) = εAg(x).

Since ε is arbitrary, Af(x) = 0. This implies that Af(x) is of the
form (5.6) for certain real numbers aij(x), bi(x), and we can assume that
the aij(x) are symmetric. (There is no zero-order term since P t is Marko-
vian.) If we apply A to functions in C2

com(R`) that in a neighborhood of
x agree with yi − xi and (yi − xi)(yj − xj), we see that bi and aij are
continuous. If f is in C2

com(R`) and f(x) = 0 then

Af 2(x) = lim
t→0

1

t

∫
f 2(y)pt(x, dy) ≥ 0.
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Therefore

Af 2(x) =
∑̀
i,j=1

aij(x)
∂2f 2

∂xi∂xj
(x)

= 2
∑̀
i,j=1

aij(x)
∂f

∂xi
(x)

∂f

∂xj
(x) ≥ 0.

We can choose

∂f

∂xi
(x) = ξi

to be arbitrary real numbers, and since aij(x) is real and symmetric, aij(x)
is of positive type. QED.

THEOREM 5.5 Let P t be a Markovian semigroup on C(R`) commuting
with translations, and let A be its infinitesimal generator. Then

C2(R`) ⊆ D(A) (5.7)

and P t is determined by A on C2
com(R`).

Proof. The inclusion (5.7) follows from Theorem 5.3. The proof of
that theorem shows that A is continuous from C2

com(R`) into C(R`), so
that A on C2

com(R`) determines A on C2(R`) by continuity. Since P t

commutes with translations, P t leaves C2(R`) invariant.
Let λ > 0. We shall show that (λ − A)C2(R`) is dense in C(R`).

Suppose not. Then there is a non-zero continuous linear functional z
on C(R`) such that

(
z, (λ − A)f

)
= 0 for all f in C2(R`). Since C2(R`)

is dense in C(R`), there is a g in C2(R`) with (z, g) 6= 0. Then

d

dt
(z, P tg) = (z, AP tg) = (z, λP tg) = λ(z, P tg)

since P tg is again in C2(R`). Therefore

(z, P tg) = eλt(z, g)

is unbounded, which is a contradiction. It follows that if Qt is another
such semigroup with infinitesimal generator B, and B = A on C2

com(R`),
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then (λ− B)−1 = (λ− A)−1 for λ > 0. But these are the Laplace trans-
forms of the semigroups Qt and P t, and by the uniqueness theorem for
Laplace transforms, Qt = P t. QED.

Theorem 5.1 follows from theorems 5.3, 5.4, 5.5 and the well-known
formula for the fundamental solution of the diffusion equation.
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Chapter 6

Gaussian processes

Gaussian random variables were discussed by Gauss in 1809 and the
central limit theorem was stated by Laplace in 1812. Laplace had already
considered Gaussian random variables around 1780, and for this reason
Frenchmen call Gaussian random variables “Laplacian”. However, the
Gaussian measure and an important special case of the central limit the-
orem were discovered by de Moivre in 1733. The main tool in de Moivre’s
work was Stirling’s formula, which, except for the fact that the constant
occurring in it is

√
2π, was discovered by de Moivre. In statistical me-

chanics the Gaussian distribution is called “Maxwellian”. Another name
for it is “normal”.

A Gaussian measure on R` is a measure that is the transform of the
measure with density

1

(2π)`/2
e−

1
2
|x|2

under an affine transformation. It is called singular in case the affine
transformation is singular, which is the case if and only if it is singular
with respect to Lebesgue measure.

A set of random variables is called Gaussian in case the distribution
of each finite subset is Gaussian. A set of linear combinations, or limits in
measure of linear combinations, of Gaussian random variables is Gaussian.
Two (jointly) Gaussian random variables are independent if and only if
they are uncorrelated; i.e., their covariance

r(x, y) = E(x− Ex)(y − Ey)

is zero (where E denotes the expectation).

27
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We define the mean m and covariance r of a probability measure µ
on R` as follows, provided the integrals exist:

mi =

∫
xiµ(dx)

rij =

∫
xixjµ(dx)−mimj =

∫
(xi −mi)(xj −mj)µ(dx)

where x has the components xi. The covariance matrix r is of positive
type. Let µ be a probability measure on R`, µ̂ its inverse Fourier transform

µ̂(ξ) =

∫
eiξ·xµ(dx).

Then µ is Gaussian if and only if

µ̂(ξ) = e−
1
2

∑
rijξiξj+i

∑
miξi

in which case r is the covariance and m the mean. If r is nonsingular and
r−1 denotes the inverse matrix, then the Gaussian measure with mean m
and covariance r has the density

1

(2π)`/2(det r)
1
2

e−
1
2

∑
(r−1)ij(xi−mi)(xj−mj).

If r is of positive type there is a unique Gaussian measure with covari-
ance r and mean m.

A set of complex random variables is called Gaussian if and only if the
real and imaginary parts are (jointly) Gaussian. We define the covariance
of complex random variables by

r(x, y) = E(x̄− Ex̄)(y − Ey).

Let T be a set. A complex function r on T×T is called of positive type
in case for all t1, . . . , t` in T the matrix r(ti, tj) is of positive type. Let x
be a stochastic process indexed by T . We call r(t, s) = r

(
x(t), x(s)

)
the

covariance of the process, m(t) = Ex(t) the mean of the process (provided
the integrals exist). The covariance is of positive type.

The following theorem is immediate (given the basic existence theo-
rem for stochastic processes with prescribed finite joint distributions).

THEOREM 6.1 Let T be a set, m a function on T , r a function of
positive type on T×T . Then there is a Gaussian stochastic process indexed
by T with mean m and covariance r. Any two such are equivalent.
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Chapter 7

The Wiener integral

The differences of the Wiener process

w(t)− w(s), 0 ≤ s ≤ t <∞

form a Gaussian stochastic process, indexed by pairs of positive numbers
s and t with s ≤ t. This difference process has mean 0 and covariance

E
(
w(t)− w(s)

)(
w(t′)− w(s′)

)
= σ2 |[s, t] ∩ [s′, t′]|

where | | denotes Lebesgue measure, and σ2 is the variance parameter of
the Wiener process.

We can extend the difference process to all pairs of real numbers s
and t. We can arbitrarily assign a distribution to w(0). The resulting
stochastic process w(t), −∞ < t < ∞, is called the two-sided Wiener
process. It is Gaussian if and only if w(0) is Gaussian (e.g., w(0) = x0

where x0 is a fixed point), but in any case the differences are Gaussian.
If we know that a Brownian particle is at x0 at the present moment,
w(0) = x0, then w(t) for t > 0 is the position of the particle at time t in
the future and w(t) for t < 0 is the position of the particle at time t in
the past. A movie of Brownian motion looks, statistically, the same if it
is run backwards.

We recall that, with probability one, the sample paths of the Wiener
process are continuous but not differentiable. Nevertheless, integrals of
the form ∫ ∞

−∞
f(t) dw(t)

can be defined, for any square-integrable f .

31



32 CHAPTER 7

THEOREM 7.1 Let Ω be the probability space of the differences of the
two-sided Wiener process. There is a unique isometric operator from
L2(R, σ2dt) into L2(Ω), denoted by

f 7→
∫ ∞
−∞

f(t) dw(t),

such that for all −∞ < a ≤ b <∞,∫ ∞
−∞

χ[a,b](t) dw(t) = w(b)− w(a).

The set of
∫∞
−∞ f(t) dw(t) is Gaussian.

If E is any set, χE is its characteristic function,

χE(t) =

{
1, t ∈ E
0, t 6∈ E.

We shall write, in the future,
∫ b
a
f(t) dw(t) for

∫∞
−∞ χ[a,b](t)f(t) dw(t).

Proof. Let f be a step function

f =
n∑
i=1

ciχ[ai,bi].

Then we define

∫ ∞
−∞

f(t) dw(t) =
n∑
i=1

ci[w(bi)− w(ai)]. (7.1)

If g also is a step function,

g =
m∑
j=1

djχ[ej ,fj ],
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then

E

∫ ∞
−∞

f(t) dw(t)

∫ ∞
−∞

g(s) dw(s)

= E
n∑
i=1

ci[w(bi)− w(ai)]
m∑
j=1

dj[w(fj)− w(ej)]

=
n∑
i=1

m∑
j=1

cidjσ
2 |[w(bi)− w(ai)] ∩ [w(fj)− w(ej)]|

= σ2

∫ ∞
−∞

f(t)g(t) dt.

Since the step functions are dense in L2(R, σ2dt), the mapping extends
by continuity to an isometry. Uniqueness is clear, and so is the fact that
the random variables are Gaussian. QED.

The Wiener integral can be generalized. Let T , µ be an arbitrary
measure space, and let S0 denote the family of measurable sets of finite
measure. Let w be the Gaussian stochastic process indexed by S0 with
mean 0 and covariance r(E,F ) = µ(E ∩ F ). This is easily seen to be of
positive type (see below). Let Ω be the probability space of the w-process.

THEOREM 7.2 There is a unique isometric mapping

f 7→
∫
f(t) dw(t)

from L2(T, µ) into L2(Ω) such that, for E ∈ S0,∫
χE(t) dw(t) = w(E).

The
∫
f(t) dw(t) are Gaussian.

The proof is as before.
If H is a Hilbert space, the function r on H ×H that is the inner

product, r(f, g) = (f, g), is of positive type, since∑
ζ̄i(fi, fj)ζj = ‖

∑
j

ζjfj‖2 ≥ 0.
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Consequently, the Wiener integral can be generalized further, as a purely
Hilbert space theoretic construct.

THEOREM 7.3 Let H be a Hilbert space. Then there is a Gaussian
stochastic process, unique up to equivalence, with mean 0 and covariance
given by the inner product.

Proof. This follows from Theorem 6.1. QED.

The special feature of the Wiener integral on the real line that makes
it useful is its relation to differentiation.

THEOREM 7.4 Let f be of bounded variation on the real line with com-
pact support, and let w be a Wiener process. Then∫ ∞

−∞
f(t) dw(t) = −

∫ ∞
−∞

df(t)w(t). (7.2)

In particular, if f is absolutely continuous on [a, b], then∫ b

a

f(t) dw(t) = −
∫ b

a

f ′(t)w(t) dt+ f(b)w(b)− f(a)w(a).

The left hand side of (7.2) is defined since f must be in L2. The right
hand side is defined a.e. (with probability one, that is) since almost ev-
ery sample function of the Wiener process is continuous. The equality in
(7.2) means equality a.e., of course.

Proof. If f is a step function, (7.2) is the definition (7.1) of the Wiener
integral. In the general case we can let fn be a sequence of step functions
such that fn → f in L2 and dfn → df in the weak-∗ topology of measures,
so that we have convergence to the two sides of (7.2). QED.
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Chapter 8

A class of stochastic
differential equations

By a Wiener process on R` we mean a Markov process w whose in-
finitesimal generator C is of the form

C =
∑̀
i,j=1

cij
∂2

∂xi∂xj
, (8.1)

where cij is a constant real matrix of positive type. Thus the w(t)−w(s)
are Gaussian, and independent for disjoint intervals, with mean 0 and
covariance matrix 2cij|t− s|.

THEOREM 8.1 Let b : R` → R
` satisfy a global Lipschitz condition; that

is, for some constant κ,

|b(x0)− b(x1)| ≤ κ|x0 − x1|

for all x0 and x1 in R`. Let w be a Wiener process on R` with infinitesimal
generator C given by (8.1). For each x0 in R` there is a unique stochastic
process x(t), 0 ≤ t <∞, such that for all t

x(t) = x0 +

∫ t

0

b
(
x(s)

)
ds+ w(t)− w(0). (8.2)

The x process has continuous sample paths with probability one.
If we define P tf(x0) for 0 ≤ t <∞, x0 ∈ R`, f ∈ C(R`) by

P tf(x0) = Ef
(
x(t)

)
, (8.3)

37
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where E denotes the expectation on the probability space of the w process,
then P t is a Markovian semigroup on C(R`). Let A be the infinitesimal
generator of P t. Then C2

com(R`) ⊆ D(A) and

Af = b · ∇f + Cf (8.4)

for all f in C2
com(R`).

Proof. With probability one, the sample paths of the w process are
continuous, so we need only prove existence and uniqueness for (8.2) with
w a fixed continuous function of t. This is a classical result, even when w is
not differentiable, and can be proved by the Picard method, as follows.

Let λ > κ, t ≥ 0, and let X be the Banach space of all continuous
functions ξ from [0, t] to R` with the norm

‖ξ‖ = sup
0≤s≤t

e−λs|ξ(s)|.

Define the non-linear mapping T : X →X by

Tξ(s) = ξ(0) +

∫ s

0

b
(
ξ(r)

)
dr + w(s)− w(0).

Then we have

‖Tξ − Tη‖ ≤ |ξ(0)− η(0)|+ sup
0≤s≤t

e−λs
∣∣∣∣∫ s

0

[b
(
ξ(r)

)
− b
(
η(r)

)
] dr

∣∣∣∣
≤ |ξ(0)− η(0)|+ sup

0≤s≤t
e−λsκ

∫ s

0

|ξ(r)− η(r)| dr

≤ |ξ(0)− η(0)|+ sup
0≤s≤t

e−λsκ

∫ s

0

eλr‖ξ − η‖ dr

= |ξ(0)− η(0)|+ α‖ξ − η‖, (8.5)

where α = κ/λ < 1. For x0 in R`, let Xx0 = {ξ ∈ X : ξ(0) = x0}. Then
Xx0 is a complete metric space and by (8.5), T is a proper contraction
on it. Therefore T has a unique fixed point x in Xx0 . Since t is arbitrary,
there is a unique continuous function x from [0,∞) to R` satisfying (8.2).
Any solution of (8.2) is continuous, so there is a unique solution of (8.2).

Next we shall show that P t : C(R`)→ C(R`). By (8.5) and induction
on n,

‖T nξ − T nη‖ ≤ [1 + α + . . .+ αn−1] |ξ(0)− η(0)|+ αn‖ξ − η‖. (8.6)
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If x0 is in R`, we shall also let x0 denote the constant map x0(s) = x0,
and we shall let x be the fixed point of T with x(0) = x0, so that

x = lim
n→∞

T nx0,

and similarly for y0 in R`. By (8.6), ‖x − y‖ ≤ β|x0 − y0|, where β =
1/(1 − α). Therefore, |x(t) − y(t)| ≤ eλtβ|x0 − y0|. Now let f be any
Lipschitz function on R` with Lipschitz constant K. Then∣∣f(x(t)

)
− f

(
y(t)

)∣∣ ≤ Keλtβ|x0 − y0|.

Since this is true for each fixed w path, the estimate remains true when
we take expectations, so that

|P tf(x0)− P tf(y0)| ≤ Keλtβ|x0 − y0|.

Therefore, if f is a Lipschitz function in C(R`) then P tf is a bounded
continuous function. The Lipschitz functions are dense in C(R`) and P t

is a bounded linear operator. Consequently, if f is in C(R`) then P tf is
a bounded continuous function. We still need to show that it vanishes at
infinity. By uniqueness,

x(t) = x(s) +

∫ t

s

b
(
x(r)

)
dr + w(t)− w(s)

for all 0 ≤ s ≤ t, so that

|x(t)− x(s)| ≤
∣∣∣∣∫ t

s

[b
(
x(r)

)
− b
(
x(t)

)
] dr

∣∣∣∣+ (t− s)
∣∣b(x(t)

)∣∣
+ |w(t)− w(s)|

≤ κ

∫ t

s

|x(r)− x(t)| dr + t
∣∣b(x(t)

)∣∣+ |w(t)− w(s)|

≤ κ sup
0≤r≤t

|x(r)− x(t)|+ t
∣∣b(x(t)

)∣∣+ sup
0≤r≤t

|w(t)− w(r)|.

Since this is true for each s, 0 ≤ s ≤ t,

sup
0≤s≤t

|x(t)− x(s)| ≤ γ
[
t
∣∣b(x(t)

)∣∣+ sup
0≤s≤t

|w(t)− w(s)|
]
,

where γ = 1/(1− κt), provided that κt < 1. In particular, if κt < 1 then

|x(t)− x0| ≤ γ
[
t
∣∣b(x(t)

)∣∣+ sup
0≤s≤t

|w(t)− w(s)|
]
. (8.7)
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Now let f be in Ccom(R`), let κt < 1, and let δ be the supremum of |b(z0)|
for z0 in the support of f . By (8.7), f

(
x(t)

)
= 0 unless

inf
z0∈supp f

|z0 − x0| ≤ γ[ tδ + sup
0≤s≤t

|w(t)− w(s)| ]. (8.8)

But as x0 tends to infinity, the probability that w will satisfy (8.8) tends
to 0. Since f is bounded, this means that Ef

(
x(t)

)
= P tf(x0) tends to 0

as x0 tends to infinity. We have already seen that P tf is continuous, so
P tf is in C(R`). Since Ccom(R`) is dense in C(R`) and P t is a bounded
linear operator, P t maps C(R`) into itself, provided κt < 1. This restric-
tion could have been avoided by introducing an exponential factor, but
this is not necessary, as we shall show that the P t form a semigroup.

Let 0 ≤ s ≤ t. The conditional distribution of x(t), with x(r) for all
0 ≤ r ≤ s given, is a function of x(s) alone, since the equation

x(t) = x(s) +

∫ t

s

b
(
x(s′)

)
ds′ + w(t)− w(s),

has a unique solution. Thus the x process is a Markov process, and

E{f
(
x(t)

)
|x(r), 0 ≤ r ≤ s} = E{f

(
x(t)

)
|x(s)} = P t−sf

(
x(s)

)
for f in C(R`), 0 ≤ s ≤ t. Therefore,

P t+sf(x0) = Ef(x(t+ s)
)

= EE{f
(
x(t+ s)

)
|x(r), 0 ≤ r ≤ s}

= EP tf
(
x(s)

)
= P sP tf(x0),

so that P t+s = P tP s. It is clear that

sup
0≤f≤1

P tf(x0) = 1

for all x0 and t.
It remains only to prove (8.4) for f in C2

com(R`). (Since C2
com(R`) is

dense in C(R`) and the P t have norm one, this will imply that P tf → f
as t→ 0 for all f in C(R`), so that P t is a Markovian semigroup.)

Let f be in C2
com(R`), and let K be a compact set containing the sup-

port of f in its interior. An argument entirely analogous to the derivation
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of (8.7), with the subtraction and addition of b(x0) instead of b
(
x(t)

)
,

gives

|x(t)− x0| ≤ γ[ t |b(x0)|+ sup
0≤s≤t

|w(0)− w(s)| ], (8.9)

provided κt < 1 (which we shall assume to be the case). Let x0 be
in the complement of K. Then f(x0) = 0 and f

(
x(t)

)
is also 0 unless

ε ≤ |x(t) − x0|, where ε is the distance from the support of f to the
complement of K. But the probability that the right hand side of (8.9)
will be bigger than ε is o(t) (in fact, o(tn) for all n) by familiar properties
of the Wiener process. Since f is bounded, this means that P tf(x0) is
uniformly o(t) for x0 in the complement of K, so that

P tf(x0)− f(x0)

t
→ b(x0) · ∇f(x0) + Cf(x0) = 0

uniformly for x0 in the complement of K. Now let x0 be in K. We have

P tf(x0) = Ef
(
x(t)

)
= Ef

(
x0 +

∫ t

0

b
(
x(s)

)
ds+ w(t)− w(0)

)
.

Define R(t) by

f

(
x0 +

∫ t

0

b
(
x(s)

)
ds+ w(t)− w(0)

)
= f(x0) + tb(x0) · ∇f(x0) + [w(t)− w(0)] · ∇f(x0)

+
1

2

∑
i,j

[wi(t)− wi(0)][wj(t)− wj(0)]
∂2

∂xi∂xj
f(x0) +R(t).

Then

P tf(x0)− f(x0)

t
= b(x0) · ∇f(x0) + Cf(x0) +

1

t
ER(t).

By Taylor’s formula,

R(t) = o(|w(t)− w(0)|2) + o

(∫ t

0

[
b
(
x(s)

)
− b(x0)

]
ds

)
.

Since E(|w(t)− w(0)|2) ≤ const. t, we need only show that

E sup
x0∈K

1

t

∫ t

0

|b
(
x(s)

)
− b(x0)|ds (8.10)
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tends to 0. But (8.10) is less than

E sup
x0∈K

1

t
κ

∫ t

0

|x(s)− x0|ds,

which by (8.9) is less than

E sup
x0∈K

κγ[ t |b(x0)|+ sup
0≤s≤t

|w(0)− w(s)|]. (8.11)

The integrand in (8.11) is integrable and decreases to 0 as t→ 0. QED.

Theorem 8.1 can be generalized in various ways. The first paragraph
of the theorem remains true if b is a continuous function of x and t that
satisfies a global Lipschitz condition in x with a uniform Lipschitz con-
stant for each compact t-interval. The second paragraph needs to be
slightly modified as we no longer have a semigroup, but the proofs are
the same. Doob [15, §6, pp. 273–291], using K. Itô’s stochastic integrals
(see Chapter 11), has a much deeper generalization in which the matrix
cij depends on x and t. The restriction that b satisfy a global Lipschitz
condition is necessary in general. For example, if the matrix cij is 0 then
we have a system of ordinary differential equations. However, if C is el-
liptic (that is, if the matrix cij is of positive type and non-singular) the
smoothness conditions on b can be greatly relaxed (cf. [20]).

We make the convention that

dx(t) = b
(
x(t)

)
dt+ dw(t)

means that

x(t)− x(s) =

∫ t

s

b
(
x(r)

)
dr + w(t)− w(s)

for all t and s.

THEOREM 8.2 Let A : R` → R
` be linear, let w be a Wiener process

on R
` with infinitesimal generator (8.1), and let f : [0,∞) → R

` be
continuous. Then the solution of

dx(t) = Ax(t)dt+ f(t)dt+ dw(t), x(0) = x0, (8.12)

for t ≥ 0 is

x(t) = eAtx0 +

∫ t

0

eA(t−s)f(s) ds+

∫ t

0

eA(t−s)dw(s). (8.13)
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The x(t) are Gaussian with mean

Ex(t) = eAtx0 +

∫ t

0

eA(t−s)f(s) ds (8.14)

and covariance r(t, s) = E
(
x(t)− Ex(t)

)(
x(s)− Ex(s)

)
given by

r(t, s) =

{
eA(t−s) ∫ s

0
eAr2ceA

Trdr, t ≥ s∫ t
0
eAr2ceA

TrdreA(s−t), t ≤ s.
(8.15)

The latter integral in (8.13) is a Wiener integral (as in Chapter 7). In
(8.15), AT denotes the transpose of A and c is the matrix with entries cij

occurring in (8.1).

Proof. Define x(t) by (8.13). Integrate the last term in (8.13) by parts,
obtaining∫ t

0

eA(t−s)dw(s) =

∫ t

0

AeA(t−s)w(s) ds+ eA(t−s)w(s)
∣∣s=t
s=0

=

∫ t

0

AeA(t−s)w(s) ds+ w(t)− eAtw(0).

It follows that x(t)−w(t) is differentiable, and has derivative Ax(t)+f(t).
This proves that (8.12) holds.

The x(t) are clearly Gaussian with the mean (8.14). Suppose that
t ≥ s. Then the covariance is given by

Exi(t)xj(s)− Exi(t)Exj(s)

= E

∫ t

0

∑
k

(
eA(t−t1)

)
ik
dwk(t1)

∫ s

0

∑
h

(
eA(s−s1)

)
jh
dwh(s1)

=

∫ s

0

∑
k,h

(
eA(t−r))

ik
2ckh

(
eA(s−r))

jh
dr

=

∫ s

0

(
eA(t−r)2ceA

T(s−r)
)
ij
dr

=

(
eA(t−s)

∫ s

0

eAr2ceA
Trdr

)
ij

.

The case t ≤ s is analogous. QED.
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Chapter 9

The Ornstein-Uhlenbeck
theory of Brownian motion

The theory of Brownian motion developed by Einstein and Smolu-
chowski, although in agreement with experiment, was clearly a highly
idealized treatment. The theory was far removed from the Newtonian
mechanics of particles. Langevin initiated a train of thought that, in
1930, culminated in a new theory of Brownian motion by L. S. Ornstein
and G. E. Uhlenbeck [22]. For ordinary Brownian motion (e.g., carmine
particles in water) the predictions of the Ornstein-Uhlenbeck theory are
numerically indistinguishable from those of the Einstein-Smoluchowski
theory. However, the Ornstein-Uhlenbeck theory is a truly dynamical
theory and represents great progress in the understanding of Brownian
motion. Also, as we shall see later (Chapter 10), there is a Brownian
motion where the Einstein-Smoluchowski theory breaks down completely
and the Ornstein-Uhlenbeck theory is successful.

The program of reducing Brownian motion to Newtonian particle me-
chanics is still incomplete. The problem, or one formulation of it, is to
deduce each of the following theories from the one below it:

Einstein - Smoluchowski
Ornstein - Uhlenbeck
Maxwell - Boltzmann
Hamilton - Jacobi.

We shall consider the first of these reductions in detail later (Chapter 10).
Now we shall describe the Ornstein-Uhlenbeck theory for a free particle
and compare it with Einstein’s theory.
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We let x(t) denote the position of a Brownian particle at time t and
assume that the velocity dx/dt = v exists and satisfies the Langevin
equation

dv(t) = −βv(t)dt+ dB(t). (9.1)

Here B is a Wiener process (with variance parameter to be determined
later) and β is a constant with the dimensions of frequency (inverse time).
Let m be the mass of the particle, so that we can write

m
d2x

dt2
= −mβv +m

dB

dt
.

This is merely formal since B is not differentiable. Thus (using Newton’s
law F = ma) we are considering the force on a free Brownian particle
as made up of two parts, a frictional force F0 = −mβv with friction
coefficient mβ and a fluctuating force F1 = mdB/dt which is (formally)
a Gaussian stationary process with correlation function of the form a
constant times δ, where the constant will be determined later.

If v(0) = v0 and x(0) = x0, the solution of the initial value problem
is, by Theorem 8.2,

v(t) = e−βtv0 + e−βt
∫ t

0

eβsdB(s),

x(t) = x0 +

∫ t

0

v(s) ds.

(9.2)

For a free particle there is no loss of generality in considering only the
case of one-dimensional motion. Let σ2 be the variance parameter of B
(infinitesimal generator 1

2
σ2d2/dv2, EdB(t)2 = σ2dt). The velocity v(t) is

Gaussian with mean

e−βtv0,

by (9.2). To compute the covariance, let t ≥ s. Then

E

(
e−βt

∫ t

0

eβt1dB(t1)e−βs
∫ s

0

eβs1dB(s1)

)

= e−β(t+s)

∫ s

0

e2βrσ2dr

= e−β(t+s)σ2 e
2βs − 1

2β
.
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For t = s this is

σ2

2β
(1− e−2βt).

Thus, no matter what v0 is, the limiting distribution of v(t) as t→∞ is
Gaussian with mean 0 and variance σ2/2β. Now the law of equipartition
of energy in statistical mechanics says that the mean energy of the particle
(in equilibrium) per degree of freedom should be 1

2
kT . Therefore we set

1

2
m
σ2

2β
=

1

2
kT.

That is, recalling the previous notation D = kT/mβ, we adopt the nota-
tion

σ2 = 2
βkT

m
= 2β2D

for the variance parameter of B.
We summarize in the following theorem.

THEOREM 9.1 Let D and β be strictly positive constants and let B be
the Wiener process on R with variance parameter 2β2D. The solution of

dv(t) = −βv(t)dt+ dB(t); v(0) = v0

for t > 0 is

v(t) = e−βtv0 +

∫ t

0

e−β(t−s)dB(s).

The random variables v(t) are Gaussian with mean

m(t) = e−βtv0

and covariance

r(t, s) = βD
(
e−β|t−s| − e−β(t+s)

)
.

The v(t) are the random variables of the Markov process on R with in-
finitesimal generator

−βv d
dv

+ β2D
d2

dv2
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with domain including C2
com(R), with initial measure δv0. The kernel of

the corresponding semigroup operator P t is given by

pt(v0, dv) = [2πβD(1− e−2βt)]−
1
2 exp

[
− (v − e−βtv0)2

2βD(1− e−2βt)

]
dv.

The Gaussian measure µ with mean 0 and variance βD is invariant,
P t∗µ = µ, and µ is the limiting distribution of v(t) as t→∞.

The process v is called the Ornstein-Uhlenbeck velocity process with
diffusion coefficient D and relaxation time β−1, and the corresponding po-
sition process x

(
given by (9.2)

)
is called the Ornstein-Uhlenbeck process.

THEOREM 9.2 Let the v(t) be as in Theorem 9.1, and let

x(t) = x0 +

∫ t

0

v(s) ds.

Then the x(t) are Gaussian with mean

m̃(t) = x0 +
1− e−βt

β
v0

and covariance

r̃(t, s) = 2Dmin(t, s) +
D

β

(
−2 + 2e−βt + 2e−βs − e−β|t−s| − e−β(t+s)

)
.

Proof. This follows from Theorem 9.1 by integration,

m̃(t) = x0 +

∫ t

0

m(s) ds,

r̃(t, s) =

∫ t

0

dt1

∫ s

0

ds1 r(t1, s1).

The second integration is tedious but straightforward. QED.

In particular, the variance of x(t) is

2Dt+
D

β
(−3 + 4e−βt − e−2βt).
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The variance in Einstein’s theory is 2Dt. By elementary calculus, the
absolute value of the difference of the two variances is less than 3Dβ−1.
In the typical case of β−1 = 10−8 sec ., t = 1

2
sec ., we make a proportional

error of less than 3× 10−8 by adopting Einstein’s value for the variance.
The following theorem shows that the Einstein theory is a good approxi-
mation to the Ornstein-Uhlenbeck theory for a free particle.

THEOREM 9.3 Let 0 = t0 < t1 < . . . < tn, and let

∆t = min
1≤i≤n

ti − ti−1.

Let f(x1, . . . , xn) be the probability density function for x(t1), . . . , x(tn),
where x is the Ornstein-Uhlenbeck process with x(0) = x0, v(0) = v0,
diffusion coefficient D and relaxation time β−1. Let g(x1, . . . , xn) be the
probability density function for w(t1), . . . , w(tn), where w is the Wiener
process with w(0) = x0 and diffusion coefficient D.

Let ε > 0. There exist N1 depending only on ε and n and N2 depending
only on ε such that if

∆t ≥ N1β
−1, (9.3)

t1 ≥ N2
v2

0

2Dβ2
, (9.4)

then ∫
R
n
|f(x1, . . . , xn)− g(x1, . . . , xn)| dx1 . . . dxn ≤ ε. (9.5)

Proof. Assume, as one may without loss of generality, that x0 = 0.
Consider the non-singular linear transformation

(x1, . . . , xn) 7→ (x̃1, . . . , x̃n)

on Rn given by

x̃i = [2D(ti − ti−1)]−
1
2 (xi − xi−1) (9.6)

for i = 1, . . . , n. The random variables w̃(ti) obtained when this trans-
formation is applied to the w(ti) are orthonormal since Ew(ti)w(tj) =



50 CHAPTER 9

2Dmin(ti, tj). Thus g̃, the probability density function of the w̃(ti), is
the unit Gaussian function on Rn. Let f̃ be the probability density func-
tion of the x̃(ti), where the x̃(ti) are obtained by applying the linear
transformation (9.6) to the x(ti). The left hand side of (9.5) is unchanged
when we replace f by f̃ and g by g̃, since the total variation norm of a
measure is unchanged under a one-to-one measurability-preserving map
such as (9.6).

We use the notation Cov for the covariance of two random variables,
Cov xy = Exy − ExEy. By Theorem 9.2 and the remark following it,

Cov x(ti)x(tj) = Covw(ti)w(tj) + εij,

where |εij| ≤ 3Dβ−1. By (9.6),

Cov x̃(ti)x̃(tj) = δij + ε′ij,

where |ε′ij| ≤ 4 · 3Dβ−1/2D∆t ≤ 6/N1 if (9.3) holds. Again by Theorem
9.2, the mean of x̃(t1) is, in absolute value, smaller than

|v0|/β[2Dt1]
1
2 ≤ N

− 1
2

2

if (9.4) holds. The mean of x̃(ti) for i > 1 is, in absolute value, smaller
than

(e−βti−1 − e−βti)|v0|/β[2D(ti − ti−1)]
1
2 .

Since the first factor is smaller than 1, the square of this is smaller than

e−βti−1 − e−βti
ti − ti−1

v2
0

2Dβ2
≤ βt1
N2

e−βt1 ≤ N1e
−N1

N2

if (9.3) and (9.4) hold with N1 ≥ 1. Therefore, if we choose N1 and N2

large enough, the mean and covariance of f̃ are arbitrarily close to 0 and
δij, respectively, which concludes the proof. QED.

Chandrasekhar omits the condition (9.4) in his discussion [21, equa-
tions (171) through (174)], but his reasoning is circular. Clearly, if
v0 is enormous then t1 must be suitable large before the Wiener pro-
cess is a good approximation. The condition (9.3) is usually written
∆t � β−1 (∆t much larger than β−1). If v0 is a typical velocity—i.e., if

|v0| is not much larger than the standard deviation (kT/m)
1
2 = (Dβ)

1
2
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of the Maxwellian velocity distribution—then the condition (9.4), t1 �
v2

0/2Dβ
2, is no additional restriction if ∆t� β−1.

There is another, and quite weak, formulation of the fact that the
Wiener process is a good approximation to the Ornstein-Uhlenbeck pro-
cess for a free particle in the limit of very large β (very short relaxation
time) but D of reasonable size.

DEFINITION. Let xα, x be real stochastic processes indexed by the same
index set T but not necessarily defined on a common probability space.
We say that xα converges to x in distribution in case for each t1, . . . , tn in
T , the distribution of xα(t1), . . . , xα(tn) converges (in the weak-∗ topology
of measures on Rn, as α ranges over a directed set) to the distribution of
x(t1), . . . , x(tn).

It is easy to see that if we represent all of the processes in the usual

way [25] on Ω = Ṙ
I
, this is the same as saying that Prα converges to Pr

in the weak-∗ topology of regular Borel measures on Ω, where Prα is the
regular Borel measure associated with xα and Pr.

The following two theorems are trivial.

THEOREM 9.4 Let xα, x be Gaussian stochastic processes with means
mα, m and covariances rα, r. Then xα converges to x in distribution if
and only if rα → r and mα → m pointwise (on T and T × T respectively,
where T is the common index set of the processes).

THEOREM 9.5 Let β and σ2 vary in such a way that β → ∞ and
D = σ2/2β2 remains constant. Then for all v0 the Ornstein-Uhlenbeck
process with initial conditions x(0) = x0, v(0) = v0, diffusion coefficient
D, and relaxation time β−1 converges in distribution to the Wiener pro-
cess starting at x0 with diffusion coefficient D.
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Chapter 10

Brownian motion in a force
field

We continue the discussion of the Ornstein-Uhlenbeck theory. Suppose
we have a Brownian particle in an external field of force given by K(x, t) in
units of force per unit mass (acceleration). Then the Langevin equations
of the Ornstein-Uhlenbeck theory become

dx(t) = v(t)dt

dv(t) = K
(
x(t), t

)
dt− βv(t)dt+ dB(t),

(10.1)

where B is a Wiener process with variance parameter 2β2D. This is of
the form considered in Theorem 8.1:

d

(
x(t)

v(t)

)
=

(
v(t)

K
(
x(t), t

)
− βv(t)

)
dt+ d

(
0

B(t)

)
.

Notice that we can no longer consider the velocity process, or a component
of it, by itself.

For a free particle (K = 0) we have seen that the Wiener process,
which is a Markov process on coordinate space (x-space) is a good approx-
imation, except for very small time intervals, to the Ornstein-Uhlenbeck
process, which is a Markov process on phase space (x, v-space). Similarly,
when an external force is present, there is a Markov process on coordinate
space, discovered by Smoluchowski, which under certain circumstances is
a good approximation to the position x(t) of the Ornstein-Uhlenbeck pro-
cess.

Suppose, to begin with, that K is a constant. The force on a particle
of mass m is Km and the friction coefficient is mβ, so the particle should
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acquire the limiting velocity Km/mβ = K/β. That is, for times large
compared to the relaxation time β−1 the velocity should be approximately
K/β. If we include the random fluctuations due to Brownian motion, this
suggests the equation

dx(t) =
K

β
dt+ dw(t)

where w is the Wiener process with diffusion coefficient D = kT/mβ.(
If there were no diffusion we would have, approximately for t � β−1,
dx(t) = (K/β)dt, and if there were no force we would have dx(t) = dw(t)

)
.

If now K depends on x and t, but varies so slowly that it is approximately
constant along trajectories for times of the order β−1, we write

dx(t) =
K
(
x(t), t

)
β

dt+ dw(t).

This is the basic equation of the Smoluchowski theory; cf. Chandrasek-
har’s discussion [21].

We shall begin by discussing the simplest case, when K is linear and
independent of t. Consider the one-dimensional harmonic oscillator with
circular frequency ω. The Langevin equation in the Ornstein-Uhlenbeck
theory is then

dx(t) = v(t)dt

dv(t) = −ω2x(t)dt− βv(t)dt+ dB(t)

or

d

(
x

v

)
=

(
0 1
−ω2 −β

)(
x

v

)
dt+ d

(
0

B

)
,

where, as before, B is a Wiener process with variance parameter σ2 =
2βkT/m = 2β2D.

The characteristic equation of the matrix

A =

(
0 1
−ω2 −β

)
is µ2 + βµ+ ω2 = 0, with the eigenvalues

µ1 = −1

2
β +

√
1

4
β2 − ω2, µ2 = −1

2
β −

√
1

4
β2 − ω2.
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As in the elementary theory of the harmonic oscillator without Brownian
motion, we distinguish three cases:

overdamped β > 2ω,
critically damped β = 2ω,
underdamped β < 2ω.

Except in the critically damped case, the matrix exp(tA) is

etA =
1

µ2 − µ1

(
µ2e

µ1t − µ1e
µ2t −eµ1t + eµ2t

µ2µ1e
µ1t − µ2µ1e

µ2t −µ1e
µ1t + µ2e

µ2t

)
.

(We derive this as follows. Each matrix entry must be a linear com-
bination of exp(µ1t) and exp(µ2t). The coefficients are determined by
the requirements that exp(tA) and d exp(tA)/dt are 1 and A respectively
when t = 0.)

We let x(0) = x0, v(0) = v0. Then the mean of the process is

etA
(
x0

v0

)
.

The covariance matrix of the Wiener process
(

0
B

)
is

2c =

(
0 0
0 2β2D

)
.

The covariance matrix of the x, v process can be determined from Theo-
rem 8.2, but the formulas are complicated and not very illuminating. The
covariance for equal times are listed by Chandrasekhar [21, original page
30].

The Smoluchowski approximation is

dx(t) = −ω
2

β
x(t)dt+ dw(t),

where w is a Wiener process with diffusion coefficient D. This has the
same form as the Ornstein-Uhlenbeck velocity process for a free parti-
cle. According to the intuitive argument leading to the Smoluchowski
equation, it should be a good approximation for time intervals large com-
pared to the relaxation time (∆t� β−1) when the force is slowly varying
(β � 2ω; i.e., the highly overdamped case).
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The Brownian motion of a harmonically bound particle has been in-
vestigated experimentally by Gerlach and Lehrer and by Kappler [26].
The particle is a very small mirror suspended in a gas by a thin quartz
fiber. The mirror can rotate but the torsion of the fiber supplies a linear
restoring force. Bombardment of the mirror by the molecules of the gas
causes a Brownian motion of the mirror. The Brownian motion is one-
dimensional, being described by the angle that the mirror makes with its
equilibrium position. (This angle, which is very small, can be measured
accurately by shining a light on the mirror and measuring the position
of the reflected spot a large distance away.) At atmospheric pressure the
motion is highly overdamped, but at sufficiently low pressures the under-
damped case can be observed, too. The Ornstein-Uhlenbeck theory gives
for the invariant measure (limiting distribution as t→∞) Ex2 = kT/mω2

and Ev2 = kT/m. That is, the expected value of the kinetic energy 1
2
mv2

in equilibrium is 1
2
kT , in accordance with the equipartition law of statis-

tical mechanics. These values are independent of β, and the constancy
of Ex2 as the pressure varies was observed experimentally. However, the
appearance of the trajectories varies tremendously.

Consider Fig. 5a on p. 243 of Kappler [26], which is the same as Fig. 5b
on p. 169 of Barnes and Silverman [11, §3]. This is a record of the motion
in the highly overdamped case. Locally the graph looks very much like
the Wiener process, extremely rough. However, the graph never rises
very far above or sinks very far below a median position, and there is
a general tendency to return to the median position. If we reverse the
direction if time, the graph looks very much the same. This process is a
Markov process—there is no memory of previous positions. A graph of
the velocity in the Ornstein-Uhlenbeck process for a free particle would
look the same.

Now consider Fig. 6a on p. 244 of Kappler (Fig. 5c on p. 169 of Barnes
and Silverman). This is a record of the motion in the underdamped
case. The curve looks smooth and more or less sinusoidal. This is clearly
not the graph of a Markov process, as there is an evident distinction
between the upswings and downswings of the curve. Consequently, the
Smoluchowski approximation is completely invalid in this case. When
Barnes and Silverman reproduced the graph, it got turned over, reversing
the direction of time. However, the over-all appearance of the curves is
very much the same and in fact this stochastic process is invariant under
time reversal. Are there any beats in this graph, and should there be?

Fig. 4b on p. 242 of Kappler (fig. 5a on p. 169 of Barnes and Silverman)
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represents an intermediate case.

Figure 2a

Figure 2b

Figure 2c

We illustrate crudely the two cases (Fig. 2). Fig. 2a is the highly
overdamped case, a Markov process. Fig. 2b is the underdamped case,
not a Markov process. Fig. 2c illustrates a case that does not occur.
(The only repository for memory is in the velocity, so over-all sinusoidal
behavior implies local smoothness of the curve.)

One has the feeling with some of Kappler’s curves that one can occa-
sionally see where an exceptionally energetic gas molecule gave the mirror
a kick. This is not true. Even at the lowest pressure used, an enormous
number of collisions takes place per period, and the irregularities in the
curves are due to chance fluctuations in the sum of enormous numbers of
individually negligible events.
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It is not correct to think simply that the jiggles in a Brownian trajec-
tory are due to kicks from molecules. Brownian motion is unbelievably
gentle. Each collision has an entirely negligible effect on the position of
the Brownian particle, and it is only fluctuations in the accumulation of
an enormous number of very slight changes in the particle’s velocity that
give the trajectory its irregular appearance.

The experimental results lend credence to the statement that the
Smoluchowski approximation is valid when the friction is large (β large).
A theoretical proof does not seem to be in the literature. Ornstein and
Uhlenbeck [22] show only that if a harmonically bound particle starts
at x0 at time 0 with a Maxwellian-distributed velocity, the mean and
variance of x(t) are approximately the mean and variance of the Smolu-
chowski theory provided β � 2ω and ∆t � β−1. We shall examine the
Smoluchowski approximation in the case of a general external force, and
prove a result that says that it is in a very strong sense the limiting case
of the Ornstein-Uhlenbeck theory for large friction.

Consider the equations (10.1) of the Ornstein-Uhlenbeck theory. Let w
be a Wiener process with diffusion coefficient D (variance parameter 2D)
as in the Einstein-Smoluchowski theory. Then if we set B = βw the
process B has the correct variance parameter 2β2D for the Ornstein-
Uhlenbeck theory. The idea of the Smoluchowski approximation is that
the relaxation time β−1 is negligibly small but that the diffusion coefficient
D = kT/mβ and the velocity K/β are of significant size. Let us therefore
define b(x, t) (having the dimensions of a velocity) by

b(x, t) =
K(x, t)

β

and study the solution of (10.1) as β → ∞ with b and D fixed. The
equations (10.1) become

dx(t) = v(t)dt

dv(t) = −βv(t)dt+ βb
(
x(t), t

)
dt+ βdw(t).

Let x(t) = x(β, t) be the solution of these equations with x(0) = x0,
v(0) = v0. We will show that as β → ∞, x(t) converges to the solution
y(t) of the Smoluchowski equation

dy(t) = −b
(
y(t), t

)
dt+ dw(t)

with y(0) = x0. For simplicity, we treat the case that b is independent
of the time, although the theorem and its proof remain valid for the case
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that b is continuous and, for t in compact sets, satisfies a uniform Lips-
chitz condition in x.

THEOREM 10.1 Let b : R` → R
` satisfy a global Lipschitz condition and

let w be a Wiener process on R`. Let x, v be the solution of the coupled
equations

dx(t) = v(t)dt; x(0) = x0, (10.2)

dv(t) = −βv(t)dt+ βb
(
x(t), t

)
dt+ βdw(t); v(0) = v0. (10.3)

Let y be the solution of

dy(t) = b
(
y(t)

)
dt+ dw(t); y(0) = x0. (10.4)

For all v0, with probability one

lim
β→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).

Proof. Let κ be the Lipschitz constant of b, so that |b(x1)− b(x2)| ≤
κ|x1 − x2| for all x1, x2 in R`. Let

tn = n
1

2κ

for n = 0, 1, 2, . . . . Consider the equations on [tn, tn+1]. By (10.2),

x(t) = x(tn) +

∫ t

tn

v(s) ds, (10.5)

and by (10.3),

v(t) = v(tn)− β
∫ t

tn

v(s) ds+ β

∫ t

tn

b
(
x(s)

)
ds+ β[w(t)− w(tn)], (10.6)

or equivalently,∫ t

tn

v(s) ds =
v(tn)

β
− v(t)

β
+

∫ t

tn

b
(
x(s)

)
ds+ w(t)− w(tn). (10.7)



60 CHAPTER 10

By (10.5) and (10.7),

x(t) = x(tn) +
v(tn)

β
− v(t)

β
+

∫ t

tn

b
(
x(s)

)
ds+ w(t)− w(tn). (10.8)

By (10.4),

y(t) = y(tn) +

∫ t

tn

b
(
y(s)

)
ds+ w(t)− w(tn), (10.9)

so that by (10.8) and (10.9),

x(t)− y(t) = x(tn)− y(tn) +
v(tn)

β
− v(t)

β

+

∫ t

tn

[b
(
x(s)

)
− b
(
y(s)

)
]ds

(10.10)

The integral in (10.10) is bounded in absolute value by

(t− tn)κ sup
tn≤s≤tn+1

|x(s)− y(s)|,

and (t− tn)κ ≤ 1
2

for tn ≤ t ≤ tn+1, so that

|x(t)− y(t)| ≤ |x(tn)− y(tn)|+ 2 sup
tn≤s≤tn+1

∣∣∣∣v(s)

β

∣∣∣∣
+

1

2
sup

tn≤s≤tn+1

|x(s)− y(s)|
(10.11)

for tn ≤ t ≤ tn+1. Since this is true for all such t, we can take the
supremum of the left hand side and combine it with the last term on the
right hand side. We find

sup
tn≤t≤tn+1

|x(t)− y(t)| ≤ 2|x(tn)− y(tn)|+ 4 sup
tn≤s≤tn+1

∣∣∣∣v(s)

β

∣∣∣∣ . (10.12)

Suppose we can prove that

sup
tn≤s≤tn+1

∣∣∣∣v(s)

β

∣∣∣∣→ 0 (10.13)

with probability one as β →∞, for all n. Let

ξn = sup
tn≤t≤tn+1

|x(t)− y(t)|.
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Since x(t0) − y(t0) = x0 − x0 = 0, by (10.12) and (10.13), ξ1 → 0 as
β → ∞. By induction, it follows from (10.12) and (10.13) that ξn → 0
for all n, which is what we wish to prove. Therefore, we need only prove
(10.13).

If we regard the x(t) as being known, (10.3) is an inhomogeneous
linear equation for v, so that by Theorem 8.2,

v(t) = e−β(t−tn)v(tn) + β

∫ t

tn

e−β(t−s)b
(
x(s)

)
ds

+ β

∫ t

tn

e−β(t−s)dw(s).

(10.14)

Now consider (10.8). Since∣∣b(x(s)
)∣∣ ≤ ∣∣b(x(tn)

)∣∣+ κ|x(s)− x(tn)|, (10.15)

it follows from (10.8) that

|x(t)− x(tn)| ≤
∣∣∣∣v(tn)

β

∣∣∣∣+

∣∣∣∣v(t)

β

∣∣∣∣+ (t− tn)
∣∣b(x(tn)

)∣∣
+ (t− tn)κ sup

tn≤s≤tn+1

|x(s)− x(tn)|+ |w(t)− w(tn)|.
(10.16)

Remembering that (t − tn) ≤ 1/2κ for tn ≤ t ≤ tn+1, we find as before
that

sup
tn≤t≤tn+1

|x(t)− x(tn)| ≤ 4 sup
tn≤s≤tn+1

∣∣∣∣v(t)

β

∣∣∣∣
+

1

κ

∣∣b(x(tn)
)∣∣+ 2 sup

tn≤t≤tn+1

|w(t)− w(tn)|.
(10.17)

From (10.15) and (10.17), we can bound b
(
x(s)

)
for tn ≤ s ≤ tn+1:

sup
tn≤s≤tn+1

∣∣b(x(s)
)∣∣ ≤ 2

∣∣b(x(tn)
)∣∣

+ 4κ sup
tn≤t≤tn+1

∣∣∣∣v(t)

β

∣∣∣∣+ 2κ sup
tn≤t≤tn+1

|w(t)− w(tn)|.
(10.18)

If we apply this to (10.14) and observe that

β

∫ t

tn

e−β(t−s)ds ≤ 1,
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we obtain

sup
tn≤t≤tn+1

|v(t)| ≤ |v(tn)|+ 2
∣∣b(x(tn)

)∣∣
+ 4κ sup

tn≤t≤tn+1

∣∣∣∣v(t)

β

∣∣∣∣+ 2κ sup
tn≤t≤tn+1

|w(t)− w(tn)|

+ sup
tn≤t≤tn+1

∣∣∣∣β ∫ t

tn

e−β(t−s)dw(s)

∣∣∣∣ .
(10.19)

Now choose β so large that

4κ

β
≤ 1

2
; (10.20)

i.e., let β ≥ 8κ. Then (10.19) implies that

sup
tn≤t≤tn+1

|v(t)| ≤ 2|v(tn)|+ 4|b
(
x(tn)

)
|

+ 4κ sup
tn≤t≤tn+1

|w(t)− w(tn)|

+ 2 sup
tn≤t≤tn+1

|β
∫ t

tn

e−β(t−s)dw(s)|.

(10.21)

Let

ηn = sup
tn≤t≤tn+1

∣∣∣∣v(t)

β

∣∣∣∣ , (10.22)

ζn =

∣∣∣∣∣b
(
x(tn)

)
β

∣∣∣∣∣ , (10.23)

εn =2 sup
tn≤t≤tn+1

∣∣∣∣∫ t

tn

e−β(t−s)dw(s)

∣∣∣∣
+

4κ

β
sup

tn≤t≤tn+1

|w(t)− w(tn)|.
(10.24)

Recall that our task is to show that ηn → 0 with probability one for all n
as β →∞. Suppose we can show that

εn → 0 (10.25)
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with probability one for all n as β →∞. By (10.21),

ηn ≤ 2ηn−1 + 4ζn + εn (10.26)

where η−1 = |v0|/β, and by (10.18) for n− 1 and (10.20),

ζn ≤ 2ζn−1 +
1

2
ηn−1 +

1

2
εn. (10.27)

Now ζ0 = |b(x0)|/β → 0 and η−1 = |v0|/β → 0, ζ1 → 0 by (10.27) and
(10.25), and consequently η1 → 0. By induction, ζn → 0 and ηn → 0 for
all n. Therefore, we need only prove (10.25).

It is clear that the second term on the right hand side of (10.24)
converges to 0 with probability one as β →∞, since w is continuous with
probability one. Let

z(t) =

{
w(t)− w(tn), t ≥ tn,

0, t < tn.

Then ∫ t

tn

e−β(t−s)dw(s) =

∫ t

−∞
e−β(t−s)dz(s)

= −β
∫ t

∞
e−β(t−s)z(s) ds+ z(t).

This converges to 0 uniformly for tn ≤ t ≤ tn+1 with probability one, since
z is continuous with probability one. Therefore (10.25) holds. QED.

A possible physical objection to the theorem is that the initial velocity
v0 should not be held fixed as β varies but should have a Maxwellian
distribution (Gaussian with mean 0 and variance Dβ). Let v00 have a

Maxwellian distribution for a fixed value β = β0. Then v0 = (β/β0)
1
2v00

has a Maxwellian distribution for all β. Since it is still true that v0/β → 0
as β →∞, the theorem remains true with a Maxwellian initial velocity.

Theorem 10.1 has a corollary that can be expressed purely in the lan-
guage of partial equations:

PSEUDOTHEOREM 10.2 Let b : R` → R
` satisfy a global Lipschitz con-

dition, and let D and β be strictly positive constants. Let f0 be a bounded
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continuous function on R`. Let f on [0,∞)× R` be the bounded solution
of

∂

∂t
f(t, x) =

(
D∆x + b(x) · ∇x

)
f(t, x); f(0, x) = f0(x). (10.28)

Let gβ on [0,∞)× R` × R` be the bounded solution of

∂

∂t
gβ(t, x, v) =

(
β2D∆v + v · ∇x + β(b(x)− v) · ∇v

)
gβ(t, x, v);

gβ(0, x, v) = f0(x). (10.29)

Then for all t, x, and v,

lim
β→∞

gβ(t, x, v) = f(t, x). (10.30)

To prove this, notice that f(t, x0) = Ef0

(
y(t)

)
and gβ(t, x0, v0) =

Ef0

(
x(t)

)
, since (10.28) and (10.29) are the backward Kolmogorov equa-

tions of the two processes. The result follows from Theorem 10.1 and the
Lebesgue dominated convergence theorem.

There is nothing wrong with this proof—only the formulation of the
result is at fault. Equation (10.28) is a parabolic equation with smooth
coefficients, and it is a classical result that it has a unique bounded so-
lution. However, (10.29) is not parabolic (it is of first order in x), so we
do not know that it has a unique bounded solution. One way around this
problem would be to let gβ,ε be the unique bounded solution of (10.29)
with the additional operator ε∆x on the right hand side and to prove that
gβ,ε(t, x0, v0) → gβ(t, x0, v0) = Ef0

(
x(t)

)
as ε → 0. This would give us

a characterization of gβ purely in terms of partial differential equations.
We shall not do this.
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Chapter 11

Kinematics of stochastic
motion

We shall investigate the kinematics of motion in which chance plays a
rôle (stochastic motion).

Let x(t) be the position of a particle at time t. What does it mean
to say that the particle has a velocity ẋ(t)? It means that if ∆t is a very
short time interval then

x(t+ ∆t)− x(t) = ẋ(t)∆t+ ε,

where ε is a very small percentage error. This is an assumption about
actual motion of particles that may not be true. Let us be conservative
and suppose that it is not necessarily true. (“Conservative” is a useful
word for mathematicians. It is used when introducing a hypothesis that
a physicist would regard as highly implausible.)

The particle should have some tendency to persist in uniform rectilin-
ear motion for very small intervals of time. Let us use Dx(t) to denote
the best prediction we can make, given any relevant information available
at time t, of

x(t+ ∆t)− x(t)

∆t

for infinitely small positive ∆t.
Let us make this notion precise.
Let I be an interval that is open on the right, let x be an R`-valued

stochastic process indexed by I, and let Pt for t in I be an increasing
family of σ- algebras such that each x(t) is Pt-measurable. (This implies

65
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that Pt contains the σ-algebra generated by the x(s) with s ≤ t, s ∈ I.
Conversely, this family of σ-algebras satisfies the hypotheses.) We shall
have occasion to introduce various regularity assumptions, denoted by
(R0), (R1), etc.

(R0). Each x(t) is in L 1 and t 7→ x(t) is continuous from I into L 1.

This is a very weak assumption and by no means implies that the
sample functions (trajectories) of the x process are continuous.

(R1). The condition (R0) holds and for each t in I,

Dx(t) = lim
∆t→0+

E

{
x(t+ ∆t)− x(t)

∆t

∣∣Pt

}

exists as a limit in L 1, and t 7→ Dx(t) is continuous from I into L 1.

Here E{ |Pt} denotes the conditional expectation; cf. Doob [15, §6].
The notation ∆t→ 0+ means that ∆t tends to 0 through positive values.
The random variable Dx(t) is automatically Pt-measurable. It is called
the mean forward derivative (or mean forward velocity if x(t) represents
position).

As an example of an (R1) process, let I = (−∞,∞), let x(t) be the
position in the Ornstein-Uhlenbeck process, and let Pt be the σ-algebra
generated by the x(s) with s ≤ t. Then Dx(t) = dx(t)/dt = v(t). In
fact, if t 7→ x(t) has a continuous strong derivative dx(t)/dt in L 1, then
Dx(t) = dx(t)/dt. A second example of an (R1) process is a process x(t)
of the form discussed in Theorem 8.1, with I = [0,∞), x(0) = x0, and
Pt the σ-algebra generated by the x(s) with 0 ≤ s ≤ t. In this case
Dx(t) = b

(
x(t)

)
. The derivative dx(t)/dt does not exist in this exam-

ple unless w is identically 0. For a third example, let P t be a Markovian
semigroup on a locally compact Hausdorff space X with infinitesimal gen-
erator A, let I = [0,∞), let ξ(t) be the X-valued random variables of the
Markov process for some initial measure, and let Pt be the σ-algebra
generated by the ξ(s) with 0 ≤ s ≤ t. If f is in the domain of the
infinitesimal generator A then x(t) = f

(
ξ(t)

)
is an (R1) process, and

Df
(
ξ(t)

)
= Af

(
ξ(t)

)
.
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THEOREM 11.1 Let x be an (R1) process, and let a ≤ b, a ∈ I, b ∈ I.
Then

E{x(b)− x(a)
∣∣Pa} = E

{∫ b

a

Dx(s) ds
∣∣Pa

}
(11.1)

Notice that since s 7→ Dx(s) is continuous in L 1, the integral exists
as a Riemann integral in L 1.

Proof. Let ε > 0 and let J be the set of all t in [a, b] such that∥∥∥∥E{x(s)− x(a) |Pa} − E

{∫ s

a

Dx(r) dr
∣∣Pa

}∥∥∥∥
1

≤ ε(s− a) (11.2)

for all a ≤ s ≤ t, where ‖ ‖1 denotes the L 1 norm. Clearly, a is in J ,
and J is a closed subinterval of [a, b]. Let t be the right end-point of J ,
and suppose that t < b. By the definition of Dx(t), there is a δ > 0 such
that t+ δ ≤ b and

‖E{x(t+ ∆t)− x(t) |Pt} −Dx(t)∆t‖1 ≤
ε

2
∆t

for 0 ≤ ∆t ≤ δ. Since conditional expectations reduce the L 1 norm and
since Pt ∩Pa = Pa,

‖E{x(t+ ∆t)− x(t) |Pa} − E{Dx(t)∆t |Pa}‖1 ≤
ε

2
∆t (11.3)

for 0 ≤ ∆t ≤ δ. By reducing δ if necessary, we find∥∥∥∥Dx(t)∆t−
∫ t+∆t

t

Dx(s) ds

∥∥∥∥
1

≤ ε

2
∆t

for 0 ≤ ∆t ≤ δ, since s 7→ Dx(s) is L 1 continuous. Therefore,∥∥∥∥E{Dx(t)∆t
∣∣Pa} − E

{∫ t+∆t

t

Dx(s) ds
∣∣Pa

}∥∥∥∥
1

≤ ε

2
∆t (11.4)

for 0 ≤ ∆t ≤ δ. From (11.2) for s = t, (11.3), and (11.4), it follows
that (11.2) folds for all t + ∆t with 0 ≤ ∆t ≤ δ. This contradicts the
assumption that t is the end-point of J , so we must have t = b. Since ε
is arbitrary, (11.1) holds. QED.
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Theorem 11.1 and its proof remain valid without the assumption that
x(t) is Pt-measurable.

THEOREM 11.2 An (R1) process is a martingale if and only if Dx(t) =
0, t ∈ I. It is a submartingale if and only if Dx(t) ≥ 0, t ∈ I and a
supermartingale if and only if Dx(t) ≤ 0, t ∈ I.

We mean, of course, martingale, etc., relative to the Pt. This theo-
rem is an immediate consequence of Theorem 11.1 and the definitions (see
Doob [15, p. 294]). Note that in the older terminology, “semimartingale”
means submartingale and “lower semimartingale” means supermartin-
gale.

Given an (R1) process x, define the random variable y(a, b), for all a
and b in I, by

x(b)− x(a) =

∫ b

a

Dx(s) ds+ y(a, b). (11.5)

We always have y(b, a) = −y(a, b), y(a, b)+y(b, c) = y(a, c), and y(a, b) is
Pmax(a,b)- measurable, for all a, b, and c in I. We call a stochastic process
indexed by I×I that has these three properties a difference process. If y is
a difference process, we can choose a point a0 in I, define y(a0) arbitrarily
(say y(a0) = 0), and define y(b) for all b in I by y(b) = y(a0, b). Then
y(a, b) = y(b)−y(a) for all a and b in I. The only trouble is that y(b) will
not in general be Pb-measurable for b < a0. If I has a left end-point, we
can choose a0 to be it and then y(b) will always be Pb-measurable. By
Theorem 11.1, E{y(b)−y(a)|Pa} = 0 whenever a ≤ b, so that when a0 is
the left end-point of I, y(b) is a martingale relative to the Pb. In the gen-
eral case, we call a difference process y(a, b) such that E{y(a, b) |Pa} = 0
whenever a ≤ b a difference martingale. The following is an immediate
consequence of Theorem 11.1.

THEOREM 11.3 Let x be an (R1) process, and define y by (11.5). Then
y is a difference martingale.

From now on we shall write y(b)− y(a) instead of y(a, b) when y is a
difference process.

We introduce another regularity condition, denoted by (R2). It is
a regularity condition on a difference martingale y. If it holds, we say
that y is an (R2) difference martingale, and if in addition y is defined in
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terms of an (R1) process x by (11.5) then we say that x is an (R2) process.

(R2). For each a and b in I, y(b)− y(a) is in L 2. For each t in I,

σ2(t) = lim
∆t→0+

E

{
[y(t+ ∆t)− y(t)]2

∆t

∣∣Pt

}
(11.6)

exists in L 1, and t 7→ σ2(t) is continuous from I into L 1.

The process y has values in R
`. In case ` > 1, we understand the

expression [y(t+∆t)−y(t)]2 to mean [y(t+∆t)−y(t)]⊗ [y(t+∆t)−y(t)],
and σ2(t) is a matrix of positive type.

Observe that ∆t occurs to the first power in (11.6) while the term
[y(t+ ∆t)− y(t)] occurs to the second power.

THEOREM 11.4 Let y be an (R2) difference martingale, and let a ≤ b,
a ∈ I, b ∈ I. Then

E{[y(b)− y(a)]2 |Pa} = E

{∫ b

a

σ2(s) ds
∣∣Pa

}
. (11.7)

The proof is so similar to the proof of Theorem 11.1 that it will be
omitted.

Next we shall discuss the Itô-Doob stochastic integral, which is a gen-
eralization of the Wiener integral. The new feature is that the integrand
is a random variable depending on the past history of the process.

Let y be an (R2) difference martingale. Let H0 be the set of functions
of the form

f =
n∑
i=1

fiχ[ai,bi], (11.8)

where the interval [ai, bi] are non-overlapping intervals in I and each fi
is a real-valued Pai-measurable random variable in L 2. (The symbol χ
denotes the characteristic function.) Thus each f in H0 is a stochastic
process indexed by I. For each f given by (11.8) we define the stochastic
integral ∫

f(t) dy(t) =
n∑
i=1

fi[y(bi)− y(ai)].
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This is a random variable.
For f in H0,

E

[∫
f(t) dy(t)

]2

=
n∑

i,j=1

E fi [y(bi)− y(ai)] fj [y(bj)− y(aj)]. (11.9)

If i < j then fi [y(bi)− y(ai)] fj is Paj -measurable, and

E{y(bj)− y(aj) |Paj} = 0

since y is a difference martingale. Therefore the terms with i < j in (11.9)
are 0, and similarly for the terms with i > j. The terms with i = j are

Ef 2
i E

{∫ bi

ai

σ2(s) ds
∣∣Pai

}
=

∫ bi

ai

Ef 2
i σ

2(s) ds

by (11.7). Therefore

E

[∫
f(t) dy(t)

]2

=

∫
I

Ef 2(t)σ2(t) dt.

This is a matrix of positive type. If we give H0 the norm

‖f‖2 = tr

∫
I

Ef 2(t)σ2(t) dt (11.10)

then H0 is a pre-Hilbert space, and the mapping f 7→
∫
f(t) dy(t) is iso-

metric from H0 into the real Hilbert space of square-integrable R`-valued
random variables, which will be denoted by L 2

(
I;R`

)
.

Let H be the completion of H0. The mapping f 7→
∫
f(t) dy(t)

extends uniquely to be unitary from H into L 2
(
I;R`

)
. Our problem

now is to describe H in concrete terms.
Let σ(t) be the positive square root of σ2(t). If f is in H0 then fσ is

square-integrable. If fj is a Cauchy sequence in H0 then fjσ converges
in the L 2 norm, so that a subsequence, again denoted by fj, converges
a.e. to a square-integrable matrix-valued function g on I. Therefore fj
converges for a.e. t such that σ(t) 6= 0. Let us define f(t) = lim fj(t)
when the limit exists and define f arbitrarily to be 0 when the limit
does not exist. Then ‖fj − f‖ → 0, and f(t)σ(t) is a Pt-measurable
square-integrable random variable for a.e. t. By definition of strong
measurability [14, §5], fσ is strongly measurable. Let K be the set of
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all functions f , defined a.e. on I, such that fσ is a strongly measurable
square-integrable function with f(t) Pt-measurable for a.e. t. We have
seen that every element of H can be identified with an element of K ,
uniquely defined except on sets of measure 0.

Conversely, let f be in K . We wish to show that it can be approxi-
mated arbitrarily closely in the norm (11.10) by an element of H0. Firstly,
f can by approximated arbitrarily closely by an element of K with sup-
port contained in a compact interval I0 in I, so we may as well assume
that f has support in I0. Let

fk(t) =


k, f(t) > k,

f(t), |f(t)| ≤ k,

−k, f(t) < −k.

Then ‖fk − f‖ → 0 as k → ∞, so we may as well assume that f is
uniformly bounded (and consequently has uniformly bounded L 2 norm).
Divide I0 into n equal parts, and let fn be the function that on each
subinterval is the average (Bochner integral [14, §5]) of f on the preceding
subinterval (and let fn be 0 on the first subinterval). Then fn is in H0

and ‖fk − f‖ → 0.
With the usual identification of functions equal a.e., we can identify

H and K . We have proved the following theorem.

THEOREM 11.5 Let H be the Hilbert space of functions f defined a.e.
on I such that fσ is strongly measurable and square-integrable and such
that f(t) is Pt-measurable for a.e. t, with the norm (11.10). There is a
unique unitary mapping f 7→

∫
f(y) dy(t) from H into L 2

(
I;R`

)
such

that if f = f0χ[a,b] where a ≤ b, a ∈ I, b ∈ I, f0 ∈ L 2, f0 Pa-measurable,
then ∫

f(y) dy(t) = f0[y(b)− y(a)].

We now introduce our last regularity hypothesis.

(R3). For a.e. t in I, detσ2(t) > 0 a.e.

An (R2) difference martingale for which this holds will be called an
(R3) difference martingale. An (R2) process x for which the associated
difference martingale y satisfies this will be called an (R3) process.
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Let σ−1(t) = σ(t)−1, where σ(t) is the positive square root of σ2(t).

THEOREM 11.6 Let x be an (R3) process. Then there is a difference
martingale w such that

E{[w(b)− w(a)]2
∣∣Pa} = b− a

and

x(b)− x(a) =

∫ b

a

Dx(s) ds+

∫ b

a

σ(s) dw(s)

whenever a ≤ b, a ∈ I, b ∈ I.

Proof. Let

w(a, b) =

∫ b

a

σ−1(s) dy(s).

This is well defined, since each component of σ−1χ[a,b] is in H . If f

is in H0, a simple computation shows that
∫ b
a
f(s) dy(s) is a difference

martingale, so the same is true if f is in H or if each fχ[a,b] is in H .
Therefore, w is a difference martingale, and we will write w(b)−w(a) for
w(a, b).

If f is in H0, given by (11.8), and if f(t) = 0 for all t < a, then

E

{[∫
f(t) dy(t)

]2 ∣∣Pa

}
=

E

{∑
i

f 2
i [y(bi)− y(ai)]

2
∣∣Pa

}
=

E

{
E

{∑
i

f 2
i

∫ bi

ai

σ2(s) ds
∣∣Pai

} ∣∣Pa

}
=

E

{∑
i

f 2
i

∫ bi

ai

σ2(s) ds
∣∣Pa

}
=

E

{∫
f 2(s)σ2(s) ds

∣∣Pa

}
.
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By continuity,

E

{[∫ b

a

f(t) dy(t)

]2 ∣∣Pa

}
=

E

{∫ b

a

f 2(s)σ2(s) ds
∣∣Pa

}
for all f in H . If we apply this to the components of σ−1χ[a,b] we find

E{[w(b)− w(a)]2 |Pa} =

E

{∫ b

a

σ−1(s)σ2(s)σ−1(s) ds
∣∣Pa

}
=

b− a,

whenever a ≤ b, a ∈ I, b ∈ I. Consequently, w is an (R2)
(
in fact, (R3)

)
difference martingale, and the corresponding σ2 is identically 1. Therefore
we can construct stochastic integrals with respect to w.

Formally, dw(t) = σ−1(t) dy(t), so that dy(t) = σ(t) dw(t). Let us
prove that, in fact,

y(b)− y(a) =

∫ b

a

σ(s) dw(s).

A simple calculation shows that if f is in H0 then∫
f(s) dw(s) =

∫
f(s)σ−1(s) dy(s).

Consequently, the same holds for any f in H . Therefore,∫ b

a

σ(s) dw(s) =

∫ b

a

σ(s)σ−1(s) dy(s)

= y(b)− y(a) = y(a, b).

The theorem follows from the definition (11.5) of y. QED.

It is possible that the theorem remains true without the regularity
assumption (R3) provided that one is allowed to enlarge the underlying
probability space and the σ-algebras Pt.

A fundamental aspect of motion has been neglected in the discus-
sion so far; to wit, the continuity of motion. We shall assume from now



74 CHAPTER 11

on that (with probability one) the sample functions of x are continuous.
By (11.5), this means that the same functions of y are continuous. (Use
ω to denote a point in the underlying probability space. We can choose
a version Dx(s, ω) of the stochastic process Dx that is jointly measur-
able in s and ω, since s 7→ Dx(s) is continuous in L 1 [15, §6, p. 60 ff].

Then
∫ b
a

Dx(s, ω) ds is in fact absolutely continuous as b varies, so that
y(b)− y(a) has continuous sample paths as b varies.) Next we show (fol-
lowing Doob [15, p. 446]) that this implies that ω has continuous sample
functions.

THEOREM 11.7 Let y be an (R2) difference martingale whose sample
functions are continuous with probability one, and let f be in H . let

z(b)− z(a) =

∫ b

a

f(s) dy(s).

Then z is a difference martingale whose sample paths are continuous with
probability one.

Proof. If f in in H0, this is evident. If f is in H , let fn be in H0

with ‖f − fn‖ ≤ 1/n2, where the norm is given by (11.10). Let

zn(b)− zn(a) =

∫ b

a

fn(s) dy(s).

Then z− zn is a difference martingale. (We already observed in the proof
of Theorem 11.6 that z is a difference martingale—only the continuity of
sample functions is at issue.)

By the Kolmogorov inequality for martingales (Doob [15, p. 105]), if
S is any finite subset of [a, b],

Pr

{
sup
s∈S
|z(s)− zn(s)| > 1

n

}
≤ 1

n4
· n2 =

1

n2
.

Since S is arbitrary, we have

Pr

{
sup
a≤s≤b

|z(s)− zn(s)| > 1

n

}
≤ 1

n2
.

(This requires a word concerning interpretation, since the supremum is
over an uncountable set. We can either assume that z−zn is separable in
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the sense of Doob or take the product space representation as in [25, §9]
of the pair z, zn.) By the Borel-Cantelli lemma, z converges uniformly
on [a, b] to z. QED.

Notice that we only need f to be locally in H ; i.e., we only need
fχ[a,b] to be in H for [a, b] any compact subinterval of I. In particular, if
y is an (R3) process the result above applies to each component of σ−1,
so that w has continuous sample paths if y does.

Now we shall study the difference martingale w (with σ2 identically 1)
under the assumption that w has continuous sample paths.

THEOREM 11.8 Let w be a difference martingale in R` satisfying

E{[w(b)− w(a)]2 |Pa} = b− a

whenever a ≤ b, a ∈ I, b ∈ I, and having continuous sample paths with
probability one. Then w is a Wiener process.

Proof. We need only show that the w(b)− w(a) are Gaussian. There
is no loss of generality in assuming that a = 0 and b = 1. First we assume
that ` = 1.

Let ∆t be the reciprocal of a strictly positive integer and let ∆w(t) =
w(t+ ∆t)− w(t). Then

[w(1)− w(0)]n =
∑

∆w(t1) . . .∆w(tn),

where the sum is over all t1, . . . , tn ranging over 0,∆t, 2∆t, . . . , 1−∆t.
We write the sum as

∑
=
∑ ′+

∑ ′′, where
∑ ′ is the sum of all terms

in which no three of the ti are equal.
Let B(K) be the set such that |w(1)− w(0)| ≤ K. Then

lim
K→∞

Pr
(
B(K)

)
= 1.

Let Γ(ε, δ) be the set such that |w(t) − w(s)| ≤ ε whenever |t − s| ≤ δ,
for 0 ≤ t, s ≤ 1. Since w has continuous sample paths with probability
one,

lim
δ→∞

Pr(Γ
(
ε, δ)

)
= 1

for each ε > 0.
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Let α > 0. Choose K ≥ 1 so that Pr
(
B(K)

)
≥ 1 − α. Given n,

choose ε so small that nKnε ≤ α and then choose δ so small that
Pr(Γ

(
ε, δ)

)
≥ 1− α. Now the sum

∑ ′′ can be written∑′′
0 +
∑′′

1 + · · ·+
∑′′

n−3,

where
∑′′

ν means that exactly ν of the ti are distinct and some three of
the ti are equal. Then

∑′′
ν has a factor [w(1) − w(0)]ν times a sum of

terms in which all ti that occur, occur at least twice, and in which at least
one ti occurs at least thrice. Therefore, if ∆t ≤ δ,∣∣∣∣∫

Γ(ε,δ)∩B(K)

∑′′
ν dPr

∣∣∣∣ ≤ Kνε

∫ ∑
∆w(t1)2 . . .∆w(tj)

2dPr ≤ Kνε,

where the t1, . . . , tj are distinct. Therefore∣∣∣∣∫
Γ(ε,δ)∩B(K)

∑′′ dPr

∣∣∣∣ ≤ nKnε ≤ α.

Those terms in
∑′ in which one or more of the ti occurs only once

have expectation 0, so ∫ ∑′ dPr = µn,

where µn = 0 if n is odd and µn = (n− 1)(n− 3) . . . 5 · 3 · 1 if n is even,
since this is the number of ways of dividing n objects into distinct pairs.

Consequently, the integral of [w(1) − w(0)]n over a set of arbitrarily
large measure is arbitrarily close to µn . If n is even, the integrand
[w(1)−w(0)]n is positive, so this shows that [w(1)−w(0)]n is integrable
for all even n and hence for all n. Therefore,

E[w(1)− w(0)]n = µn

for all n. But the µn are the moments of the Gaussian measure with mean
0 and variance 1, and they increase slowly enough for uniqueness to hold
in the moment problem. In fact,

Eeiλ[w(1)− w(0)] = E
∞∑
n=0

(iλ)n

n!
[w(1)− w(0)]n

=
∞∑
n=0

(iλ)n

n!
µn = e−

λ2

2 ,
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so that w(1)− w(0) is Gaussian.
The proof for ` > 1 goes the same way, except that all products are

tensor products. For example, (n− 1)(n− 3) . . . 3 · 1 is replaced by

(n− 1)δi1i2(n− 3)δi3i4 . . . 3δin−3in−21δin−1in .

QED.

We summarize the results obtained so far in the following theorem.

THEOREM 11.9 Let I be an interval open on the right, Pt (for t ∈ I) an
increasing family of σ-algebras of measurable sets on a probability space, x
a stochastic process on R` having continuous sample paths with probability
one such that each x(t) is Pt-measurable and such that

Dx(t) = lim
∆t→0+

E

{
x(∆t+ t)− x(t)

∆t

∣∣Pt

}
and

σ2(t) = lim
∆t→0+

E

{
[x(∆t+ t)− x(t)]2

∆t

∣∣Pt

}
exist in L 1 and are L 1 continuous in t, and such that σ2(t) is a.e.
invertible for a.e. t. Then there is a Wiener process w on R` such that
each w(t)− w(s) is Pmax(t,s)-measurable, and

x(b)− x(a) =

∫ b

a

Dx(s) ds+

∫ b

a

σ(s) dw(s)

for all a and b in I.

∗ ∗ ∗ ∗ ∗

So far we have been adopting the standard viewpoint of the theory of
stochastic processes, that the past is known and that the future develops
from the past according to certain probabilistic laws. Nature, however,
operates on a different scheme in which the past and the future are on
an equal footing. Consequently it is important to give a treatment of
stochastic motion in which a complete symmetry between past and future
is maintained.
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Let I be an open interval, let x be an R`-valued stochastic process
indexed by I, let Pt for t in I be an increasing family of σ-algebras
such that each x(t) is Pt-measurable, and let Ft be a decreasing family
of σ-algebras such that each x(t) is Ft-measurable. (Pt represents the
past, Ft the future.) The following regularity conditions make the con-
ditions (R1), (R2), and (R3) symmetric with respect to past and future.
The condition (R0) is already symmetric.

(S1). The condition (R1) holds and, for each t in I,

D∗x(t) = lim
∆t→0+

E

{
x(t)− x(t−∆t)

∆t

∣∣Ft

}
exists as a limit in L 1, and t 7→ D∗x(t) is continuous from I into L 1.

Notice that the notation is chosen so that if t 7→ x(t) is strongly dif-
ferentiable in L 1 then Dx(t) = D∗x(t) = dx(t)/dt. The random variable
D∗x(t) is called the mean backward derivative or mean backward velocity,
and is in general different from Dx(t).

We define y∗(a, b) = y∗(b)− y∗(a) by

x(b)− x(a) =

∫ b

a

D∗x(s) ds+ y∗(b)− y∗(a).

It is a difference martingale relative to the Ft with the direction of time
reversed.

(S2). The conditions (R2) and (S1) hold and, for each t in I,

σ2
∗(t) = lim

∆t→0+
E

{
[y(t)− y(t−∆t)]2

∆t

∣∣Ft

}
exists as a limit in L 1 and t 7→ σ2

∗(t) is continuous from I into L 1.

(S3). The conditions (R3) and (S2) hold and detσ2
∗(t) > 0 a.e. for

a.e. t.

We obtain theorems analogous to the preceding ones. In particular, if
a ≤ b, a ∈ I, b ∈ I, then for an (S1) process

E{x(b)− x(a) |Fb} = E

{∫ b

a

D∗x(s) ds
∣∣Fb

}
, (11.11)



KINEMATICS OF STOCHASTIC MOTION 79

and for an (S2) process

E{[y∗(b)− y∗(a)]2 |Fb} = E

{∫ b

a

σ2
∗(s) ds

∣∣Fb

}
. (11.12)

THEOREM 11.10 Let x be an (S1) process. Then

EDx(t) = ED∗x(t) (11.13)

for all t in I. Let x be an (S2) process. Then

Eσ2(t) = Eσ2
∗(t) (11.14)

for all t in I.

Proof. By Theorem 11.1 and (11.11), if we take absolute expectations
we find

E[x(b)− x(a)] = E

∫ b

a

Dx(s) ds = E

∫ b

a

D∗x(s) ds

for all a and b in I. Since s 7→ Dx(s) and s 7→ D∗x(s) are continuous
in L 1, (11.13) holds. Similarly, (11.14) follows from Theorem 11.4 and
(11.12). QED.

THEOREM 11.11 Let x be an (S1) process. Then x is a constant (i.e.,
x(t) is the same random variable for all t) if and only if Dx = D∗x = 0.

Proof. The only if part of the theorem is trivial. Suppose that Dx =
D∗x = 0. By Theorem 11.2, x is a martingale and a martingale with the
direction of time reversed. Let t1 6= t2, x1 = x(t1), x2 = x(t2). Then x1

and x2 are in L 1 and E{x1|x2} = x2, E{x2|x1} = x1. We wish to show
that x1 = x2 (a.e., of course).

If x1 and x2 are in L 2 (as they are if x is an (S2) process) there is a
trivial proof, as follows. We have

E{(x2 − x1)2 |x1} = E{x2
2 − 2x2x1 + x2

1 |x1} = E{x2
2 |x1} − x2

1,

so that if we take absolute expectations we find

E(x2 − x1)2 = Ex2
2 − Ex2

1.
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The same result holds with x1 and x2 interchanged. Thus E(x2−x1)2 = 0,
x2 = x1 a.e.

G. A. Hunt showed me the following proof for the general case (x1, x2

in L 1).
Let µ be the distribution of x1, x2 in the plane. We can take x1 and

x2 to be the coordinate functions. Then there is a conditional probability
distribution p(x1, ·) such that if ν is the distribution of x1 and f is a
positive Baire function on R2,∫

f(x1, x2) dµ(x1, x2) =

∫∫
f(x1, x2) p(x1, x2) dν(x1).

(See Doob [15, §6, pp. 26–34].) Then

E{ϕ(x2) |x1} =

∫
ϕ(x2) p(x1, dx2) a.e. [ν]

provided ϕ(x2) is in L 1. Take ϕ to be strictly convex with |ϕ(ξ)| ≤ |ξ|
for all real ξ (so that ϕ(x2) is in L 1). Then, for each x1, since ϕ is strictly
convex, Jensen’s inequality gives

ϕ

(∫
x2 p(x1, dx2)

)
<

∫
ϕ(x2) p(x1, dx2)

unless ϕ(x1) =
∫
ϕ(x2) p(x1, dx2) a.e. [p(x1, ·)]. But∫

x2 p(x1, dx2) = x1 a.e. [ν],

so, unless x2 = x1 a.e. [ν],

ϕ(x1) <

∫
ϕ(x2) p(x1, dx2).

If we take absolute expectations, we find Eϕ(x1) < Eϕ(x2) unless x2 = x1

a.e. The same argument gives the reverse inequality, so x2 = x1 a.e.
QED.

THEOREM 11.12 Let x be and y be (S1) processes with respect to the
same families of σ-algebras Pt and Ft, and suppose that x(t), y(t),Dx(t),
Dy(t), D∗x(t), and D∗y(t) all lie in L 2 and are continuous functions of
t in L 2. Then

d

dt
Ex(t)y(t) = EDx(t) · y(t) + Ex(t)D∗y(t).
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Proof. We need to show for a and b in I, that

E [x(b)y(b)− x(a)y(a)] =

∫ b

a

E [Dx(t) · y(t) + x(t)D∗y(t)]dt.

(Notice that the integrand is continuous.) Divide [a, b] into n equal parts:
tj = a+ j(b− a)/n for j = 0, . . . , n. Then

E [x(b)y(b)− x(a)y(a)] = lim
n→∞

n−1∑
j=1

E [x(tj+1)y(tj)− x(tj)y(tj−1)] =

lim
n→∞

n−1∑
j=1

E
[(
x(tj+1)− x(tj)

)y(tj) + y(tj−1)

2
+

x(tj+1) + x(tj)

2

(
y(tj)− y(tj−1)

)]
=

lim
n→∞

n−1∑
j=1

E [Dx(tj) · y(tj) + x(tj)D∗y(tj)]
b− a
n

=∫ b

a

E [Dx(t) · y(t) + x(t)D∗y(t)] dt.

QED.

Now let us assume that the past Pt and the future Ft are condi-
tionally independent given the present Pt ∩ Ft. That is, if f is any
Ft-measurable function in L 1 then E{f |Pt} = E{f |Pt∩Ft}, and if f
is any Pt-measurable function in L 1 then E{f |Ft} = E{f |Pt ∩Ft}.
If x is a Markov process and Pt is generated by the x(s) with s ≤ t, and
Ft by the x(s) with s ≥ t, this is certainly the case. However, the as-
sumption is much weaker. It applies, for example, to the position x(t) of
the Ornstein-Uhlenbeck process. The reason is that the present Pt ∩Ft

may not be generated by x(t); for example, in the Ornstein-Uhlenbeck
case v(t) = dx(t)/dt is also Pt ∩Ft-measurable.

With the above assumption on the Pt and Ft, if x is an (S1) process
then Dx(t) and D∗x(t) are Pt∩Ft-measurable, and we can form DD∗x(t)
and D∗Dx(t) if they exist. Assuming they exist, we define

a(t) =
1

2
DD∗x(t) +

1

2
D∗Dx(t) (11.15)
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and call it the mean second derivative or mean acceleration.
If x is a sufficiently smooth function of t then a(t) = d2x(t)/dt2. This

is also true of other possible candidates for the title of mean acceleration,
such as DD∗x(t),D∗Dx(t),DDx(t),D∗D∗x(t), and 1

2
DDx(t) + 1

2
D∗D∗x(t).

Of these the first four distinguish between the two choices of direction for
the time axis, and so can be discarded. To discuss the fifth possibility,
consider the Gaussian Markov process x(t) satisfying

dx(t) = −ωx(t) dt+ dw(t),

where w is a Wiener process, in equilibrium (that is, with the invariant
Gaussian measure as initial measure). Then

Dx(t) = −ωx(t),

D∗x(t) = ωx(t),

a(t) = −ω2x(t),

but

1

2
DDx(t) +

1

2
D∗D∗x(t) = ω2x(t).

This process is familiar to us: it is the position in the Smoluchowski de-
scription of the highly overdamped harmonic oscillator (or the velocity
of a free particle in the Ornstein-Uhlenbeck theory). The characteristic
feature of this process is its constant tendency to go towards the origin,
no matter which direction of time is taken. Our definition of mean ac-
celeration, which gives a(t) = −ω2x(t), is kinematically the appropriate
definition.

Reference

The stochastic integral was invented by Itô:

[27]. Kiyosi Itô, “On Stochastic Differential Equations”, Memoirs of the
American Mathematical Society, Number 4 (1951).

Doob gave a treatment based on martingales [15, §6, pp. 436–451].
Our discussion of stochastic integrals, as well as most of the other material
of this section, is based on Doob’s book.



Chapter 12

Dynamics of stochastic motion

The fundamental law of non-relativistic dynamics is Newton’s law
F = ma: the force on a particle is the product of the particle’s mass
and the acceleration of the particle. This law is, of course, nothing but
the definition of force. Most definitions are trivial—others are profound.
Feynman [28] has analyzed the characteristics that make Newton’s defi-
nition profound:

“It implies that if we study the mass times the acceleration and call
the product the force, i.e., if we study the characteristics of force as a
program of interest, then we shall find that forces have some simplicity;
the law is a good program for analyzing nature, it is a suggestion that
the forces will be simple.”

Now suppose that x is a stochastic process representing the motion
of a particle of mass m. Leaving unanalyzed the dynamical mechanism
causing the random fluctuations, we can ask how to express the fact that
there is an external force F acting on the particle. We do this simply by
setting

F = ma

where a is the mean acceleration (Chapter 11).
For example, suppose that x is the position in the Ornstein-Uhlenbeck

theory of Brownian motion, and suppose that the external force is F =
− gradV where exp(−V D/mβ) is integrable. In equilibrium, the particle
has probability density a normalization constant times exp(−V D/mβ)
and satisfies

dx(t) = v(t)dt

dv(t) = −βv(t)dt+K
(
x(t)

)
dt+ dB(t),
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where K = F/m = − gradV/m, and B has variance parameter 2β2D.
Then

Dx(t) = D∗x(t) = v(t),

Dv(t) = −βv(t) +K
(
x(t)

)
,

D∗v(t) = βv(t) +K
(
x(t)

)
,

a(t) = K
(
x(t)

)
.

Therefore the law F = ma holds.

Reference

[28]. Richard P. Feynman, Robert B. Leighton, and Matthew Sands, “The
Feynman Lectures on Physics”, Addison-Wesley, Reading, Massachusetts,
1963.



Chapter 13

Kinematics of Markovian
motion

At this point I shall cease making regularity assumptions explicit.
Whenever we take the derivative of a function, the function is assumed
to be differentiable. Whenever we take D of a stochastic process, it is
assumed to exist. Whenever we consider the probability density of a ran-
dom variable, it is assumed to exist. I do this not out of laziness but out
of ignorance. The problem of finding convenient regularity assumptions
for this discussion and later applications of it (Chapter 15) is a non-trivial
problem.

Consider a Markov process x on R` of the form

dx(t) = b
(
x(t), t)dt+ dw(t),

where w is a Wiener process on R` with diffusion coefficient ν (we write
ν instead of D to avoid confusion with mean forward derivatives). Here
b is a fixed smooth function on R`+1. The w(t)−w(s) are independent of
the x(r) whenever r ≤ s and r ≤ t, so that

Dx(t) = b
(
x(t), t

)
.

A Markov process with time reversed is again a Markov process (see
Doob [15, §6, p. 83]), so we can define b∗ by

D∗x(t) = b∗
(
x(t), t

)
and w∗ by

dx(t) = b∗
(
x(t), t

)
dt+ dw∗(t).
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Let f be a smooth function on R`+1. Then

f
(
x(t+ ∆t), t+ ∆t

)
− f

(
x(t), t

)
=

∂f

∂t

(
x(t), t

)
∆t+ [x(t+ ∆t)− x(t)] · ∇f

(
x(t), t

)
+

1

2

∑
i,j

[xi(t+ ∆t)− xi(t)][xj(t+ ∆t)− xj(t)]
∂2f

∂xi∂xj
(
x(t), t

)
+ o(t),

so that

Df
(
x(t), t

)
= (

∂

∂t
+ b · ∇+ ν∆)f

(
x(t), t

)
. (13.1)

Let ν∗ be the diffusion coefficient of w∗. (A priori, ν∗ might depends on
x and t, but we shall see shortly that ν∗ = ν.) Similarly, we find

D∗f
(
x(t), t

)
=

(
∂

∂t
+ b∗ · ∇ − ν∗∆

)
f
(
x(t), t

)
. (13.2)

If f and g have compact support in time, then Theorem 11.12 shows
that∫ ∞

−∞
EDf

(
x(t), t

)
· g
(
x(t), t

)
dt = −

∫ ∞
−∞

Ef
(
x(t), t

)
D∗g

(
x(t), t

)
dt;

that is, ∫ ∞
−∞

∫
R
`

(
∂

∂t
+ b · ∇+ ν∆

)
f(x, t) · g(x, t)ρ(x, t) dxdt =

−
∫ ∞
−∞

∫
R
`
f(x, t)

(
∂

∂t
+ b∗ · ∇ − ν∗∆

)
g(x, t) · ρ(x, t) dxdt.

For A a partial differential operator, let A† be its (Lagrange) adjoint with
respect to Lebesgue measure on R`+1 and let A∗ be its adjoint with respect
to ρ times Lebesgue measure. Then

∫
(Af)gρ is equal to both

∫
fA†(gρ)

and
∫
f(A∗g)ρ, so that

A∗ = ρ−1A†ρ.

Now (
∂

∂t
+ b · ∇+ ν∆

)†
= − ∂

∂t
− b · ∇ − div b+ ν∆,
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so that

ρ−1

(
∂

∂t
+ b·∇+ ν∆

)†
ρg = ρ−1

(
− ∂

∂t
− b · ∇ − div b+ ν∆

)
(ρg) =

− ∂g

∂t
− ρ−1∂ρ

∂t
g − b · ∇g − ρ−1b · (grad ρ)g − (div b)g

+ ρ−1ν
(
(∆ρ)g + 2 grad ρ · grad g + ρ∆g

)
.

Recall the Fokker-Planck equation

∂ρ

∂t
= − div(bρ) + ν∆ρ. (13.3)

Using this we find

−ρ−1∂ρ

∂t
=

div(bρ)

ρ
− ν∆ρ

ρ
= div b+ b · grad ρ

ρ
− ν∆ρ

ρ
,

so we get

− ∂

∂t
− b∗ · ∇+ ν∗∆ = − ∂

∂t
− b · ∇+ 2ν

grad ρ

ρ
· ∇+ ν∆.

Therefore, ν∗ = ν and b∗ = b− 2ν(grad ρ)/ρ. If we make the definition

u =
b− b∗

2
,

we have

u = ν
grad ρ

ρ
.

We call u the osmotic velocity
(
cf. Chapter 4, Eq. (6)

)
.

There is also a Fokker-Planck equation for time reversed:

∂ρ

∂t
= − div(b∗ρ)− ν∆ρ. (13.4)

If we define

v =
b+ b∗

2
,

we have the equation of continuity

∂ρ

∂t
= − div(vρ),
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obtained by averaging (13.3) and (13.4). We call v the current velocity.
Now

u = ν
grad ρ

ρ
= ν grad log ρ.

Therefore,

∂u

∂t
=ν grad

∂

∂t
log ρ = ν grad

∂ρ
∂t

ρ
=

ν grad

(
− div(vρ)

)
ρ

= −ν grad

(
div v + v · grad ρ

ρ

)
=

− ν grad div v − grad v · u.

That is,

∂u

∂t
= −ν grad div v − grad v · u. (13.5)

Finally, from (13.1) and (13.2),

Db∗
(
x(t), t

)
=

∂

∂t
b∗
(
x(t), t

)
+ b · ∇b∗

(
x(t), t

)
+ ν∆b∗

(
x(t), t

)
,

D∗b
(
x(t), t

)
=

∂

∂t
b
(
x(t), t

)
+ b∗ · ∇b

(
x(t), t

)
− ν∆b

(
x(t), t

)
,

so that the mean acceleration
(
as defined in Chapter 11, Eq. (11.15)

)
is

given by a
(
x(t), t

)
where

a =
∂

∂t

(
b+ b∗

2

)
+

1

2
b · ∇b∗ +

1

2
b∗ · ∇b− ν∆

(
b− b∗

2

)
.

That is,

∂v

∂t
= a+ u · ∇u− v · ∇v + ν∆u. (13.6)



Chapter 14

Remarks on quantum
mechanics

In discussing physical theories of Brownian motion we have seen that
physics has interesting ideas and problems to contribute to probability
theory. Probabilities also play a fundamental rôle in quantum mechanics,
but the notion of probability enters in a new way that is foreign both
to classical mechanics and to mathematical probability theory. A mathe-
matician interested in probability theory should become familiar with the
peculiar concept of probability in quantum mechanics.

We shall discuss quantum mechanics from the point of view of the rôle
of probabilistic concepts in it, limiting ourselves to the non-relativistic
quantum mechanics of systems of finitely many degrees of freedom. This
theory was discovered in 1925–1926. Its principal features were estab-
lished quickly, and it has changed very little in the last forty years.

Quantum mechanics originated in an attempt to solve two puzzles:
the discrete atomic spectra and the dual wave-particle nature of matter
and radiation. Spectroscopic data were interpreted as being evidence for
the fact that atoms are mechanical systems that can exist in stationary
states only for a certain discrete set of energies.

There have been many discussions of the two-slit thought experiment
illustrating the dual nature of matter; e.g., [28, §12] and [29, Ch. 1].
Here we merely recall the bare facts: A particle issues from × in the
figure, passes through the doubly-slitted screen in the middle, and hits
the screen on the right, where its position is recorded. Particle arrivals
are sharply localized indivisible events, but despite this the probability of
arrival shows a complicated diffraction pattern typical of wave motion. If

89
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one of the holes is closed, there is no interference pattern. If an observa-
tion is made (using strong light of short wave length) to see which of the
two slits the particle went through, there is again no interference pattern.

Figure 3

The founders of quantum mechanics can be divided into two groups:
the reactionaries (Planck, Einstein, de Broglie, Schrödinger) and the radi-
cals (Bohr, Heisenberg, Born, Jordan, Dirac). Correspondingly, quantum
mechanics was discovered in two apparently different forms: wave me-
chanics and matrix mechanics. (Heisenberg’s original term was “quan-
tum mechanics,” and “matrix mechanics” is used when one wishes to
distinguish it from Schrödinger’s wave mechanics.)

In 1900 Planck introduced the quantum of action h and in 1905 Ein-
stein postulated particles of light with energy E = hν (ν the frequency).
We give no details as we shall not discuss radiation. In 1924, while a
graduate student at the Sorbonne, Louis de Broglie put the two formulas
E = mc2 and E = hν together and invented matter waves. The wave
nature of matter received experimental confirmation in the Davisson-
Germer electron diffraction experiment of 1927, and theoretical support
by the work of Schrödinger in 1926. De Broglie’s thesis committee in-
cluded Perrin, Langevin, and Elie Cartan. Perhaps Einstein heard of de
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Broglie’s work from Langevin. In any case, Einstein told Born, “Read it;
even though it looks crazy it’s solid,” and he published comments on de
Broglie’s work which Schrödinger read.

Suppose, with Schrödinger, that we have a particle (say an electron)
of mass m in a potential V . Here V is a real function on R3 representing
the potential energy. Schrödinger attempted to describe the motion of
the electron by means of a quantity ψ subject to a wave equation. He
was led to the hypothesis that a stationary state vibrates according to
the equation

h̄2

2m
∆ψ + (E − V )ψ = 0, (14.1)

where h̄ is Planck’s constant h divided by 2π, and E (with the dimensions
of energy) plays the rôle of an eigenvalue.

This equation is similar to the wave equation for a vibrating elastic
fluid contained in a given enclosure, except that V is not a constant.
Schrödinger was struck by another difference [30, p. 12]:

“A simplification in the problem of the ‘mechanical’ waves (as com-
pared with the fluid problem) consists in the absence of boundary con-
ditions. I thought the latter simplification fatal when I first attacked
these questions. Being insufficiently versed in mathematics, I could not
imagine how proper vibration frequencies could appear without boundary
conditions.”

Despite these misgivings, Schrödinger found the eigenvalues and eigen-
functions of (14.1) for the case of the hydrogen atom, V = −e/r where
e is the charge of the electron (and −e is the charge of the nucleus) and
r2 = x2 + y2 + z2. The eigenvalues corresponded precisely to the known
discrete energy levels of the hydrogen atom.

This initial triumph, in which discrete energy levels appeared for the
first time in a natural way, was quickly followed by many others. Be-
fore the year of 1926 was out, Schrödinger reprinted six papers on wave
mechanics in book form [30]. A young lady friend remarked to him (see
the preface to [30]): “When you began this work you had no idea that
anything so clever would come out of it, had you?” With this remark
Schrödinger “wholeheartedly agreed (with due qualification of the flatter-
ing adjective).”

Shortly before Schrödinger made his discovery, the matrix mechanics
of Heisenberg appeared. In this theory one constructs six infinite matrices
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qk and pj (j, k = 1, 2, 3) satisfying the commutation relations

pjqk − qkpj =
h̄

i
δjk

and diagonalizes the matrix H = p2/2m+V (q). Schrödinger remarks [30,
p. 46]:

“My theory was inspired by L. de Broglie, Ann. de Physique (10) 3,
p. 22, 1925 (Theses, Paris, 1924), and by brief, yet infinitely far-seeing
remarks of A. Einstein, Berl. Ber., 1925, p. 9 et seq. I did not at all
suspect any relation to Heisenberg’s theory at the beginning. I naturally
knew about his theory, but was discouraged, if not repelled, by what
appeared to me as very difficult methods of transcendental algebra, and
by the want of perspicuity (Anschaulichkeit).”

The remarkable thing was that where the two theories disagreed with
the old quantum theory of Bohr, they agreed with each other (and with
experiment!). Schrödinger quickly discovered the mathematical equiva-
lence of the two theories, based on letting qk correspond to the operator
of multiplication by the coordinate function xk and letting pj correspond
to the operator (h̄/i)∂/∂xj (see the fourth paper in [30]).

Schrödinger maintained (and most physicists agree) that the math-
ematical equivalence of two physical theories is not the same as their
physical equivalence, and went on to describe a possible physical inter-
pretation of the wave function ψ. According to this interpretation an
electron with wave function ψ is not a localized particle but a smeared
out distribution of electricity with charge density eρ and electric current
ej, where

ρ = |ψ|2, j =
ih̄

2m
(ψ grad ψ̄ − ψ̄ gradψ).

(The quantities ρ and j determine ψ except for a multiplicative factor
of absolute value one.) This interpretation works very well for a single
electron bound in an atom, provided one neglects the self-repulsion of the
smeared out electron. However, when there are n electrons, ψ is a function
on configuration space R3n, rather than coordinate space R3, which makes
the interpretation of ψ as a physically real object very difficult. Also, for
free electrons ψ, and consequently ρ, spreads out more and more as time
goes on; yet the arrival of electrons at a scintillation screen is always
signaled by a sharply localized flash, never by a weak, spread out flash.
These objections were made to Schrödinger’s theory when he lectured on



REMARKS ON QUANTUM MECHANICS 93

it in Copenhagen, and he reputedly said he wished he had never invented
the theory.

The accepted interpretation of the wave function ψ was put forward
by Born [31], and quantum mechanics was given its present form by Dirac
[32] and von Neumann [33]. Let us briefly describe quantum mechanics,
neglecting superselection rules.

To each physical system there corresponds a Hilbert space H . To
every state (also called pure state) of the system there corresponds an
equivalence class of unit vectors in H , where ψ1 and ψ2 are called equiv-
alent if ψ1 = aψ2 for some complex number a of absolute value one.
(Such an equivalence class, which is a circle, is frequently called a ray.)
The correspondence between states and rays is one-to-one. To each ob-
servable of the system there corresponds a self-adjoint operator, and the
correspondence is again one-to-one. The development of the system in
time is described by a family of unitary operators U(t) on H . There are
two ways of thinking about this. In the Schrödinger picture, the state of
the system changes with time—ψ(t) = U(t)ψ0, where ψ0 is the state at
time 0, and observables do not change with time. In the Heisenberg pic-
ture, observables change with time—A(t) = U(t)−1A0U(t), and the state
does not change with time. The two pictures are equivalent, and it is a
matter of convention which is used. For an isolated physical system, the
dynamics is given by U(t) = exp(−(i/h̄)Ht), where H, the Hamiltonian,
is the self-adjoint operator representing the energy of the system.

It may happen that one does not know the state of the physical sys-
tem, but merely that it is in state ψ1 with probability w1, state ψ2 with
probability w2, etc., where w1 + w2 + . . . = 1. This is called a mixture
(impure state), and we shall not describe its mathematical representation
further.

The important new notion is that of a superposition of states. Suppose
that we have two states ψ1 and ψ2. The number |(ψ1, ψ2)|2 does not
depend on the choice of representatives of the rays and lies between 0
and 1. Therefore, it can be regarded as a probability. If we know that the
system is in the state ψ1 and we perform an experiment to see whether
or not the system is in the state ψ2, then |(ψ1, ψ2)|2 is the probability of
finding that the system is indeed in the state ψ2. We can write

ψ1 = (ψ2, ψ1)ψ2 + (ψ3, ψ1)ψ3

where ψ3 is orthogonal to ψ2. We say that ψ1 is a superposition of the
states ψ2 and ψ3. Consider the mixture that is in the state ψ2 with
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probability |(ψ2, ψ1)|2 and in the state ψ3 with probability |(ψ3, ψ1)|2.
Then ψ1 and the mixture have equal probabilities of being found in the
states ψ2 and ψ3, but they are quite different. For example, ψ1 has the
probability |(ψ1, ψ1)|2 = 1 of being found in the state ψ1, whereas the
mixture has only the probability |(ψ2, ψ1)|4 + |(ψ3, ψ1)|4 of being found in
the state ψ1.

A superposition represents a number of different possibilities, but un-
like a mixture the different possibilities can interfere. Thus in the two-slit
experiment, the particle is in a superposition of states of passing through
the top slit and the bottom slit, and the interference of these possibilities
leads to the diffraction pattern. If we look to see which slit the particle
comes through then the particle will be in a mixture of states of passing
through the top slit and the bottom slit and there will be no diffraction
pattern.

If the system is in the state ψ and A is an observable with spectral
projections Eλ then (ψ,Eλψ) is the probability that if we perform an
experiment to determine the value of A we will obtain a result ≤ λ.
Thus (ψ,Aψ) =

∫
λ(ψ, dEλψ) is the expected value of A in the state ψ.

(The left hand side is meaningful if ψ is in the domain of A; the integral

on the right hand side converges if ψ is merely in the domain of |A| 12 .)
The observable A has the value λ with certainty if and only if ψ is an
eigenvector of A with eigenvalue λ, Aψ = λψ.

Thus quantum mechanics differs from classical mechanics in not re-
quiring every observable to have a sharp value in every (pure) state. Fur-
thermore, it is in general impossible to find a state such that two given
observables have sharp values. Consider the position operator q and the
momentum operator p for a particle with one degree of freedom, and let
ψ be in the domain of p2, q2, pq, and qp. Then (ψ, p2ψ) − (ψ, pψ)2 =

(ψ,
(
p− (ψ, pψ)

)2
ψ) is the variance of the observable p in the state ψ and

its square root is the standard deviation, which physicists frequently call
the dispersion and denote by ∆p. Similarly for (ψ, q2ψ) − (ψ, qψ)2. We
find, using the commutation rule

(pq − qp)ψ =
h̄

i
ψ, (14.2)

0 ≤
(
(αq + ip)ψ, (αq + ip)ψ

)
=

α2(ψ, q2ψ)− iα
(
ψ, (pq − qp)ψ

)
+ (ψ, p2ψ) =

α2(ψ, q2ψ)− αh̄+ (ψ, p2ψ).
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Since this is positive for all real α, the discriminant must be negative,

h̄2 − 4(ψ, q2ψ)(ψ, p2ψ) ≤ 0. (14.3)

The commutation relation (14.2) continues to hold if we replace p by
p − (ψ, pψ) and q by q − (ψ, qψ), so (14.3) continues to hold after this
replacement. That is,

∆q∆p ≥ h̄

2
. (14.4)

This is the well-known proof of the Heisenberg uncertainty relation. The
great importance of Heisenberg’s discovery, however, was not the formal
deduction of this relation but the presentation of arguments that showed,
in an endless string of cases, that the relation (14.4) must hold on physical
grounds independently of the formalism.

Thus probabilistic notions are central in quantum mechanics. Given
the state ψ, the observable A can be regarded as a random variable on the
probability space consisting of the real line with the measure (ψ, dEλψ),
where the Eλ are the spectral projections of A. Similarly, any number
of commuting self-adjoint operators can be regarded as random variables
on a probability space. (Two self-adjoint operators are said to commute
if their spectral projections commute.) But, and it is this which makes
quantum mechanics so radically different from classical theories, the set of
all observables of the system in a given state cannot be regarded as a set
of random variables on a probability space. For example, the formalism of
quantum mechanics does not allow the possibility of p and q both having
sharp values even if the putative sharp values are unknown.

For a while it was thought by some that there might be “hidden
variables”—that is, a more refined description of the state of a system—
which would allow all observables to have sharp values if a complete de-
scription of the system were known. Von Neumann [33] showed, however,
that any such theory would be a departure from quantum mechanics
rather than an extension of it. It follows from von Neumann’s theorem
that the set of all self-adjoint operators in a given state cannot be re-
garded as a family of random variables on a probability space. Here is
another result along these lines.

THEOREM 14.1 Let A = (A1, . . . , An) be an n-tuple of operators on a
Hilbert space H such that for all x in Rn,

x · A = x1A1 + . . .+ xnAn
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is essentially self-adjoint. Then either the (A1, . . . , An) commute or there
is a ψ in H with ‖ψ‖ = 1 such that there do not exist random variables
α1, . . . , αn on a probability space with the property that for all x in R

n

and λ in R,

Pr{x · α ≤ λ} =
(
ψ,Eλ(x · A)ψ

)
where x · α = x1α1 + . . .+ xnαn and the Eλ(x ·A) are the spectral projec-
tions of the closure of x · A.

In other words, n observables can be regarded as random variables, in
all states, if and only if they commute.

Proof. We shall not distinguish notationally between x · A and its
closure.

Suppose that for each unit vector ψ in H there is such an n-tuple α of
random variables, and let µψ be the probability distribution of α on Rn.
That is, for each Borel set B in Rn, µψ(B) = Pr{α ∈ B}. If we integrate
first over the hyperplanes orthogonal to x, we find that

∫
R
n
eix·ξdµψ(ξ) =

∫ ∞
−∞

eiλdPr{x · α ≤ λ}

=

∫ ∞
−∞

eiλ
(
ψ, dEλ(x · A)ψ

)
= (ψ, eix·Aψ).

Thus the measure µψ is the Fourier transform of (ψ, eix·Aψ). By the
polarization identity, if ϕ and ψ are in H there is a complex measure
µϕψ such that µϕψ is the Fourier transform of (ϕ, eix·Aψ) and µψψ = µψ.
For any Borel set B in R

n there is a unique operator µ(B) such that(
ϕ, µ(B)ψ

)
= µϕψ(B), since µϕψ depends linearly on ψ and antilinearly

on ψ. Thus we have∫
R
n
eix·ξ

(
ϕ, dµ(ξ)ψ

)
= (ϕ, eix·Aψ).

The operator µ(B) is positive since µψ is a positive measure. Conse-
quently, if we have a finite set of elements ψj of H and corresponding
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points xj of Rn, then∑
j,k

(
ψk, e

i(xj−xk)·Aψj
)

=

∑
j,k

∫
R
n
ei(xj−xk)·ξ(ψk, dµ(ξ)ψj

)
=∫

R
n

(
ψ(ξ), dµ(ξ)ψ

(
ξ)
)
≥ 0,

where

ψ(ξ) =
∑
j

eixj ·ξψj.

Furthermore, ei0·A = 1 and ei(−x)·A = (eix·A)∗. Under these conditions, the
theorem on unitary dilations of Nagy [34, Appendix, p. 21] implies that
there is a Hilbert space K containing H and a unitary representation
x 7→ U(x) of Rn on K such that, if E is the orthogonal projection of K
onto H , then

EU(x)ψ = eix·Aψ

for all x in Rn and all ψ in H . Since eix·A is already unitary,

‖U(x)ψ‖ = ‖eix·Aψ‖ = ‖ψ‖,

so that ‖EU(x)ψ‖ = ‖U(x)ψ‖. Consequently, EU(x)ψ = U(x)ψ and
each U(x) maps H into itself, so that U(x)ψ = eix·Aψ for all ψ in H .
Since x 7→ U(x) is a unitary representation of the commutative group Rn,
the eix·A all commute, and consequently the Aj commute. QED.

Quantum mechanics forced a major change in the notion of reality.
The position and momentum of a particle could no longer be thought
of as properties of the particle. They had no real existence before mea-
surement of the one with a given accuracy precluded the measurement of
the other with too great an accuracy, in accordance with the uncertainty
principle. This point of view was elaborated by Bohr under the slogan
of “complementarity”, and Heisenberg wrote a book [35] explaining the
physical basis of the new theory.

At the Solvay Congress in 1927, Einstein was very quiet, but when
pressed objected that ψ could not be the complete description of the state.
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For example, the wave function in Fig. 4 would have axial symmetry, but
the place of arrival of an individual particle on the hemispherical screen
does not have this symmetry. The answer of quantum mechanics is that
the symmetrical wave function ψ describes the state of the system before
a measurement is made, but the act of measurement changes ψ.

Figure 4

To understand the rôle of probability in quantum mechanics it is nec-
essary to discuss measurement. The quantum theory of measurement was
created by von Neumann [33]. A very readable summary is the book by
London and Bauer [36]. See also two papers of Wigner [37] [38], which
we follow now.

Consider a physical system with wave function ψ in a state of super-
position of the two orthogonal states ψ1 and ψ2, so that ψ = α1ψ1 +α2ψ2.
We want to perform an experiment to determine whether it is in the state
ψ1 or the state ψ2. (We know that the probabilities are respectively |α1|2
and |α2|2, but we want to know which it is in.)

If A is any observable, the expected value of A is(
α1ψ1 + α2ψ2, A(α1ψ1 + α2ψ2)

)
=

|α1|2(ψ1, Aψ1) + |α2|2(ψ2, Aψ2) + ᾱ1α2(ψ1, Aψ2) + ᾱ2α1(ψ2, Aψ1).

Suppose now we couple the system to an apparatus designed to measure
whether the system is in the state ψ1 or ψ2, and that after the interaction
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the system plus apparatus is in the state

ϕ = α1ψ1 ⊗ χ1 + α2ψ2 ⊗ χ2,

where χ1 and χ2 are orthogonal states of the apparatus. If A is any
observable pertaining to the system alone, then

(ϕ,A⊗ 1ϕ) = |α1|2(ψ1, Aψ1) + |α2|2(ψ2, Aψ2).

Thus, after the interaction with the apparatus, the system behaves like a
mixture of ψ1 and ψ2 rather than a superposition. It is a measurement of
whether the system is in the state ψ1 or ψ2.

However, observe that knowing the state of the system plus apparatus
after the interaction tells us nothing about which state the system is in!
The state ϕ is a complete description of the system plus apparatus. It is
causally determined by ψ and the initial state of the apparatus, according
to the Schrödinger equation governing the interaction. Thus letting the
system interact with an apparatus can never give us more information.

If we knew that after the interaction the apparatus is in the state χ1

we would know that the system is in the state ψ1. But how do we tell
whether the apparatus is in state χ1 or χ2? We might couple it to another
apparatus, but this threatens an infinite regress.

In practice, however, the apparatus is macroscopic, like a spot on a
photographic plate or the pointer on a meter, and I merely look to see
which state it is in, χ1 or χ2. After I have become aware of the state χ1 or
χ2, the act of measurement is complete. If I see that the apparatus is in
state χ1, the system plus apparatus is in state ψ1⊗χ1 and the system is in
state ψ1. (As we already knew, this will happen with probability |α1|2.)
Similarly for χ2. After the interaction but before awareness has dawned
in me, the state of the system plus apparatus is α1ψ1 ⊗ χ1 + α2ψ2 ⊗ χ2;
the instant I become aware of the state of the apparatus, the state of
the system plus apparatus is either ψ1 ⊗ χ1 or ψ2 ⊗ χ2. Thus the state
can change in two ways: continuously, linearly, and causally by means of
the Schrödinger equation or abruptly, nonlinearly, and probabilistically
by means of my consciousness. The latter change is called “reduction of
the wave packet”. Concerning the reduction of the wave packet, Wigner
[39] writes:

“This takes place whenever the result of an observation enters the
consciousness of the observer—or, to be even more painfully precise, my
own consciousness, since I am the only observer, all other people being
only subjects of my observations.”
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This theory is known as the orthodox theory of measurement in quan-
tum mechanics. The word “orthodox” is well chosen: one suspects that
many practicing physicists are not entirely orthodox in their beliefs.

Of those founders of quantum mechanics whom we labeled “reac-
tionaries”, none permanently accepted the orthodox interpretation of
quantum mechanics. Schrödinger writes [40, p. 16]:

“For it must have given to de Broglie the same shock and disappoint-
ment as it gave to me, when we learnt that a sort of transcendental,
almost psychical interpretation of the wave phenomenon had been put
forward, which was very soon hailed by the majority of leading theo-
rists as the only one reconcilable with experiments, and which has now
become the orthodox creed, accepted by almost everybody, with a few
notable exceptions.”

The literature on the interpretation of quantum mechanics contains
much of interest, but I shall discuss only three memorable paradoxes:
the paradox of Schrödinger’s cat [41, p. 812], the paradox of the nervous
student [42] [43] [44], and the paradox of Wigner’s friend [38]. The original
accounts of these paradoxes make very lively reading.

One is inclined to accept rather abstruse descriptions of electrons and
atoms, which one has never seen. Consider, however, a cat that is en-
closed in a vault with the following infernal machine, located out of reach
of the cat. A small amount of a radioactive substance is present, with a
half-life such that the probability of a single decay in an hour is about
one half. If a radioactive decay occurs, a counter activates a device that
breaks a phial of prussic acid, killing the cat. The only point of this para-
dox is to consider what, according to quantum mechanics, is a complete
description of the state of affairs in the vault at the end of an hour. One
cannot say that the cat is alive or dead, but that the state of it and the
infernal machine is described by a superposition of various states contain-
ing dead and alive cats, in which the cat variables are mixed up with the
machine variables. This precise state of affairs is the ineluctable outcome
of the initial conditions. Unlike most thought experiments, this one could
actually be performed, were it not inhumane.

The first explanations of the uncertainty principle (see [35]) made it
seem the natural result of the fact that, for example, observing the posi-
tion of a particle involves giving the particle a kick and thereby changing
its momentum. Einstein, Podolsky, and Rosen [42] showed that the situa-
tion is not that simple. Consider two particles with one degree of freedom.
Let x1 and p1 denote the position and momentum operators of the first,
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x2 and p2 those of the second. Now x = x1 − x2 and p = p1 + p2 are
commuting operators and so can simultaneously have sharp values, say
x′ and p′ respectively. Suppose that x′ is very large, so that the two par-
ticles are very far apart. Then we can measure x2, obtaining the value
x′2, say, without in any way affecting the first particle. A measurement
of x1 then must give x′ + x′2. Since the measurement of x2 cannot have
affected the first particle (which is very far away), there must have been
something about the condition of the value x′1 = x′+x′2 which meant that
x1 if measured would give the value x′1 = x′ + x′2. Similarly for position
measurements. To quote Schrödinger [44]:

“Yet since I can predict either x′1 or p′1 without interfering with system
No. 1 and since system No. 1, like a scholar in an examination, cannot
possibly know which of the two questions I am going to ask it first: it so
seems that our scholar is prepared to give the right answer to the first
question he is asked, anyhow. Therefore he must know both answers;
which is an amazing knowledge, quite irrespective of the fact that after
having given his first answer our scholar is invariably so disconcerted or
tired out, that all the following answers ‘wrong’.”

The paradox of Wigner’s friend must be told in the first person. There
is a physical system in the state ψ = α1ψ1 +α2ψ2 which, if in the state ψ1,
produces a flash, and if in the state ψ2, does not. In the description of
the measurement process given earlier, for the apparatus I substitute my
friend. After the interaction of system and friend they are in the state
ϕ = α1ψ1⊗χ1+α2ψ2⊗χ2. I ask my friend if he saw a flash. If I receive the
answer “yes” the state changes abruptly (reduction of the wave packet)
to ψ1 ⊗ χ1; if I receive the answer “no” the state changes to ψ2 ⊗ χ2.
Now suppose I ask my friend, “What did you feel about the flash before
I asked you?” He will answer that he already knew that there was (or
was not) a flash before I asked him. If I accept this, I must accept that
the state was ψ1 ⊗ χ1 (or ψ2 ⊗ χ2), rather than ϕ, in violation of the
laws of quantum mechanics. One possibility is to deny the existence of
consciousness in my friend (solipsism). Wigner prefers to believe that the
laws of quantum mechanics are violated by his friend’s consciousness.
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Chapter 15

Brownian motion in the
aether

Let us try to see whether some of the puzzling physical phenomena
that occur on the atomic scale can be explained by postulating a kind
of Brownian motion that agitates all particles of matter, even particles
far removed from all other matter. It is not necessary to think of a
material model of the aether and to imagine the cause of the motion
to be bombardment by grains of the aether. Let us, for the present,
leave the cause of the motion unanalyzed and return to Robert Brown’s
conception of matter as composed of small particles that exhibit a rapid
irregular motion having its origin in the particles themselves (rather like
Mexican jumping beans).

We cannot suppose that the particles experience friction in moving
through the aether as this would imply that uniform rectilinear motion
could be distinguished from absolute rest. Consequently, we cannot base
our discussion on the Langevin equation.

We shall assume that every particle performs a Markov process of the
form

dx(t) = b
(
x(t), t

)
dt+ dw(t), (15.1)

where w is a Wiener process on R
3, with w(t) − w(s) independent of

x(r) whenever r ≤ s ≤ t. Macroscopic bodies do not appear to move
like this, so we shall postulate that the diffusion coefficient ν is inversely
proportional to the mass m of the particle. We write it as

ν =
h̄

2m
.
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The constant h̄ has the dimensions of action. If h̄ is of the order of
Planck’s constant h then the effect of the Wiener process would indeed
not be noticeable for macroscopic bodies but would be relevant on the
atomic scale. (Later we will see that h̄ = h/2π.) The kinematical as-
sumption (15.1) is non-relativistic, and the theory we are proposing is
meant only as an approximation valid when relativistic effects can safely
be neglected.

We have already (Chapter 13) studied the kinematics of such a process.
We let b∗ be the mean backward velocity, u = (b− b∗)/2, v = (b+ b∗)/2.
By (13.5) and (13.6) of Chapter 13,

∂u

∂t
= − h̄

2m
grad div v − grad v · u,

∂v

∂t
= a− v · ∇v + u · ∇u+

h̄

2m
∆u,

(15.2)

where a is the mean acceleration.
Suppose that the particle is subject to an external force F . We make

the dynamical assumption F = ma, and substitute F/m for a in (15.2).(
This agrees with what is done in the Ornstein-Uhlenbeck theory of Brow-

nian motion with friction (Chapter 12).
)

Consider the case when the external force is derived from a poten-
tial V , which may be time-dependent, so that F (x, t) = − gradV (x, t).
Then (15.2) becomes

∂u

∂t
= − h̄

2m
grad div v − grad v · u,

∂v

∂t
= − 1

m
gradV − v · ∇v + u · ∇u+

h̄

2m
∆u.

(15.3)

If u0(x) and v0(x) are given, we have an initial value problem: to solve the
system (15.3) of coupled non-linear partial differential equations subject
to u(x, 0) = u0(x), v(x, 0) = v0(x) for all x in R3. Notice that when we
do this we are not solving the equations of motion of the particle. We are
merely finding what stochastic process the particle obeys, with the given
force and the given initial osmotic and current velocities. Once u and v
are known, b, b∗, and ρ are known, and so the Markov process is known.

It would be interesting to know the general solution of the initial
value problem (15.3). However, I can only solve it with the additional
assumption that v is a gradient. (We already know (Chapter 13) that u
is a gradient.) A solution of the problem without this assumption would
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seem to correspond to finding the Markov process of the particle when
the containing fluid, the aether, is in motion.

Let R = 1
2

log ρ. Then we know (Chapter 13) that

gradR =
m

h̄
u. (15.4)

Assuming that v is also a gradient, let S be such that

gradS =
m

h̄
v. (15.5)

Then S is determined, for each t, up to an additive constant.
It is remarkable that the change of dependent variable

ψ = eR+iS (15.6)

transforms (15.3) into a linear partial differential equation; in fact, into
the Schrödinger equation

∂ψ

∂t
= i

h̄

2m
∆ψ − i1

h̄
V ψ + iα(t)ψ. (15.7)

(Since the integral of ρ = ψ̄ψ is independent of t, if (15.7) holds at all
then α(t) must be real. By choosing, for each t, the arbitrary constant
in S appropriately we can arrange for α(t) to be 0.)

To prove (15.7), we compute the derivatives and divide by ψ, finding

∂R

∂t
+ i

∂S

∂t
= i

h̄

2m

(
∆R + i∆S + [grad(R + iS)]2

)
− i1

h̄
V + iα(t).

Taking gradients and separating real and imaginary parts, we see that
this is equivalent to the pair of equations

∂u

∂t
= − h̄

2m
∆v − grad v · u,

∂v

∂t
=

h̄

2m
∆u+

1

2
gradu2 − 1

2
grad v2 − 1

m
gradV.

Since u and v are gradients, this is the same as (15.3).
Conversely, if ψ satisfies the Schrödinger equation (15.7) and we define

R, S, u, v by (15.6), (15.4), and (15.5), then u and v satisfy (15.3). Note
that u becomes singular when ψ = 0.
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Is it an accident that Markov processes of the form (15.1) with the
dynamical law F = ma are formally equivalent to the Schrödinger equa-
tion? As a test, let us consider the motion of a particle in an external
electromagnetic field. Let, as is customary, A be the vector potential,
ϕ the scalar potential, E the electric field strength, H the magnetic field
strength, and c the speed of light. Then

H = curlA, (15.8)

E +
1

c

∂A

∂t
= − gradϕ. (15.9)

The Lorentz force on a particle of charge e is

F = e

(
E +

1

c
V ×H

)
, (15.10)

where v is the classical velocity. We adopt (15.10) as the force on a particle
undergoing the Markov process (15.1) with v the current velocity. We do
this because the force should be invariant under time inversion t 7→ −t,
and indeed H 7→ −H, v 7→ −v (while u 7→ u) under time inversion. As
before, we substitute F/m for a in (15.2). Now, however, we assume the
generalized momentum mv + eA/c to be a gradient. (This is a gauge
invariant assumption.) Letting gradR = mu/h̄ as before, we define S up
to an additive function of t by

gradS =
m

h̄

(
v +

e

mc
A
)
,

and let

ψ = eR+iS.

Then ψ satisfies the Schrödinger equation

∂ψ

∂t
= − i

2mh̄

(
−ih̄∇− e

c
A
)2

ψ − ie

h̄
ϕψ + iα(t)ψ, (15.11)

where as before α(t) is real and can be made 0 by a suitable choice of S.
To prove (15.11), we perform the differentiations and divide by ψ,

obtaining

∂R

∂t
+ i

∂S

∂t
= i

h̄

2m

(
∆R + i∆S + [grad(R + iS)]2

)
+

e

mc
A · grad(R + iS) +

1

2

e

mc
divA− ie2

2mh̄c2
A2 − ie

h̄
ϕ+ iα(t).
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This is equivalent to the pair of equations we obtain by taking gradients
and separating real and imaginary parts. For the real part we find

m

h̄

∂u

∂t
=− h̄

2m
grad div(v +

e

mc
A)

− h̄

2m
grad

[
2
m

h̄
u · m

h̄

(
v +

e

mc
A
)]

+ grad
[ e

mc
A · m

h̄
u
]

+
1

2

e

mc
grad divA,

which after simplification is the same as the first equation in (15.2).
For the imaginary part we find

m

h̄

(
∂v

∂t
+

e

mc

∂A

∂t

)
=

h̄

2m

[m
h̄

grad div u+ grad
m

h̄
u·m
h̄
u− grad

m

h̄

(
v +

e

mc
A
)
·m
h̄

(
v +

e

mc
A
)]

+ grad

[
e

mc
A · m

h̄

(
v +

e

mc
A
)
− e2

2mh̄c
A2 − e

h̄
ϕ

]
.

Using (15.9) and simplifying, we obtain

∂v

∂t
=

e

m
E +

h̄

2m
grad div u+

1

2
gradu2 − 1

2
grad v2.

Next we use the easily verified vector identity

1

2
grad v2 = v × curl v + v · ∇v

and the fact that u is a gradient to rewrite this as

∂v

∂t
=

e

m
E − v × curl v + u · ∇u− v · ∇v +

h̄

2m
∆u. (15.12)

But curl (v + eA/mc) = 0, since the generalized momentum mv + eA/c
is by assumption a gradient, so that, by (15.8), we can substitute eH/mc
for curl v, so that (15.12) is equivalent to the second equation in (15.2)
with F = ma.
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de la mécanique ondulatoire”, Gauthiers-Villars, Paris, 1963.

[47]. D. Bohm, A suggested interpretation of the quantum theory in terms
of “hidden” variables, Physical Review 85 (1952), 166–179.

[48]. D. Bohm and J. P. Vigier, Model of the causal interpretation of
quantum theory in terms of a fluid with irregular fluctuations, Physical
Review 96 (1954), 208–216.

The theory that we have described in this section is (in a somewhat
different form) due to Fényes:
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Chapter 16

Comparison with quantum
mechanics

We now have two quite different probabilistic interpretations of the
Schrödinger equation: the quantum mechanical interpretation of Born
and the stochastic mechanical interpretation of Fényes. Which interpre-
tation is correct?

It is a triviality that all measurements are reducible to position mea-
surements, since the outcome of any experiment can be described in terms
of the approximate position of macroscopic objects. Let us suppose that
we observe the outcome of an experiment by measuring the exact position
at a given time of all the particles involved in the experiment, including
those constituting the apparatus. This is a more complete observation
than is possible in practice, and if the quantum and stochastic theories
cannot be distinguished in this way then they cannot be distinguished by
an actual experiment. However, for such an ideal experiment stochastic
and quantum mechanics give the same probability density |ψ|2 for the
position of the particles at the given time.

The physical interpretation of stochastic mechanics is very different
from that of quantum mechanics. Consider, to be specific, a hydrogen
atom in the ground state. Let us use Coulomb units; i.e., we set m =
e2 = h̄ = 1, where m is the reduced mass of the electron and e is its
charge. The potential is V = −1/r, where r = |x| is the distance to the
origin, and the ground state wave function is

ψ =
1√
π
e−r.

In quantum mechanics, ψ is a complete description of the state of the sys-
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tem. According to stochastic mechanics, the electron performs a Markov
process with

dx(t) = − x(t)

|x(t)|
dt+ dw(t),

where w is the Wiener process with diffusion coefficient 1
2
. (The gradient

of −r is −x/r.) The invariant probability density is |ψ|2. The electron
moves in a very complicated random trajectory, looking locally like a
trajectory of the Wiener process, with a constant tendency to go towards
the origin, no matter which direction is taken for time. The similarity to
ordinary diffusion in this case is striking.

How can such a classical picture of atomic processes yield the same
predictions as quantum mechanics? In quantum mechanics the positions
of the electron at different times are non-commuting observables and so
(by Theorem 14.1) cannot in general be expressed as random variables.
Yet we have a theory in which the positions are random variables.

To illustrate how conflict with the predictions of quantum mechanics is
avoided, let us consider the even simpler case of a free particle. Again we
set m = h̄ = 1. The wave function at time 0, ψ0, determines the Markov
process. To be concrete let us take a case in which the computations
are easy, by letting ψ0 be a normalization constant times exp(−|x|2/2a),
where a > 0. Then ψt is a normalization constant times

exp

(
− |x|2

2(a+ it)

)
= exp

(
−|x|

2(a− it)
a2 + t2

)
.

Therefore (by Chapter 15)

u = − a

a2 + t2
x,

v =
t

a2 + t2
x,

b =
t− a
a2 + t2

x.

Thus the particle performs the Gaussian Markov process

dx(t) =
t− a
a2 + t2

xdt+ dw(t),

where w is the Wiener process with diffusion coefficient 1
2
.
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Now let X(t) be the quantum mechanical position operator at time t
(Heisenberg picture). That is,

X(t) = e
1
2
it∆X0e

− 1
2
it∆,

where X0 is the operator of multiplication by x. For each t the probability,
according to quantum mechanics, that if a measurement of X(t) is made
the particle will be found to lie in a given region B of R3 is just the
integral over B of |ψt|2 (where ψt is the wave function at time t in the
Schrödinger picture). But |ψt|2 is the probability density of x(t) in the
above Markov process, so this integral is equal to the probability that
x(t) lies in B.

We know that the X(t) for varying t cannot simultaneously be repre-
sented as random variables. In fact, since the particle is free,

X

(
t1 + t2

2

)
=
X(t1) +X(t2)

2
(16.1)

for all t1, t2, and the corresponding relation is certainly not valid for the
random variables x(t). Thus the mathematical structures of the quan-
tum and stochastic theories are incompatible. However, there is no con-
tradiction in measurable predictions of the two theories. In fact, if one
attempted to verify the quantum mechanical relation (16.1) by measuring

X

(
t1 + t2

2

)
, X(t1), X(t2),

then, by the uncertainty principle, the act of measurement would produce
a deviation from the linear relation (16.1) of the same order of magnitude
as that which is already present in the stochastic theory of the trajectories.
Although the operators on the two sides of (16.1) are the same operator,
it is devoid of operational meaning to say that the position of the particle
at time (t1 + t2)/2 is the average of its positions at times t1 and t2.

The stochastic theory is conceptually simpler than the quantum the-
ory. For instance, paradoxes related to the “reduction of the wave packet”
(see Chapter 14) are no longer present, since in the stochastic theory
the wave function is no longer a complete description of the state. In
the quantum theory of measurement the consciousness of the observer
(i.e., my consciousness) plays the rôle of a deus ex machina to introduce
randomness, since without it the quantum theory is completely determin-
istic. The stochastic theory is inherently indeterministic.
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The stochastic theory raises a number of new mathematical questions
concerning Markov processes. From a physical point of view, the theory
is quite vulnerable. We have ignored a vast area of quantum mechanics—
questions concerning spin, bosons and fermions, radiation, and relativistic
covariance. Either the stochastic theory is a curious accident or it will
generalize to these other areas, in which case it may be useful.

The agreement between the predictions of quantum mechanics and
stochastic mechanics holds only for a limited class of forces. The Hamil-
tonians we considered (Chapter 15) involved at most the first power of
the velocity in the interaction part. Quantum mechanics can treat much
more general Hamiltonians, for which there is no stochastic theory. On
the other hand, the basic equations of the stochastic theory (Eq. (15.2)
with F = ma) can still be formulated for forces that are not derivable
from a potential. In this case we can no longer require that v be a gradient
and no longer have the Schrödinger equation. In fact, quantum mechanics
is incapable of describing such forces. If there were a fundamental force in
nature with a higher order dependence on velocity or not derivable from
a potential, at most one of the two theories could be physically correct.

Comparing stochastic mechanics (which is classical in its descriptions)
and quantum mechanics (which is based on the principle of complementar-
ity), one is tempted to say that they are, in the sense of Bohr, complemen-
tary aspects of the same reality. I prefer the viewpoint that Schrödinger
[30, §14] expressed in 1926:

“ . . . It has even been doubted whether what goes on in the atom
could ever be described within the scheme of space and time. From the
philosophical standpoint, I would consider a conclusive decision in this
sense as equivalent to a complete surrender. For we cannot really alter our
manner of thinking in space and time, and what we cannot comprehend
within it we cannot understand at all. There are such things—but I do
not believe that atomic structure is one of them.”


