Dynamical Theory of X-Ray Diffraction

ANDRÉ AUTHIER Université P. et M. Curie, Paris

Contents

Ι	Back	ground and basic results	1		
1	Historical developments				
	1.1	Prologue	3		
	1.2	The discovery of X-ray diffraction	4		
	1.3	The geometrical theory of diffraction	5		
	1.4	Darwin's dynamical theory of diffraction	6		
	1.5	Extinction theories	8		
	1.6	Ewald's dynamical theory	11		
	1.7	Early confirmations of the dynamical theory	13		
	1.8	Laue's dynamical theory	14		
	1.9	Umweganregung and Aufhellung	14		
	1.10	The properties of wavefields	16		
		1.10.1 Anomalous absorption (the Borrmann effect) $$	16		
		1.10.2 Wavefield trajectories	20		
		1.10.3 Pendellösung	23		
	1.11		25		
	1.12	Modern times	26		
2	Prope	rties of the electromagnetic field—propagation and			
-	scatter		28		
	2.1	Maxwell's equations	28		
	2.2	The electrodynamic potentials in vacuum	29		
	2.2	2.2.1 The vector and scalar potentials	29		
	. *	2.2.2 The retarded potentials	30		
	2.3	The electrodynamic potentials in polarized media	31		
	2.4	Hertz vectors (polarization potentials)	31		
	2.5	Propagation of an electromagnetic wave in vacuum	33		
	2.6	Scattering of X-rays by an electron	33		
	2.7	Polarizability of matter for X-rays	36		
		2.7.1 Elementary dispersion theory	36		
		2.7.2 Fourier expansion of the polarizability	37		
		2.7.3 Index of refraction	41		
		2.7.4 Absorption	41		
	2.8	Ewald's dispersion theory	43		
	2.9	Propagation equation of an electromagnetic wave in			
		materials in Laue's dynamical theory	49		
		2.9.1 Laue's basic assumption	49		

	CONTENTS

.

		2.9.2	Propagation equation	49
	2.10	Specula	r reflection—Fresnel relations	50
	~			
3			eory of X-ray diffraction	57
	3.1		al scattering by an electron—polarization	57
	3.2	Amplitu	de diffracted by a periodic electron distribution	58
	3.3	-	y diffracted by a small crystal	61
	3.4	Reflecti	vity	63
	3.5		ed intensity	65
	3.6	Mosaic	crystals	67
4	Eleme	ntarv dv	namical theory	68
•	4.1		ions of the geometrical theory	68
	4.2		ction of the dispersion surface	69
	4.3		y with the band theory of solids	71
	4.4		ation equation	73
	4.5		nental equations of dynamical theory	74
	4.6		Ide ratio of the refracted and reflected waves	79
	4.7	-	as of plane-wave dynamical theory	80
	4.7	4.7.1	Boundary conditions	80
		4.7.2	Departure from Bragg's angle of the incident wave	81
		4.7.3	Transmission and reflection geometries	82
		4.7.4	Deviation parameter	85
		4.7.5	Determination of the tiepoints	85
		4.7.6	Effective absorption coefficient	87
	4.8		fracted waves in the transmission geometry	88
	4.0	4.8.1	Double refraction	88
		4.8.1	Boundary conditions for the amplitudes at	00
		4.0.2	the entrance surface	88
		4.8.3	Intensities of the reflected and refracted waves	89
		4.8.3 4.8.4		89 90
		4.8.5	Anomalous absorption	90 92
		4.8.5	Boundary conditions at the exit surface	92 94
		4.8.0 4.8.7	Reflectivity Pendellösung	94 96
		4.8.7 4.8.8	Integrated intensity	90 98
	4.9		•	90 99
	4.9		fracted waves in the reflection geometry	
		4.9.1	Tiepoints	99
		4.9.2	Thick crystals—total reflection	99 102
	1 10	4.9.3	Thin crystals	102
	4.10		ce of the asymmetry on the position and width of the	
			curve and of the angular distribution of the	104
	4 1 1	reflected		104
	4.11		rison with geometrical theory	107
	4.12	Dynami	ical diffraction by quasicrystals	110

II	Adva	anced d	ynamical theory	113		
5	Properties of wavefields					
•	5.1	•				
	5.2	5.2 Fundamental equations of the dynamical theory				
	5.3	The dispersion equation in the two-beam case				
	5.4	Poynting vector of the wavefields				
		5.5 Determination of the tiepoints—geometrical interpretation				
		of the deviation parameter				
		5.5.1	Boundary condition for the wavevectors	123 123		
		5.5.2	Deviation from Bragg's angle of the middle of the			
			reflection domain	125		
		5.5.3	Coordinates of the tiepoint	126		
		5.5.4	Deviation parameter, Pendellösung distance and			
			Darwin width in the transmission geometry	128		
		5.5.5	Deviation parameter, extinction distance, penetration			
			depth and Darwin width in the reflection geometry	132		
		5.5.6	Index of refraction for dynamical diffraction	135		
	5.6	The de	viation parameter in absorbing crystals	136		
	5.7 Amplitude ratio of the refracted and reflected waves		136			
		5.7.1	Phase of the amplitude ratio in the transmission			
			geometry	137		
		5.7.2	Phase of the amplitude ratio in the reflection			
			geometry	138		
	5.8	Anoma	alous absorption	139		
		5.8.1	Effective absorption coefficient in the transmission			
			geometry	139		
		5.8.2	Absorption coefficient in the propagation direction	141		
		5.8.3	Discussion of anomalous absorption—properties			
			of the standing wavefield	142		
		5.8.4	Anomalous absorption in the reflection			
			geometry—penetration depth	147		
	5.9	Disper	sion surface when the Bragg angle is close to $\pi/2$	148		
		5.9.1	Deviation from Bragg's angle and Darwin width	148		
		5.9.2	Dispersion surface	151		
		5.9.3	Penetration depth	153		
		5.9.4	Applications	154		
6	Intens	sities of	plane waves in the transmission geometry	155		
	6.1		ary conditions for the amplitudes at the entrance			
		surface		155		
	6.2	Ampli	tudes of the refracted and reflected waves	157		

xi

	6.3	Bound	ary conditions for the wavevectors at the exit surface	161
		6.3.1	Condition for the existence of two outgoing waves	161
		6.3.2	Wavevectors of the outgoing waves (Laue-Laue	
			geometry)	163
		6.3.3	Laue–Bragg geometry	165
	6.4		ng curves of the reflected and refracted beams	166
		6.4.1	Boundary conditions for the amplitudes at the	
			exit surface	166
		6.4.2	Reflectivity	167
		6.4.3	Properties of the rocking curves	168
	6.5	Integra	ited intensity	170
7	Intens	sities of	plane waves in the reflection geometry	173
	7.1		absorbing crystals	173
		7.1.1	Reflectivity	173
		7.1.2	Shape of the rocking curves	175
	7.2	Standi	ng waves	181
	7.3	Thin c	rystals	185
		7.3.1	Boundary conditions for the amplitudes	185
		7.3.2	Reflectivity	186
8	Dvna	mical di	ffraction in highly asymmetric coplanar and	
	-		geometries	189
	8.1	Introdu		189
	8.2		tion at grazing incidence or grazing emergence	189
	8.3		ion from Bragg's incidence of the middle of the	107
			on domain	192
		8.3.1	Grazing incidence and Bragg geometry	192
		8.3.2	Grazing incidence, Laue geometry	195
		8.3.3	Grazing emergence	196
	8.4	Variati	on of the Darwin width for a grazing incidence	197
	8.5		on of the width of the diffracted beam for a grazing	
		emerge		200
	8.6	Equation	on of the dispersion surface	201
	8.7		on with the traditional dynamical theory	206
	8.8		arly and Bragg-reflected intensities	207
		8.8.1	Boundary conditions for the amplitudes at the	
			entrance surface	207
		8.8.2	Specularly and Bragg-reflected intensities for a	
			grazing incidence and the Bragg geometry	
			(semi-infinite crystal)	210
		8.8.3	Specularly and Bragg-reflected intensities for a	
			grazing incidence and the Laue geometry	213
	8.9	Grazin	g incidence diffraction (non-coplanar geometry)	213

			CONTENTS	xiii
		8.9.1	Introduction	213
		8.9.2	Three-dimensional representation of the dispersion	
			surface	216
		8.9.3	Tiepoints excited by the incident wave	216
		8.9.4	Equation of the dispersion surface	223
		8.9.5	Amplitudes of the waves	224
9	<i>n</i> -bear	m dynan	nical diffraction	225
	9.1	Introdu	ction	225
	9.2	The ger	neral three-beam case	226
		9.2.1	Renninger-scans	226
		9.2.2	Fundamental equations of the dynamical theory	227
		9.2.3	Solution in the general case	233
		9.2.4	Energy flow	235
	9.3	The thr	ee-beam coplanar case	236
	9.4	Determ	ination of phases using <i>n</i> -beam diffraction	236
	9.5	The sup	per-Borrmann effect	242
		9.5.1	Experimental evidence	242
		9.5.2	Solution of the 111, 111 case	243
		9.5.3	Anomalous absorption coefficient	246
10	Spher	ical-wav	e dynamical theory: I. Kato's theory	249
	10.1	Extensi	on of the dynamical theory to any kind of incident	
		wave		249
	10.2	Fourier	expansion of a spherical wave in plane waves	250
		10.2.1	Principle of Kato's spherical-wave theory	250
		10.2.2	The incident wave is a scalar wave	250
		10.2.3	The incident wave is a vector wave	253
	10.3	Direct i	integration in the transmission geometry	255
		10.3.1	The geometrical conditions	255
		10.3.2	Stationary phase method	257
		10.3.3	Amplitude distribution on the exit surface—reflected	
			wave	257
		10.3.4	Amplitude distribution on the exit surface—refracted	
			wave	260
	10.4	Intensit	y distribution on the exit surface	260
	10.5	Equal-i	ntensity (Pendellösung) fringes	263
	10.6	Integrat	tion by the stationary phase method	264
	10.7	Integrat	ted intensity	268
	10.8		ce of polarization	269
	10.9	Bragg g	geometry	269
		Append	lix: Geometrical interpretation of $\eta/\sqrt{S(\gamma_h) + \eta^2}$	
		~ ~	ransmission geometry	274

•

11	Spheri	cal-wave	e dynamical theory: II. Takagi's theory	277
	11.1	Introduc	ction	277
	11.2	General	ized fundamental equations	279
		11.2.1	Modulated waves	279
		11.2.2	Takagi's equations	280
		11.2.3	Boundary conditions for the amplitudes at the	
			entrance surface	283
	11.3	Reducti	on of Takagi's equations in the plane-wave case	285
	11.4		ing crystals	286
	11.5		cal resolution of Takagi's equations for perfect	•••
		crystals		286
	11.6	-	cal solution for a point source using the method	0.07
		-	ral equations	287
		11.6.1	Transmission geometry	288
		11.6.2	Reflection geometry	290
	11.7		cal resolution of Takagi's equations using the	0.01
			n function	291
		11.7.1		291
		11.7.2	General expression of the reflected and refracted	202
		1172	waves	292 293
		11.7.3		293 295
	11.8	11.7.4	6 1	293
	11.0		cal solution for an incident spherical wave using the of Riemann functions	295
		11.8.1	The incident wave is a point source located on the	293
		11.0.1	entrance surface	295
		11.8.2	The incident wave is a point source located away	295
		11.0.2	from the entrance surface	296
		11.8.3	Conservation of energy	298
			ix: Hyperbolic partial differential equations	298
	- '	rippend	Characteristics	299
			Adjoint differential expression	301
			5 1	
12	Ray tr	acing in	perfect crystals	304
	12.1	Ray trac		304
	12.2	The stru	icture of real waves	305
	12.3	Wavepa	ckets made of the superposition of separate plane	
		waves		306
	12.4	Wavepa	ckets made of a continuous distribution of	
		waveved	ctors	308
	12.5	Group v	elocity and Poynting vector	310
	12.6		r amplification	311
	12.7	Intensit	y distribution along the base of the Borrmann	
		triangle	(transmission geometry)	317

	12.8	Geomet	trical properties of wavefield trajectories within	
	12.0		rmann triangle	- 323
		12.8.1	Wavefields propagating along the median, AE ,	- 323
		12.8.1	of the Borrmann triangle	323
		12.8.2	Properties of the trajectories of the two wavefields	525
		12.0.2	excited by a plane wave	323
	12.9	Evnorin	nental proof of double refraction	323
	12.9	-	nental observation of the separation of the	524
	12.10	wavefie	-	326
		12.10.1	-	326
			Focalization of the various wavelengths	328
		12.10.2	-	329
			Plane-wave Pendellösung	330
		12.10.4	-	550
		12.10.0	refraction	332
	12.11	Fresnel	diffraction near the Bragg incidence	335
	12.12		cing in finite crystals	339
		12.12.1		339
		12.12.2		341
		12.12.3		
		1211210	a pseudo-plane wave in thin crystals	343
		12.12.4		344
	12.13		nce of extended, non-strictly monochromatic sources	349
III			the dynamical theory to d crystals	353
	u	cionic		555
13	Ray tra	acing in	slightly deformed crystals	355
	13.1	X-ray p	ropagation in deformed materials	355
		13.1.1	The different degrees of deformation	355
		13.1.2	Principle of ray theories for weak deformations	356
	13.2	Effectiv	re misorientation	357
		13.2.1	Local reciprocal lattice vector	357
		13.2.2	Effective misorientation in direct space	359
		13.2.3	Effective misorientation in reciprocal space	360
		13.2.4	Strain gradient	362
	13.3		ability of a deformed crystal	363
	13.4		conal approximation	363
		13.4.1	Justification of the concept of local dispersion surface	363
		13.4.2	Fermat's principle	365
	13.5		ectories	368
		13.5.1	Local dispersion surface	368
		13.5.2	Local wavevectors	369
		13.5.3	Differential equation of the wavefield trajectories	369

xv

	13.6	The cas	se of a constant strain gradient	375
		13.6.1	Equation of the ray trajectory with respect to the	
			lattice planes	375
	•	13.6.2	Ray trajectories in the transmission geometry	377
		13.6.3	Pure bending	379
		13.6.4	Temperature gradient	382
		13.6.5	Ray trajectories in the reflection geometry	382
	13.7	Diffrac	ted intensities-plane-wave case	386
		13.7.1	Zero absorption	386
		13.7.2	Absorbing crystals (transmission geometry)	389
		13.7.3	Expression of the diffracted intensities for a constant	
			strain gradient	389
		13.7.4	Discussion of the intensity distribution for a constant	
			strain gradient	391
	13.8	Diffrac	ted intensities—spherical-wave case	395
		13.8.1	Pendellösung in slightly deformed crystals	395
		13.8.2	Phase of the refracted wave in a deformed crystal	397
		13.8.3	Expression of the phase in terms of the coordinates	
			in direct space	401
		13.8.4	Shape of the Pendellösung fringes in a deformed	
			crystal	403
14			f X-rays in highly deformed crystals	406
	14.1	Introdu		406
	14.2		's equations in a deformed crystal	406
	14.3	Resolut	tion of Takagi's equations in the deformed crystal case	409
		14.3.1	Small deformations, limit of the validity of the	
			Eikonal approximation	409
		14.3.2	Analytical resolution of Takagi's equations	410
		14.3.3	Numerical integration	415
		14.3.4	Applications	420
	14.4	Ray co	ncept applied to highly distorted crystals	421
		14.4.1	Generalization of the notion of wavefields,	
			interbranch scattering	421
		14.4.2	Example: X-ray propagation in a crystal with a	
			concentration gradient (Keitel et al. 1999)	423
	14.5	Statisti	cal dynamical theories	426
		14.5.1	Introduction	426
		14.5.2	Principle of Kato's statistical dynamical theory	427
		14.5.3	Experimental tests of the statistical dynamical theory	431
		Append	dix: Resolution of Takagi's equations in the case of	
		a const	ant strain gradient using Laplace transforms	
		(Kataga	awa and Kato 1974)	432

			CONTENTS	xvii
IV	Appli	cations		435
15	X-ray	ontics		437
10	15.1	X-ray so	burces `	437
		15.1.1	X-ray tubes	437
		15.1.2	Synchrotron radiation	439
	15.2		nochromators	445
		15.2.1	Introduction	445
		15.2.2	Monochromator crystals	446
		15.2.3		449
	15.3		tions of multiple-crystal arrangements to beam	
		conditio		456
		15.3.1	Suppression of tails	456
		15.3.2	Wavelength scanner	459
		15.3.3	Production of beams with a very narrow angular spread	459
		15.3.4	Harmonic suppression	461
		15.3.5	Production of polarized radiation	467
	15.4	Focusin	-	473
		15.4.1	Introduction	473
		15.4.2	Mirrors	474
		15.4.3	Multilayers	476
		15.4.4	Curved crystals	477
		15.4.5	Fresnel zone plates	478
		15.4.6	Bragg–Fresnel lenses	480
		15.4.7	Refractive lenses	481
		15.4.8	X-ray wave-guides	482
	15.5	X-ray in	terferometers	483
		15.5.1	Principle	483
		15.5.2	Applications	486
	15.6	Imaging	with X-rays	489
		15.6.1	Introduction	489
		15.6.2	Phase contrast imaging	489
16	Locati	on of a	toms at surfaces and interfaces using X-ray	
	standi	ng waves	5	495
		Principl		495
	16.2	Theory		498
		16.2.1	Fluorescence yield	498
		16.2.2	Influence of thermal vibrations	502
	16.3	Bulk cry	vstals	502
		16.3.1	Extinction effect	502
		16.3.2	Determination of the polarity of heteropolar crystals	503
	16.4	Solution	to the surface registration problem	504

16.5	Thin file	ms and buried interfaces	507
	16.5.1	Simple model	507
	16.5.2	Calculation of the standing pattern in an overlayer with	
		the dynamical theory	509
16.6	Standin	g waves in deformed crystals	510
16.7	Standin	g waves due to specular reflection	511
17 X-ray of		on topography	513
17.1	Introduc	ction	513
17.2	Single-o	crystal reflection topography (Berg-Barrett	
	techniqu	ue)	514
	17.2.1	Principle	514
	17.2.2	Image formation	516
	17.2.3	Penetration depth	518
	17.2.4	Stereographic views	519
	17.2.5	Applications	520
17.3	Single-o	crystal transmission topography	520
	17.3.1	Early history	520
	17.3.2	Principle of section topographs	523
	17.3.3	Projection topographs	528
	17.3.4	Dislocation images	538
	17.3.5	Images of planar defects	551
	17.3.6	Applications	560
17.4	Double	- or multiple-crystal topography	564
	17.4.1	Principle of double-crystal topography	564
•	17.4.2	Plane-wave topography	566
	17.4.3	Synchrotron double-crystal topography	568
	17.4.4	Mapping of distortions and of lattice parameter	
		variations	568
	17.4.5	Equal-strain or equal-lattice parameter contours	569
	17.4.6	Double-crystal setting for high spatial resolution	
		topography	569
Appendice	S		
Appendix 1		l formulae	571
Appendix 2		arly days of dynamical theory	576
References		ary support dynamous moory	583
List of symbols 6			637

List of symbols		637
Index	×	641