Dynamical thermal conductivity of suspended graphene ribbons in the hydrodynamic regime

Zlatan Aksamija
Arnab K Majee, University of Massachusetts Amherst
Dynamical thermal conductivity of suspended graphene ribbons in the hydrodynamic regime

Arnab K. Majee and Zlatan Aksamija
Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9292, USA

(Received 16 February 2018; revised manuscript received 27 April 2018; published 5 July 2018)

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been widely studied, both theoretically and experimentally. On the other hand, fast transients and frequency dynamics of thermal conduction has been given less attention. The frequency response of thermal conductivity has become more crucial in recent years, especially in light of the constant rise in the clock frequencies in microprocessors and terahertz sensing applications. Thermal conductivity in response to a time-varying temperature field starts decaying when the frequency exceeds a cutoff frequency \(\Omega_c \), which is related to the inverse of phonon relaxation time \(\tau \), on the order of 2–10 ps in most bulk semiconductors. Phonons in graphene have much longer phonon relaxation times, which we show leads to far lower \(\Omega_c \). Our calculations, based on the phonon Boltzmann equation coupled with first-principles dispersion, show that dynamical thermal conductivity of graphene resembles a low-pass filter that decays beyond an \(\Omega_c \), ranging from 100 MHz to 10 GHz, controlled by temperature and ribbon width. The response parallels the Drude model of electrons, but with far lower cutoff. Moreover, the presence of strong normal processes in graphene results in a complex-valued conductivity and gradual transition around \(\Omega_c \), with the resistive contribution to the heat flux having higher cutoff frequency and smaller phase lag than the hydrodynamic part. The dynamical conductivity will impact dissipation in high-frequency applications of graphene. Our findings also provide a platform for future studies of hydrodynamic transport and wavelike, or second sound, heat transfer by tuning the frequency of the applied temperature field.

DOI: 10.1103/PhysRevB.98.024303

I. INTRODUCTION

In the context of developing on-chip heat management, thermoelectric, and other energy conversion applications, the ability to tailor the thermal conductivity of a material is of fundamental importance. The steady-state behavior of the thermal transport in bulk semiconductors [1,2], metals [3], and, more recently, in two-dimensional (2D) materials [4–8] has been widely studied, expanding the upper [9] and lower [10] bounds on thermal conductivity. Significant efforts have also been devoted to understanding the reduction of thermal conductivity due to atomically rough interfaces [11–13] and boundaries [14–16] in nanostructured materials ranging from nanowires [17–19] to thin films [20,21], superlattices [22–25], and nanocomposites [26,27]. Heat conduction at short length scales, comparable to the phonon mean-free path (MFP), and from small heat sources is a related type of size effect that has also drawn significant research attention in recent years [28–30]. When the temperature gradient varies over a length scale comparable to the phonon MFP, Fourier’s concept of local thermal equilibrium breaks down [31,32] and transport becomes nonlocal [33] and partially ballistic [34,35].

To treat this situation, Mahan [36] proposed a nonlocal theory of heat conduction, while Chen [37] derived ballistic-diffusive heat equations to capture this nondiffusive nature of phonons. There have been numerous observations of the reduced thermal transport at length scales comparable to the phonon MFP [38–41] and the interplay between phonon MFP spectra and size effects is now quite well understood [42,43]. On the other hand, the effect of fast transients and the frequency response of thermal conduction, sometimes called the dynamical thermal conductivity, has been given less attention. The response of thermal conductivity to rapidly varying heat sources may become more crucial in the future, especially with the constant growth in the clock frequencies in microprocessors and increase in giga- and terahertz applications of semiconductor devices. Analogous to transport at short scales in nanostructures, transport of heat at short time scale smaller than the phonon lifetime also becomes nondiffusive in nature, where local nonequilibrium prevails. It has been theoretically predicted in 3D materials that the heat flux in response to a time-varying temperature gradient starts decaying when the frequency of the applied heat source (\(\Omega \)) exceeds a certain cutoff frequency \(\Omega_c \), which was related to the inverse of the average phonon relaxation time \(\tau_c \) [44–46]. This dynamical and transient behavior has also been quantified in metals [47–49] and argon crystals [50].

Using molecular dynamics simulation, Volz [44] found that the phonon relaxation time in bulk semiconductors such as silicon is short, on the order of 30–140 ps, and concluded that a frequency-dependent behavior of thermal conductivity can only be observed when the applied temperature gradient is varying at frequencies exceeding 10 gigahertz (GHz). Sellitto and co-workers [51] used a phonon-hydrodynamical model with suitable boundary conditions to study the frequency dependent thermal conductivity in silicon nanowires, while Yang and Dames [52] extended the gray BTE model for periodic heating on the surface of bulk materials. Ezzahri and Joulin [46] solved the Boltzmann-Peierls transport equation.
in the frequency domain within single-mode relaxation time (SMRT) approximation and used the Debye-Callaway model [53] to obtain expressions for dynamical thermal conductivity of natural silicon and germanium crystals, and semiconductor alloys Si$_{0.7}$Ge$_{0.3}$, In$_{0.53}$Ga$_{0.47}$As, and In$_{0.49}$Ga$_{0.51}$P. Among these materials, Si$_{0.7}$Ge$_{0.3}$ alloys exhibited the most pronounced dynamical thermal conductivity trend with cutoff frequencies ranging from 0.1 megahertz (MHz) at 3 K to 2 GHz at the room temperature. Chaput [54] solved frequency-dependent phonon Boltzmann transport equation (pBTE) by linearizing it and transforming it into an integral equation over the irreducible Brillouin zone to compute dynamical thermal conductivity in diamond, silicon, and magnesium silicide. The frequency-dependent behavior was observed only beyond 10 GHz, corroborating the results of Volz [44].

In contrast to the aforementioned bulk semiconductors, 2D materials, especially graphene, have longer phonon relaxation times [55]. The presence of strong momentum-conserving normal phonon-phonon processes in graphene, overshadowing momentum-destroying umklapp processes, results in hydrodynamic transport [56,57]. Therefore, in suspended graphene and wide graphene ribbons the cutoff frequency Ω_c is much lower than that of silicon, even at room temperature. This could impact thermal dynamics and transients [58] in graphene at comparatively lower frequency ranges. Therefore, the dynamical thermal conductivity is expected to play a significant role in removing heat from electronic devices based on graphene and other related two-dimensional materials switching at high frequencies. Some of the other interesting phenomena that can be studied using dynamical thermal conductivity are Poiseuille flow [59] and second sound, where heat does not diffuse but rather propagates in a wavelike fashion [60–63]. This phenomenon, which has been observed at low temperatures in liquid helium [64], NaF [65,66], Bi [67,68], and SrTiO$_3$ [69], was predicted from first-principles calculations to persist even at room temperature in graphene [56].

II. METHODOLOGY

In this paper, we focus on the dynamical thermal conductivity of suspended graphene ribbons. We calculate a frequency-dependent thermal conductivity by solving the time-dependent phonon Boltzmann transport equation (pBTE). In response to a rapidly time-varying temperature field, the heat conduction in solids becomes nonlocal in time and space $\kappa(\vec{r},t;\vec{r}',t')$ [70]. Phonons that are driven by a temperature gradient at position \vec{r} and time t' move from \vec{r}' to \vec{r} in time between t' and t to cause a heat current at position \vec{r} and time t. The current is given by the convolution of thermal conductivity with the temperature gradient ∇T at position \vec{r} and time t' as [42]

$$ J(\vec{r},t) = \int d\vec{r}' dt' \kappa(\vec{r},t;\vec{r}',t') \nabla T(\vec{r}',t'). $$

It is mathematically convenient to express the heat current in Fourier domain, where the convolution becomes a simple product of a frequency- and wave-number-dependent thermal conductivity and temperature gradient. On taking the Fourier transform of the time-domain heat current, we get

$$ \tilde{J}(\vec{Q},\Omega) = -\tilde{\kappa}(\vec{Q},\Omega) \times \tilde{\nabla} T(\vec{Q},\Omega), $$

where $\tilde{J}(\vec{Q},\Omega)$, $\tilde{\kappa}(\vec{Q},\Omega)$, and $\tilde{\nabla} T(\vec{Q},\Omega)$ are the Fourier-transformed heat current, thermal conductivity, and temperature gradient, respectively, while \vec{Q} and Ω are the wave number and frequency of the temperature gradient.

The time-dependent pBTE is given by

$$ \frac{\partial N_{q,b}(\vec{r},t)}{\partial t} + \vec{v}_{q,b} \cdot \nabla T N_{q,b}(\vec{r},t) = \left[\frac{\partial N_{q,b}(\vec{r},t)}{\partial t} \right]_{\text{coll}}, $$

where $N_{q,b}(\vec{r},t)$ is the phonon distribution function, which is a function of position \vec{r} as well as time t. From here on, we suppress (\vec{r},t) in $T(\vec{r},t)$ and $N_{q,b}(\vec{r},t)$, and (\vec{Q},Ω) in $\tilde{N}_{q,b}(\vec{Q},\Omega)$ for clarity, where $\tilde{N}_{q,b}(\vec{Q},\Omega)$ is the Fourier-transformed distribution function. $\vec{v}_{q,b} = \partial \Omega_{q,b}/\partial q$ is the group velocity of the phonon wave vector q in branch b, $\Omega_{q,b}$ being its vibrational frequency. Using Callaway’s idea [53], we write the collision term as the sum of two terms

$$ \left[\frac{\partial N_{q,b}(\vec{r},t)}{\partial t} \right]_{\text{coll}} = -\left(\frac{N_{q,b} - N_{q,b}^0}{\tau_{q,b}} \right) - \left(\frac{N_{q,b} - N_{q,b}^0}{\tau_{q,b}^*} \right), $$

where the first term on the right hand side of the equation represents the rate at which the nonequilibrium distribution returns to the equilibrium Bose-Einstein distribution $N_{q,b}^0 = \exp(h\Omega_{q,b}/k_b T) - 1$ due to momentum-destroying resistive scattering mechanisms. The second term represents how the perturbed distribution function in the presence of collective momentum-conserving normal phonon-phonon processes relaxes to a drifted distribution $N_{q,b}^0$, often referred to as flowing equilibrium. The flowing equilibrium distribution is written as $N_{q,b}^0 = \exp(h\Omega_{q,b}/k_b T + \lambda \cdot q) - 1$, where λ is the displacement vector of the drifted distribution and is related to the drift velocity by $\lambda = h\vec{v}_d/k_b T$. The $\tau_{q,b}$ and $\tau_{q,b}^*$ are the average resistive and normal scattering times, respectively.

Resistive processes include umklapp phonon-phonon processes, isotope, and line-edge roughness scattering so the resistive scattering rate is calculated by combining them as $1/\tau_{q,b} = 1/\tau_{q,b}^{\text{iso}} + 1/\tau_{q,b}^{\text{LE}}$, while Callaway’s approach of separating the collision integral into resistive and normal components is not as exact as the iterative [71–73] and direct pBTE solvers [74], it has been widely used and shown to be reasonably accurate in graphene [75] and graphite ribbons [76] when combined with ab initio dispersion. Here we compute the phonon dispersion of suspended graphene from first-principles density functional theory (DFT) as implemented in the open-source package QUANTUM ESPRESSO [77]. The expressions for all the relevant scattering rates, including anharmonic umklapp and normal phonon-phonon [78], isotope [79], and line-edge roughness [80], are taken from our recent work [8] and given for reference in the Supplemental Material [81].

The deviation of the phonon distribution function from equilibrium is $\Phi_{q,b}(\vec{r},t) = N_{q,b} - N_{q,b}^0$. We detail the derivation of this deviated distribution in frequency domain $\tilde{\Phi}_{q,b}(\vec{Q},\Omega)$ in the Appendix; once it is obtained, the nonlocal heat current is related to $\tilde{\Phi}_{q,b}(\vec{Q},\Omega)$ through

$$ \tilde{J}(\vec{Q},\Omega) = -\tilde{\kappa}(\vec{Q},\Omega) \times \tilde{\nabla} T(\vec{Q},\Omega), $$

where $\tilde{J}(\vec{Q},\Omega)$, $\tilde{\kappa}(\vec{Q},\Omega)$, and $\tilde{\nabla} T(\vec{Q},\Omega)$ are the Fourier-transformed heat current, thermal conductivity, and temperature gradient, respectively, while \vec{Q} and Ω are the wave number and frequency of the temperature gradient.
from which we obtain an expression for the frequency-dependent thermal conductivity composed of two parts

\[\kappa_{\text{eff}}(Q, \Omega) = \kappa_{\text{RTA}}(Q, \Omega) + \kappa_{\text{corr}}(Q, \Omega). \]

The \(\kappa_{\text{RTA}}(Q, \Omega) \) is the resistive component thermal conductivity given by

\[\kappa_{\text{RTA}}(Q, \Omega) = \frac{1}{A} \sum_{q,b} \hbar \omega_{q,b} v_{q,b}^2 \frac{\tau_{q,b}^C}{1 + j\Omega \tau_{q,b}^N + jQ \lambda_{q,b}} \frac{\partial \lambda_{q,b}^0}{\partial T}, \]

where \(A \) and \(\delta \) are the area of the unit cell and thickness of the graphene monolayer. This \(\kappa_{\text{RTA}} \) is the component of thermal conductivity originating from the relaxation time approximation (RTA), where all the scattering mechanisms including normal scattering are treated as resistive. Hence we refer to \(\kappa_{\text{RTA}} \) as the resistive or RTA thermal conductivity. The frequency dependence and nonlocality enter the \(\kappa_{\text{RTA}} \) through the term \(1 + j\Omega \tau_{q,b}^C + jQ \lambda_{q,b} \) in the denominator, which acts as a suppression function: when frequency exceeds the scattering rate \(\Omega > 1/\tau_{q,b}^C \) of a phonon mode or the wavelength is smaller than its MFP \(Q^{-1} < \lambda_{q,b} \), the contribution of that mode to the conductivity is correspondingly reduced.

In graphene, momentum-conserving normal scattering mechanisms are strong and the RTA solution \(\kappa_{\text{RTA}} \) underestimates the total thermal conductivity [72]. Following Allen’s improved Callaway (AIC) model [82], the hydrodynamic effect of normal processes is encapsulated as a correction term

\[\kappa_{\text{corr}} = \frac{\lambda_{\text{corr}}}{\lambda_{\text{RTA}}}, \]

where

\[\lambda_{1}(Q, \Omega) = \frac{1}{A} \sum_{q,b} v_{q,b} q_{q,b} \frac{\tau_{q,b}^C}{1 + j\Omega \tau_{q,b}^N + jQ \lambda_{q,b}} \frac{\partial \tilde{N}_{0,q,b}}{\partial T}, \]

\[\lambda_{2}(Q, \Omega) = \frac{1}{A} \sum_{q,b} v_{q,b} q_{q,b} \left[\frac{\tau_{q,b}^C/\tau_{q,b}^N}{1 + j\Omega \tau_{q,b}^N + jQ \lambda_{q,b}} \right] \frac{\partial \tilde{N}_{0,q,b}}{\partial T}, \]

\[\lambda_{3}(Q, \Omega) = \frac{1}{A} \sum_{q,b} \hbar \omega_{q,b} q_{q,b}^2 \left[\frac{\tau_{q,b}^C/\tau_{q,b}^N}{1 + j\Omega \tau_{q,b}^N + jQ \lambda_{q,b}} \right] \frac{\partial \tilde{N}_{0,q,b}}{\partial T}. \]

The effective thermal conductivity \(\kappa_{\text{eff}} \) is a sum of the RTA, which treats all scattering mechanisms as resistive, and a correction that accounts for an additional collective contribution from momentum-conserving normal processes, both of which are complex valued and depend on the frequency and spatial wave number of the temperature gradient. Similar to \(\kappa_{\text{RTA}} \), each of the correction terms has an \(\Omega \)-and \(Q \)-dependent suppression function. However, the dependence of \(\kappa_{\text{corr}} \) due to the combined three terms \(\lambda_{1}, \lambda_{2}, \lambda_{3} \) is more complex than \(\kappa_{\text{RTA}} \).

III. RESULTS AND DISCUSSION

A. Frequency dependence

First we focus on the effect of the dynamical temperature gradient on thermal conductivity. We separate the temporal dependence from the spatial dependence by setting \(Q = 0 \) in Eqs. (5)–(8). Figure 1(a) shows the real part of thermal conductivity vs frequency of the temperature gradient \((\Omega) \) for various ribbon sizes at room (300 K) temperature. For any given ribbon size, thermal conductivity shows two distinct behaviors: the first is a constant thermal conductivity regime at low frequencies of the temperature gradient, where the thermal conductivity is equal to its steady-state value \(\kappa_{\text{eff}}(\Omega = 0) \), and the second is a high frequency regime, where thermal conductivity exhibits a decaying frequency-dependent behavior with \(\Omega \). The high-frequency regime resembles the response of a typical low-pass filter. The zero-frequency (steady-state) thermal conductivity is highest for the flake of dimensions 100 \(\mu \text{m} \times 100 \ \mu \text{m} \) (largest size considered here) and lowest for the narrowest ribbon, whose width equals 1.5 \(\mu \text{m} \), due to the strong edge-roughness scattering in the narrow ribbon.

The low-pass frequency-dependent behavior can be explained as follows: thermal conductivity is a sum of a broad distribution of modal thermal conductivities. At low frequencies, all the thermally excited phonon modes have sufficient time to undergo multiple scattering events during one cycle of the temperature gradient. As a result, a local thermal equilibrium is restored to yield a steady-state thermal conductivity. In contrast, when the frequency is increased beyond the cutoff, phonons with relaxation times larger than one period of the temperature gradient do not have sufficient time to scatter and equilibrate. Such phonon modes do not fully contribute to conductivity; instead, their contribution is suppressed by an amount determined by the term \((1 + j\Omega \tau_{q,b}^C)^{-1} \), leading to an apparent reduction in thermal conductivity at high frequencies. Thus the frequency of temperature oscillations \(\Omega \) can be used to control which phonon modes contribute towards thermal conductivity, and to what extent, based on their lifetimes. Frequency-dependent measurements can potentially be used to probe the distribution of phonon lifetimes, analogous to recent advances in MFP spectroscopy [83–85].

The frequency-dependent dynamical suppression is depicted in Fig. 1(b), where the mode-dependent thermal conductivity is plotted against their scattering rates for frequencies \(\Omega \) equal to 0, \(10^6 \), and \(10^9 \text{s}^{-1} \), shown by black, red, and blue markers, respectively. For \(\Omega \) equal to \(10^9 \text{s}^{-1} \), it can be seen that the phonon modes with scattering rates smaller than \(\Omega \) do not thermalize and thus contribute less towards thermal conductivity than in steady state. The contribution of phonon modes with small scattering rates to thermal conductivity is further suppressed when \(\Omega \) equals \(10^{10} \text{s}^{-1} \), while modal thermal conductivities for phonon modes with scattering rates much larger than the frequency of the temperature gradient remain unaffected. The reduced contribution from the phonon modes with scattering rates smaller than \(\Omega \) is also demonstrated in the cumulative thermal conductivity vs scattering rate plot shown in the inset of Fig. 1(b).

The frequency-dependent thermal conductivity exhibits a low-pass thermal filter behavior, analogous to the frequency response of electrical conductivity for time-varying electric fields, as described by Drude’s model. We normalize the frequency-dependent thermal conductivity for a given ribbon size and temperature by dividing with its corresponding steady-state value and then express it in decibels (dB), as one would describe the gain of an electronic filter, \(20 \log_{10} [\kappa_{\text{eff}}(\Omega)/\kappa_{\text{eff}}(0)] \). The solid lines in Fig. 1(c) show the frequency response of the normalized thermal conductivity in dB at 100 and 300 K temperatures. If all the phonon modes scattered at the same
FIG. 1. (a) Frequency dependence of the real part of thermal conductivity $\text{Re}(\kappa_{\text{eff}})$ for several ribbon sizes at 300 K. In (b), the mode-dependent thermal conductivity is plotted against the scattering rate of the corresponding phonon modes at different frequencies of temperature gradient, $\Omega = 0, 10^9$, and 10^{10} s$^{-1}$ shown by black, red, and blue markers, respectively. The inset in (b) shows the accumulative thermal conductivity with modal scattering rates for the same set of frequencies as described by the markers previously. The normalized thermal conductivity $\kappa_{\text{eff}}(0)/\kappa_{\text{eff}}(\Omega = 0)$ in dB vs frequency of temperature gradient (Ω) is plotted in (c) for 100 and 300 K. The solid, dashed, and dotted lines represent normalized $\kappa_{\text{eff}}, \kappa_{\text{RTA}}$, and κ_{corr}, respectively. The inset shows the components of thermal conductivity at 300 K. In (d), the size of the ribbon considered is $100 \mu\text{m} \times 100 \mu\text{m}$. The cutoff frequency corresponding to κ_{eff} is plotted against temperature for various ribbon sizes in (d). The rms value of edge roughness is taken to be 2 nm for all the cases.

rate, then the two thermal conductivity regimes, constant and frequency dependent, would be separated by a single corner frequency $\Omega_{\text{corner}} = \tau^{-1}$ such that $\kappa(\Omega) = \kappa(0)/(1 + j\Omega\tau)$. Multiplying both sides of this expression by ∇T and taking the inverse Fourier transform, as further elaborated in the Supplemental Material [81], produces the Cattaneo-Vernotte (CV) equation for the heat current $\tau dJ(x,t)/dt + J(x,t) = \kappa(0)\nabla T(x,t)$, which describes wavelike heat transfer with a finite velocity of propagation [86]; x is considered as the direction of transport here. For comparison, the single-τ frequency response is plotted by yellow-dotted lines for different corner frequencies ranging from about 10^8 to 10^{12} Hz.

In contrast, in most solids including graphene, each phonon mode scatters at a vastly different rate. Owing to this broad spectrum of scattering rates, the transition of κ_{eff} from constant at low frequencies to decaying at high frequencies is broad and smooth. In Fig. 1(c), the thermal conductivity at both temperatures shows a much more gradual decay than the yellow-dotted lines. As there is no single corner frequency to demarcate the transition between the constant thermal conductivity regime at low frequencies and decaying thermal conductivity at high frequencies, we define a cutoff frequency Ω_{eff} where the real part of the thermal conductivity decays to -6 dB or half of its steady-state value, shown by the black-dashed horizontal line in Fig. 1(c). The inset in Fig. 1(c) shows the frequency response of the RTA (κ_{RTA}), correction (κ_{corr}), and effective (κ_{eff}) thermal conductivity at room temperature (RT, 300 K) by the dashed, dotted, and solid lines, respectively, for a graphene ribbon of size $100 \mu\text{m} \times 100 \mu\text{m}$. κ_{eff} is much greater than κ_{RTA} indicating hydrodynamic transport, where it is no longer sufficient to describe thermal conductivity with the RTA term alone. We normalize the resistive, normal, and effective
thermal conductivities by their steady-state values in Fig. 1(c) and observe different cutoff frequencies for each of the κ_{RTA}, κ_{corr}, and κ_{eff}. In suspended graphene ribbons, where a major fraction of the scattering events are momentum-conserving normal scattering, the heat flux is dissipated at a much slower rate than the purely resistive case and the relaxation time is larger than the one obtained under the RTA, leading to $\Omega_{\text{RTA}} > \Omega_{\text{eff}} > \Omega_{\text{corr}}$.

As Ω_{eff} is closely associated with the scattering rates, it can be tuned by both temperature and size of the ribbon. In Fig. 1(d), the cutoff frequencies for various ribbon sizes have been plotted against temperature. For a given ribbon size, owing to the increase in phonon-phonon scattering with temperature Ω_{eff} shows an increasing trend. At a given temperature, Ω_{eff} decreases with increasing ribbon size, which we attribute to the decrease in the boundary scattering with increasing ribbon size. At temperatures around 300 K, the size dependence of Ω_{eff} becomes weak because phonon-phonon scattering dominates over the boundary scattering. The cutoff frequencies in graphene ribbons are found to range from 100 MHz to 2 GHz at 20 K, and 3–10 GHz at room temperature, depending on ribbon width. We contrast these frequencies to the analogous behavior of high-frequency electrical conductivity of graphene, which was found to follow a Drude model \[\sigma_{j}(\omega) \propto \frac{\mu_{m} e^{2}}{m^{*}} \Omega_{1} \rho C_{V}^{2} \Omega_{1} \] with a decay at frequencies exceeding 4–6 THz, depending on substrate and carrier concentration \[[88].\]

Hence there is a wide swath of frequencies between ~3 GHz and ~4 THz, where thermal conductivity is strongly suppressed while electrical conductivity is at its dc value, offering a potential avenue for dynamic enhancement of the thermoelectric figure-of-merit $ZT(\Omega) \propto \sigma(\Omega)/\kappa(\Omega)$ \[[89].\]

The dynamical thermal conductivity can be split into real and imaginary parts, where $\text{Re}(\kappa_{\text{eff}})$ is related to heat flux dissipation via scattering while the imaginary part of the thermal conductivity is related to the storage of thermal energy in the ballistic phonon modes. The imaginary component turns the heat diffusion equation (HDE) $\rho C_{V} \frac{dT}{dt} = \kappa d^{2}T/dx^{2}$ into a damped wave equation; in fact, a purely imaginary conductivity turns the HDE into a wave equation, analogous to the Schrödinger equation, admitting solutions of the form $T(x,t) \propto \exp[j(Qx - \Omega t)]$ that satisfy $j\Omega p C_{V} T = -\kappa(Q, \Omega) Q^{2} T (\rho$ and C are density and specific heat capacity). Furthermore, the relative sizes of the real and imaginary components dictate the phase of the heat flux relative to the temperature gradient that drives it, with the imaginary component representing phase lag. This lagging behavior can be traced back to the CV equation, which is to first order equivalent to $J(x,t + \tau) = -\kappa(0) V T(x,t)$ \[[90],\] with τ being the flux-gradient phase lag. The frequency response of the imaginary part of thermal conductivity $\text{Im}(\kappa_{\text{eff}})$, shown by the solid curves in Fig. 2(a) for 100 μm \times 100 μm at different temperatures. $\text{Im}(\kappa_{\text{eff}})$ shows an increasing trend beyond the frequency where the real part of thermal conductivity starts to fall off. Then $\text{Im}(\kappa_{\text{eff}})$ peaks before decaying to zero at high frequencies. The height of the peak depends on temperature in the same way as the steady-state thermal conductivity.

The dashed and solid lines in Fig. 2(a) represent the imaginary parts of the RTA component $\text{Im}(\kappa_{\text{RTA}})$ and total thermal conductivity $\text{Im}(\kappa_{\text{eff}})$; the imaginary part of correction κ_{corr} is omitted for clarity. At both 100 and 300 K, $\text{Im}(\kappa_{\text{RTA}})$ peaks at a higher frequency than the corresponding $\text{Im}(\kappa_{\text{eff}})$ due to the presence of strong normal scattering, associated with hydrodynamic thermal transport, indicating that the RTA component has a smaller phase delay. There is a window of frequencies between the two peaks where κ_{corr} is complex, thus lagging in phase, while κ_{RTA} is real and in phase with the gradient. In Fig. 2(b), we observe that the imaginary part of thermal conductivity peaks at the same frequency Ω_{eff} where the real part of thermal conductivity decays to half of its steady-state value. Thus the peak of the imaginary part can

FIG. 2. (a) Imaginary part of thermal conductivity vs frequency of the temperature gradient for $L = W = 100 \mu$m at 20, 100, and 300 K. The frequency response of the $\text{Im}(\kappa_{\text{RTA}})$ is shown by the dashed lines for different temperatures. (b) The normalized real as well as the imaginary part of thermal conductivity for the same set of temperatures and ribbon size. The solid lines represent the normalized $\text{Re}(\kappa_{\text{eff}})$ and the dotted lines their imaginary counterparts $\text{Im}(\kappa_{\text{eff}})$.

024303-5
shows that, in narrow ribbons, thermal conductivity against the wavelength (Ω^{-1}) has a superlinear scaling in the narrow (Kn < 1) regime. Dashed line indicates a linear ($\propto Q^{-\alpha}$ with $\alpha = 1$) trend for comparison. The inset shows the corresponding wavelength dependence of the imaginary part of thermal conductivity.

B. Spatial dependence

Now we turn to the spatial dependence of thermal conductivity. To isolate it from the temporal response of thermal conductivity, we set $\Omega = 0$ in Eqs. (5)–(8). The real part of thermal conductivity is plotted in Fig. 3 against the wavelength (Q^{-1}) of the temperature gradient for ribbon dimensions ranging from 1.5 to 100 μm at 300 K. The wavelength of temperature gradient Q^{-1} is the relevant length scale; when it is larger than the phonon MFP (Λ), all the phonons undergo multiple scattering events within a single temperature node, leading to thermalization. On the other hand, when the wavelength is comparable to the phonon MFP, a fraction of the phonons having $\Lambda > Q^{-1}$ travel ballistically and do not scatter on the length scale over which the temperature is varying. The modal dependence is captured by the suppression $1/(1 + jQ\Lambda_{q,b})$ in Eqs. (5)–(8), where the dimensionless term $Kn = Q\Lambda_{q,b}$ plays the role of an effective modal Knudsen number. This also leads to an apparent reduction of thermal conductivity for $Kn > 1$, as observed previously in thermal grating experiments [41], and in narrow ribbons of width $W < \Lambda_{avg}$, Λ_{avg} being the phonon MFP averaged over all phonon modes and across all branches. When the ribbon edges are rough, heat flux decays at the edges due to diffuse scattering and components of the flux whose wavelength exceeds the width, or $QW < 1$, are suppressed so the wavelength dependence informs us about size scaling. Figure 3 shows that, in narrow ribbons, thermal conductivity scales as $\kappa \propto Q^{-\alpha}$ with $\alpha > 1$, indicating superlinear scaling. In contrast to the ballistic-to-diffusive transition [91] where size scaling is sublinear, the hydrodynamic correction κ_{corr} has a stronger size dependence as all three terms Eqs. (6)–(8) explicitly depend on Ω. The imaginary component of thermal conductivity is shown in the inset, displaying a peak around the same wavelength where the real part reduces to one-half of its $Q = 0$ value. At the peak, $Kn = 1$ and the wavelength equals the average phonon MFP $Q^{-1} = \Lambda_{avg} \approx 1 \mu$m [79].

The complete temporal and spatial dependence of the thermal conductivity at RT is shown in Figs. 4(a) and 4(b), respectively. At small wave numbers (Q) and frequencies (Ω) of temperature gradient, the real part of thermal conductivity goes to its highest value $\Re[\kappa_{eff}(\Omega = 0, Q = 0)]$ for a given temperature and ribbon size. The $\Re[\kappa_{eff}(\Omega, Q)]$ decays to zero when either Ω exceeds the average scattering rate or the wavelength $Q^{-1} \ll \Lambda_{avg}$, the average phonon MFP. For any intermediate values, $\Re[\kappa_{eff}(\Omega, Q)]$ decays from $\Re[\kappa_{eff}(0, 0)]$ to zero with increasing Q and Ω. The imaginary part of thermal conductivity against frequency and wave number of the temperature gradient is plotted in Fig. 4(b). For small wave numbers, $Q^{-1} \ll \Lambda$, $\Im[\kappa_{eff}(\Omega, Q)]$ shows a resonant behavior: it is equal to zero at low as well as high frequencies with a peak at the cutoff frequency (also shown in Fig. 2).
Im[\kappa_{\text{eff}}(\Omega, Q)] vs Q shows a similar trend for small frequencies below the scattering rate, also shown in the inset of Fig. 3. However, for intermediate values of \Omega and Q, the imaginary part of thermal conductivity exhibits a very interesting behavior: for Q \gg 10^5 m^{-1}, it is constant and decays to zero at high frequencies of temperature gradient. On the other hand, for \Omega close to the cutoff, Im[\kappa_{\text{eff}}] starts constant, then reaches a broad peak where Q^{-1} = \Lambda_{\text{avg}} (K = 1) before decaying to zero at very high wave numbers Q \gg 10^7 m^{-1}, implying larger phase shift for spatially localized or peaked heat pulses whose wavelength is around the phonon MFP \approx 1 \mu m.

C. Conductivity in the second sound regime

The propagation of a heat pulse in the form of a temperature wave is referred to as second sound. For a material to host such a wavelike thermal transport, the primary condition is that it should exhibit hydrodynamic transport, which occurs when there is significantly more momentum-conserving normal scattering than momentum-destroying resistive scattering mechanisms. Then there exists a “window” of frequencies \Gamma_R < \Omega < \Gamma_N [61], where second sound can be observed. This makes suspended graphene a promising candidate to host second sound even at room temperature [56]. Second sound has also been characterized by a two-fluid flow where superfluid (in this case hydrodynamic, represented by \kappa_{\text{corr}}) and nonsuperfluid (here resistive, \kappa_{\text{RTA}}) components are out of phase [92]. This is in contrast to purely ballistic transport where all the components of the heat flux are in phase. We compare the cutoff frequencies to the scattering rates, which are all plotted in Fig. 5(a) as a function of temperature for a large (L = W = 100 \mu m) graphene flake. \Omega_{\text{RTA}} corresponds to the cutoff frequency of \kappa_{\text{RTA}} from the combined scattering rate \Gamma_C = \Gamma_R + \Gamma_N, while \Omega_{\text{corr}} and \Omega_{\text{eff}} represent cutoff frequencies corresponding to \kappa_{\text{corr}} and \kappa_{\text{eff}}, respectively. The frequency window \Gamma_R < \Omega < \Gamma_N coincides with the regime where the dissipative and hydrodynamic components of thermal conductivity, \kappa_{\text{RTA}} and \kappa_{\text{corr}}, are out of phase by a constant shift, shown in Fig. 5(b). Ultimately, we find that the hydrodynamic transport should be treated as two fluxes, each with its own lag arising out of the corresponding cutoff frequencies \Omega_{\text{RTA}} and \Omega_{\text{corr}}.

IV. CONCLUSION

We have studied the dynamical response of thermal conductivity to time- and spatially varying temperature gradients at several temperatures and ribbon sizes. We derived a compact and computationally efficient model for dynamical thermal conductivity by Fourier transforming the pBTE, while including first-principles phonon dispersion and differentiating between resistive and normal scattering mechanisms. We found that the frequency-dependent thermal conductivity in suspended graphene resembles a low-pass thermal filter, whose cutoff frequency is related to the scattering rate and can be tuned over a wide range from a few MHz to several GHz by size and temperature. At low temperatures when the phonon-phonon scattering is weak, the cutoff frequency rises inversely to ribbon width. The RTA contribution always has a higher cutoff, related to the total scattering rate, than the hydrodynamic correction. Both are complex valued in the transition region, indicating a phase lag. The dynamical response of thermal conductivity can be used as a platform for phonon lifetime spectroscopy in frequency-dependent measurements. The dual cutoffs and phase lags of the two components of heat flux can be employed to study the hydrodynamic phenomenon of second sound.

ACKNOWLEDGMENT

This work has been supported by the National Science Foundation Emerging Frontiers in Research and Innovation (EFRI) 2-DARE Grant No. 1542864.
APPENDIX

To obtain an expression for $\Phi_{q,b}(Q, \Omega)$, we first Fourier transform the time-dependent pBTE [Eq. (2)], akin to the work by Ezzahri and Joulain [46], and write the pBTE in Fourier domain as

$$j\Omega \tilde{\Phi}_{q,b} + j\Omega \tilde{N}_{q,b}^0 + j\tilde{Q} \cdot \tilde{v}_{q,b} \tilde{\Phi}_{q,b} + \tilde{v}_{q,b} \cdot \tilde{\nabla} T(Q, \Omega) \frac{\partial \tilde{N}_{q,b}^0}{\partial T} = \frac{\tilde{N}_{q,b} - \tilde{N}_{q,b}^0}{\tau_{q,b}} = \frac{\tilde{N}_{q,b} - \tilde{N}_{q,b}^0}{\tau_{q,b}},$$

(A1)

where the right-hand side is the collision term from Eq. (3). The flowing equilibrium $\tilde{N}_{q,b}^*$ is expanded around $\tilde{\lambda} = 0$ in a Taylor series [46,82], keeping terms up to first order in $\tilde{\lambda}$,

$$\tilde{N}_{q,b}^* \approx \tilde{N}_{q,b}^*(\tilde{\lambda} = 0) + \tilde{\lambda} \cdot \left(\frac{\partial \tilde{N}_{q,b}^*}{\partial \tilde{\lambda}} \right)_{\tilde{\lambda} = 0} = \tilde{N}_q^0 - \frac{\hbar}{\Omega \omega_{q,b}} \frac{\partial \tilde{N}_q^0}{\partial T} (\tilde{\lambda} \cdot \tilde{q}).$$

(A2)

On replacing $\tilde{N}_{q,b}^*$ on the right side of Eq. (A1) with the expression in Eq. (A2), and $\tilde{N}_{q,b} - \tilde{N}_{q,b}^0$ with $\tilde{\Phi}_{q,b}$, we write Eq. (A1) as

$$j\Omega \tilde{\Phi}_{q,b} + j\Omega \tilde{N}_{q,b}^0 + j\tilde{Q} \cdot \tilde{v}_{q,b} \tilde{\Phi}_{q,b} + \tilde{v}_{q,b} \cdot \tilde{\nabla} T(Q, \Omega) \frac{\partial \tilde{N}_{q,b}^0}{\partial T} = -\frac{\tilde{\Phi}_{q,b}}{\tau_{q,b}} - \frac{1}{\tau_{q,b}} \left[\frac{k_B T^2}{\hbar \Omega \omega_{q,b}} \frac{\partial \tilde{N}_q^0}{\partial T} (\tilde{\lambda} \cdot \tilde{q}) \right].$$

(A3)

The term $\sum_{q,b} q |\tilde{N}_{q,b}^0| \tau_{q,b}^C$ in the numerator of Eq. (A7) is equal to zero because both the equilibrium distribution and the scattering rates are even functions while the wave vector \tilde{q} is odd; consequently, the displacement $\tilde{\lambda}(Q, \Omega) \propto \tilde{\nabla} T(Q, \Omega)$. We also find $\tilde{\lambda}$ to be dependent on both wave number Q and frequency Ω, unlike earlier derivations that assumed it to be constant [46]. The deviation $\tilde{\Phi}_{q,b}$ can now be expressed by substituting $\tilde{\lambda}(Q, \Omega)$ in Eq. (A4). Now $\tilde{\Phi}_{q,b}(Q, \Omega)$ is replaced in Eq. (4) to obtain thermal conductivity as a function of wave number and frequency.

$$\tilde{\lambda}(Q, \Omega) = \sum_{q,b} q \tilde{\eta}_{q,b} \left(\frac{\tau_{q,b}^C}{1 + \tau_{q,b}^C} \right) v_{q,b} \frac{\partial \tilde{N}_{q,b}^0}{\partial T} \frac{\tilde{\nabla} T(Q, \Omega) + j\tilde{Q} \sum_{q,b} q \tilde{\eta}_{q,b} \tilde{\Phi}_{q,b}^C}{\sum_{q,b} q \tilde{\eta}_{q,b} \frac{\partial \tilde{N}_{q,b}^0}{\partial T} + \frac{k_B T^2}{\hbar \Omega \omega_{q,b}} (1 - \frac{\tau_{q,b}^C}{1 + \tau_{q,b}^C})}.$$

