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ABSTRACT
We develop a numerical method for directly computing the dissipative dynamical tidal response of rapidly rotating, oblate stars
and gaseous planets with realistic internal structures. Applying these calculations to neutrally and stably stratified polytropes, we
identify the most relevant resonances in models with rotation rates up to nearly the mass-shedding limit. We then compute the
dynamical tidal response for Jupiter interior models including both stably stratified and convective regions. These calculations
show that resonances involving mixed waves with both gravito-inertial and purely inertial character are capable of explaining a
discrepancy between observations and hydrostatic calculations of Jupiter’s response to tidal forcing by Io. This result contrasts
with recent work that excluded Jupiter’s rotational flattening, and opens the door to resonances involving a wider range of internal
oscillation modes than previously considered.
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1 INTRODUCTION

Tidal interactions likely play a role in a wide variety of astrophysical
scenarios, mediating the interactions and influencing the orbital evo-
lution of moons, planets, stars, and compact objects alike (Ogilvie
2014). Despite their wide-reaching relevance, several quantitative
details of tidal exchanges in energy and angular momentum have
proven difficult to square with observations in both astrophysics and
planetary sciences, particularly in situations where one or more of
the tidally interacting bodies is rotating. Setting aside complica-
tions related to the Coriolis force (e.g., Ogilvie & Lin 2004; Ogilvie
2009, 2013; Wu 2005a,b; Ivanov & Papaloizou 2007; Goodman &
Lackner 2009; Rieutord & Valdettaro 2010; Lin & Ogilvie 2021),
relatively little has been done to characterize the effects that changes
in stellar and planetary shape due to rotation have on dynamical (i.e.,
frequency-dependent) tidal distortion and dissipation.
The gas giant planets in our own solar system motivate such char-

acterization. Jupiter and Saturn respectively rotate at nearly 30%
and 40% of their break-up angular velocities, and are consequently
oblate. Moreover, measurements of the shape of the tidal bulge raised
on Jupiter by Io—characterized by so-called “Love numbers” (Du-
rante et al. 2020)—deviate significantly from theoretical predictions
for purely static tidal perturbers (Wahl et al. 2017b, 2020; Nettelmann
2019). This discrepancy has inspired the suggestion that Io’s orbit
may be in resonance with the natural frequency of an internal oscil-
lation mode (in particular a gravito-inertial mode) of Jupiter (Idini
& Stevenson 2022b). However, recent calculations (Lin 2023) have
cast doubt on the ability of such a resonance to reconcile hydrostatic
calculations with the observations. Notably, both Idini & Stevenson
(2022b) and Lin (2023) excluded the effects of centrifugal flattening
in their calculations of tidally driven oscillations.
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We use spectral methods to directly compute the dissipative tidal
response of rapidly rotating and centrifugally flattened planets and
stars. Our numerical method is valid for arbitrarily rapid and differ-
ential rotation on cylinders, incorporating dissipation via a viscous
stress that self-consistently includes rotational flattening. Limiting
our focus to rigid rotation in this work, we first apply this method
to computing the frequency-dependent, dynamical tidal response of
𝛾 = 5/3 and 3/2 polytropes rotating at up to nearly themass-shedding
limit. We then compute the tidal response for Jupiter interior models
that include both stably stratified and convective regions. The latter
calculations demonstrate that resonant wave excitation by dynami-
cal tides is in fact capable of reconciling the discrepancy between
observations and hydrostatic calculations of Jupiter and Io’s interac-
tion, but only if the non-spherical aspects of Jupiter’s rotation are
accounted for. Our calculations further suggest that a wider set of
internal oscillations than considered by Idini & Stevenson (2022b)
should make viable candidates for a Jupiter-Io resonance.
This paper is structured as follows. Section 2 introduces our numer-

ical method, and covers relevant background information. Although
many of the technical details may be skipped by those interested only
in our results, we note that subsection 2.2.2 lays out conventions for
Love number definitions that are important to interpreting our calcu-
lations. Section 3 then describes our results for very rapidly rotating
polytropes, and Section 4 describes our calculations for Jupiter. We
conclude in Section 5.

2 METHODS AND BACKGROUND

2.1 Fluid dynamics

This subsection introduces the equations governing small-amplitude
perturbations to oblate gaseous bodies, and our numerical methods
for solving them.

© 2022 The Authors
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2 Dewberry

2.1.1 Basic equations

The Newtonian equation of motion for a self-gravitating fluid with
pressure 𝑃, density 𝜌, gravitational potential Φ, and velocity u is

𝐷u
𝐷𝑡

= −∇𝑃
𝜌

− ∇Φ + F, (1)

where𝐷/𝐷𝑡 = 𝜕𝑡 +u·∇ is the convective derivative, andF comprises
any additional forces. For the case of a viscous fluid subject to a
perturbing potential𝑈,

F = −∇𝑈 + 1
𝜌
∇ · T, (2)

where

T = `𝑣

[
∇u + (∇u)𝑇 − 2

3
(∇ · u)I

]
(3)

is the viscous stress tensor associated with dynamic viscosity `𝑣 .
Equation 1 must be considered simultaneously with the equation

of mass conservation,

𝐷𝜌

𝐷𝑡
= −𝜌∇ · u, (4)

Poisson’s equation

∇2Φ = 4𝜋𝐺𝜌 (5)

(here 𝐺 is the gravitational constant), an equation of state, and the
thermal energy equation. Ignoring non-adiabatic heating by viscous
dissipation, or cooling by radiation, the latter is given by

𝐷𝑃

𝐷𝑡
= −Γ1𝑃∇ · u, (6)

where Γ1 is the first adiabatic exponent.

2.1.2 Equilibrium state

To model the steady state of rotating stars and gaseous planets, we
construct axisymmetric, time-independent solutions of Equations
(1)-(6) with equilibrium pressure 𝑃0, density 𝜌0, gravitational po-
tential Φ0 and velocity field u0 = 𝛀 × r = 𝑅Ω(𝑅)�̂�. Here 𝛀 is an
angular velocity that we allow to depend on cylindrical 𝑅 = 𝑟 sin \
(the distance from the rotation axis). Ignoring F, such equilibria
satisfy

G = 𝑅Ω2R̂ − ∇Φ0, (7)

where G = 𝜌−10 ∇𝑃0 is an effective gravity that includes centrifugal
flattening due to rotation. The equilibrium model of the rotating
planet or star provides a natural scale for non-dimensionalization:
throughout, we adopt units scaled by the total mass and equatorial
radius 𝑅eq (i.e., 𝐺 = 𝑀 = 𝑅eq = 1). The relevant time-scale is then
dictated by the dynamical frequency Ω𝑑 = (𝐺𝑀/𝑅3eq)1/2.
The primary difficulty in computing rotating stellar and planetary

equilibria derives from the fact that the oblate, rotationally flattened
surface is not known ahead of time for any but the simplest cases.
We use the approach to this free-boundary value problem described
in Dewberry et al. (2022) to compute the polytropic models consid-
ered in this work. Note that in combination with stable stratification,
such rotation can give rise to baroclinic flows involving meridional
circulation (Rieutord 2006), which we neglect.

2.1.3 Linearized equations

We write 𝑃 = 𝑃0 + 𝛿𝑃, 𝜌 = 𝜌0 + 𝛿𝜌, Φ = Φ0 + 𝛿Φ, u = u0 +
v, where 𝛿𝑃, 𝛿𝜌, 𝛿Φ, v are small-amplitude Eulerian perturbations
with a harmonic dependence ∝ exp[i(𝑚𝜙 − 𝜎𝑡)] on inertial-frame
frequency 𝜎 and azimuthal wavenumber 𝑚. Assuming an adiabatic
relationship between Lagrangian pressure and density perturbations
(Lynden-Bell & Ostriker 1967), the fluid dynamic equations can then
be linearized to find

−i𝜎v + v · ∇u0 + u0 · ∇v − G𝛽 + (∇ + ∇ ln 𝜌0)ℎ + ∇𝛿Φ (8)

− 1
𝜌0

∇ · 𝛿T = −∇𝑈,

𝛿T − `𝑣 [∇v + (∇v)𝑇 − (2/3) (∇ · v)I] = 0, (9)

−i𝜔𝛽 + 1
𝜌0

∇ · (𝜌0v) = 0, (10)

−i𝜔(ℎ − 𝑐2
𝐴
𝛽) + (G − 𝑐2

𝐴
∇ ln 𝜌0) · v = 0, (11)

4𝜋𝐺𝜌0𝛽 − ∇2𝛿Φ = 0. (12)

Here ℎ = 𝛿𝑃/𝜌0, 𝛽 = 𝛿𝜌/𝜌0, 𝑐2𝐴 = Γ1𝑃0/𝜌0, and 𝜔 = 𝜎 − 𝑚Ω. For
a rigidly rotating body with constant Ω, 𝜔 gives the frequency in the
corotating frame.
Equations (8)-(12) can be treated as both an inhomogeneous

boundary value problem with 𝜎 and 𝑈 specified, and an eigenvalue
problem with 𝑈 ≡ 0 and 𝜎 unknown. As described in Appendices
A and B, we use spectral methods to solve both. This process is
complicated by the influence of the Coriolis force (which intervenes
directly via terms involving u0), and centrifugal flattening (which
acts through modification of the equilibrium state). To include the
latter, we use a non-orthogonal, surface-matching coordinate system
(Z, \, 𝜙) (Bonazzola et al. 1998) that has been employed by several
authors in the calculation of stellar and planetary oscillation modes
(Lignières et al. 2006; Reese et al. 2006, 2009, 2013, 2021; Ouaz-
zani et al. 2012; Xu & Lai 2017; Dewberry et al. 2021; Dewberry &
Lai 2022; Dewberry et al. 2022) and stellar structure (Rieutord et al.
2016). We then project the partial differential equations (8)-(12) onto
spherical harmonics, producing an infinite series of coupled sets of
ordinary differential equations (ODEs) in the quasi-radial coordinate
Z . Truncating this series at a maximum spherical harmonic degree
ℓmax, we solve the coupled ODEs simultaneously with a pseudospec-
tral collocation method. We adopt a fiducial resolution of 100 collo-
cation points in the Z−direction, and increase ℓmax until the envelope
of spectral coefficients becomes small (typically ℓmax ' 16 − 100).

2.2 Tides

This section lays out definitions, and introduces previous results from
tidal theory that are relevant to the interpretation of our calculations.

2.2.1 Tidal potential

Assuming an orbital separation d sufficiently large for a tidal per-
turber to be treated as a point-mass 𝑀 ′, the tidal potential it imposes
on the primary body can be written in terms of a multipole expansion
as (Jackson 1962)

𝑈 = −𝐺𝑀 ′

𝑎

∞∑︁
𝑛=2

𝑛∑︁
𝑚=−𝑛

(
4𝜋
2𝑛 + 1

) ( 𝑟
𝑎

)𝑛
𝑌𝑚∗
𝑛 (\ ′, 𝜙′)𝑌𝑚

𝑛 (\, 𝜙), (13)

where 𝑎(𝑡) = |d|, primes denote (time-dependant) satellite coordi-
nates, and 𝑌𝑚

𝑛 are ortho-normalized spherical harmonics of degree
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Dynamical tides in stratified rapid rotators 3

𝑛1 and azimuthal wavenumber𝑚. Here we have neglected the degree
𝑛 = 0 and 𝑛 = 1 terms in the expansion, which respectively have no
effect and lead to basic Keplerian motion.
Ignoring orbital eccentricity and inclination, this expansion can be

written in the inertial frame as

𝑈 =

∞∑︁
𝑛=2

𝑛∑︁
𝑚=−𝑛

𝑈𝑛𝑚𝑟
𝑛𝑌𝑚

𝑛 (\, 𝜙) exp[−i𝜎𝑡 𝑡], (14)

where

𝑈𝑛𝑚 = −
(
𝐺𝑀 ′

𝑎𝑛+1

) (
4𝜋
2𝑛 + 1

)
𝑌𝑚∗
𝑛 (𝜋/2, 0), (15)

and 𝜎𝑡 is the inertial-frame tidal frequency. For this simplified case
of a coplanar and circular orbit, 𝜎𝑡 = 𝑚Ω𝑜, where Ω𝑜 = [𝐺 (𝑀 +
𝑀 ′)/𝑎3]1/2 is the mean motion of the perturber. Throughout, we
adopt a nominal mass ratio of 𝑞 = 𝑀 ′/𝑀 = 10−4. This assumption
only affects the results of our linear calculations by altering the
relationship between 𝑎 and Ω𝑜.

2.2.2 Potential Love numbers

Fluid motions induced by the perturbing tidal potential will lead to
an external gravitational responseΦ′ that can in turn be expanded as

Φ′ =
∞∑︁
𝑛=2

𝑛∑︁
𝑚=−𝑛

Φ′
𝑛𝑚𝑟

−(𝑛+1)𝑌𝑚
𝑛 exp[−i𝜎𝑡 𝑡] . (16)

For the linear tidal perturbation of an axisymmetric body, a coefficient
Φ′
ℓ𝑚
of a given degree ℓ and azimuthal wavenumber𝑚 can be related

to the coefficients 𝑈𝑛𝑚 in the tidal potential via a linear relation
involving potential “Love numbers” (Ogilvie 2013):

Φ′
ℓ𝑚

=

∞∑︁
𝑛= |𝑚 |

𝑘𝑛
ℓ𝑚

𝑈𝑛𝑚. (17)

A given 𝑘𝑛
ℓ𝑚

= 𝑘𝑛
ℓ𝑚

(𝜎𝑡 ) thus specifies the amount to which a har-
monic of degree 𝑛 in the tidal potential drives a gravitational response
in degree ℓ, at a given tidal frequency 𝜎𝑡 .
In a spherically symmetric body 𝑘𝑛

ℓ𝑚
= 0 when ℓ ≠ 𝑛, but this is

not true in general; in a rotationally flattened body harmonic coeffi-
cients of one degree in the induced tidal response cannot be solely
attributed to coefficients of the same degree in the tidal potential. It
is nevertheless still useful to consider the direct ratios

𝑘ℓ𝑚 =
Φ′
ℓ𝑚

𝑈ℓ𝑚
=

∞∑︁
𝑛= |𝑚 |

𝑘𝑛
ℓ𝑚

𝑈𝑛𝑚

𝑈ℓ𝑚
, (18)

keeping in mind that these may not accurately reflect a causal rela-
tionship. In particular, in centrifugally flattened bodies the sectoral
(𝑛 = |𝑚 |) part of the tidal potential can produce just as much of
a tesseral (𝑛 > |𝑚 |) response as the corresponding tesseral part of
the tidal potential. Dewberry & Lai (2022) showed that this sectoral
driving of the tesseral response generically produces anomalously
large 𝑘ℓ𝑚 for all ℓ > |𝑚 |,2 characterized by a strong dependence on
the satellite separation 𝑎.

1 The interplay between separate harmonics in the tidal potential and the
response it induces motivates our use of both ℓ and 𝑛 for spherical harmonic
degrees. We generally employ 𝑛 for degrees in the tidal potential that are
summed over, reserving ℓ for the harmonic degree of interest in the induced
response.
2 See also Idini & Stevenson (2022a), who came to similar conclusions via
a different approach.

Specifically 𝑈𝑛𝑚/𝑈ℓ𝑚 ∝ 𝑎ℓ−𝑛, so that for large 𝑎 and ℓ > |𝑚 |
the term with 𝑛 = |𝑚 | dominates the sum over 𝑛 in Equation (18) if
𝑘
|𝑚 |
ℓ𝑚
is nonzero. For example, the values of 𝑘42 reported by Wahl

et al. (2020) for detailed Jupiter interior models perturbed by a static
potential very closely follow the power law 𝑘42 ∝ 𝑎2. Given a self-
consistent tidal potential produced by satellites on Keplerian orbits,
the spatial dependence 𝑘ℓ𝑚 ∝ 𝑎ℓ−|𝑚 | is equivalent to the frequency
dependence

𝑘ℓ𝑚 ∝ Ω
−2(ℓ−|𝑚 |)/3
𝑜 (19)

asΩ𝑜 → 0. The ratios 𝑘ℓ𝑚 thus remain functions solely of frequency
for a self-consistent tidal potential (Dewberry & Lai 2022).
It is helpful to define a “hydrostatic” 𝑘hs

ℓ𝑚
for rigidly rotating bodies

via

𝑘hs
ℓ𝑚

=
1

𝑈ℓ𝑚

∞∑︁
𝑛= |𝑚 |

𝑘𝑛
ℓ𝑚

(𝜔𝑡 = 0)𝑈𝑛𝑚, (20)

where 𝜔𝑡 = 𝜎𝑡 − 𝑚Ω. These 𝑘hs
ℓ𝑚
are not truly static, in that

they depend on the satellite’s motion (through frequency-dependent
𝑈𝑛𝑚/𝑈ℓ𝑚), but they reproduce previous work employing static satel-
lites at finite separation (e.g., Wahl et al. 2017b, 2020; Nettelmann
2019). Consequently they can be used to isolate dynamical wave
excitation.

2.2.3 Tidal dissipation

The Love numbers 𝑘𝑛
ℓ𝑚

= 𝑘𝑛
ℓ𝑚

(𝜎𝑡 ) are both frequency-dependant
and complex-valued, their imaginary parts encoding a phase lag due
to dissipation in the tidally perturbed body. For a viscous fluid, the
time-averaged dissipation rate is the real part of (Ogilvie 2009)

𝐷a = −1
2

∫
𝑉

v∗ · (∇ · 𝛿T)d𝑉. (21)

The energy and angular momentum transferred from the orbit to the
primary due to the action of a given component of degree ℓ and order
𝑚 in the tidal potential—tidal power 𝑃 and torque 𝑇 , respectively—
can be computed from the imaginary parts of the Love numbers via
(Ogilvie 2013)

𝑃 = 𝜎𝑡
(2ℓ + 1)
8𝜋𝐺

𝑅eq |𝑈ℓ𝑚 |2Im[𝑘ℓ
ℓ𝑚

] = (𝜎𝑡/𝑚)𝑇. (22)

If the tidally perturbed planet or star rotates rigidly, the dissipation
rate from a single component of the tidal potential can be related
to the tidal power and torque via 𝐷a = 𝑃 − Ω𝑇 ∝ 𝜔𝑡 Im[𝑘ℓℓ𝑚].
Our calculations verify this equality. Assuming the tidal distortion is
dissipated, the requirement that 𝐷a be positive-definite then implies
that the imaginary part of each 𝑘ℓ

ℓ𝑚
(𝜎𝑡 ) must have the same sign as

𝜔𝑡 (Ogilvie 2014).

2.2.4 Modal expansion

Wecompute the tidal response both directly and through an expansion
in the tidally driven oscillation modes of a rigidly rotating primary.
The latter approach involves a phase space expansion of the form[
𝝃
𝜕𝑡𝝃

]
=
∑︁
𝛼

𝑐𝛼 (𝑡)
[

𝝃𝛼
−i𝜔𝛼𝝃𝛼

]
, (23)

where 𝝃𝛼 and𝜔𝛼 = 𝜎𝛼−𝑚Ω are the Lagrangian displacements and
(rotating frame) frequencies of eigenmode solutions to Equations (8)-
(12) (in the absence of tidal forcing and viscosity), and 𝑐𝛼 are tidally
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Figure 1. Real (top) and imaginary (bottom) parts of 𝑘222 for rigidly rotating isentropic 𝛾 = 5/3 polytropes with dynamic viscosity `𝑣 = 10−5, plotted as a
function of 𝜔𝑡 . From dark to light, line colors indicate increasingly rapid rotation. The top plot transitions from a log to linear scale at 𝑅𝑒 [𝑘222 ] = 1. The peaks
in 𝐼𝑚[𝑘222 ]Ω/𝜔𝑡 correspond to tidal resonances with fundamental modes and inertial modes.

driven amplitudes. This sum over modes indexed by 𝛼 includes all
allowable 𝑚, as well as complex conjugate (𝝃𝛼 ↦→ 𝝃∗𝛼) solutions.
In an inertial frame, the amplitude for a tidally driven oscillation

mode of azimuthal wavenumber 𝑚 then satisfies (e.g., Schenk et al.
2001; Lai & Wu 2006)

¤𝑐𝛼 + i𝜎𝛼𝑐𝛼 = − i
2𝜖𝛼

exp[−i𝜎𝑡 𝑡]
∞∑︁

𝑛= |𝑚 |
𝑈𝑛𝑚𝑄

𝛼
𝑛𝑚, (24)

where

𝜖𝛼 = 𝜔𝛼〈𝝃𝛼, 𝝃𝛼〉 + 〈𝝃𝛼, i𝛀×𝝃𝛼〉 (25)

𝑄𝛼
𝑛𝑚 = 〈𝝃𝛼,∇(𝑟𝑛𝑌𝑚

𝑛 )〉 = − (2𝑛 + 1)
4𝜋

Φ′
𝑛𝑚,𝛼, (26)

〈𝝃𝛼, 𝝃𝛽〉 =
∫
𝑉

𝜌0𝝃
∗
𝛼 · 𝝃𝛽d𝑉 defines an inner product, and Φ′

𝑛𝑚,𝛼 is
the contribution to the coefficient Φ′

𝑛𝑚 in the expansion of Equation
(16) that is attributable to the mode 𝛼. These 𝑄𝛼

𝑛𝑚 coefficients are
often referred to as overlap integrals. Steady-state solutions with
¤𝑐𝛼 = −i𝜎𝑡 𝑐𝛼 then satisfy

𝑐𝛼 =
−exp[−i𝜎𝑡 𝑡]
2𝜖𝛼 (𝜎𝛼 − 𝜎𝑡 )

∞∑︁
𝑛= |𝑚 |

𝑈𝑛𝑚𝑄
𝛼
𝑛𝑚 B

∞∑︁
𝑛= |𝑚 |

𝑐𝑛𝛼exp[−i𝜎𝑡 𝑡] . (27)

Writing Φ′
ℓ𝑚

=
∑

𝛼 𝑐ℓ𝛼Φ
′
ℓ𝑚,𝛼

, Love numbers 𝑘𝑛
ℓ𝑚
can be computed

by considering the effect of an isolated tidal potential of only one
harmonic degree 𝑛:

𝑘𝑛
ℓ𝑚

=
2𝜋

(2ℓ + 1)
∑︁
𝛼

𝑄𝛼
ℓ𝑚

𝑄𝛼
𝑛𝑚

𝜖𝛼 (𝜎𝛼 − 𝜎𝑡 )
. (28)

Meanwhile, summing over 𝑛 in the full tidal potential provides (Dew-
berry & Lai 2022)

𝑘ℓ𝑚 =
2𝜋

(2ℓ + 1)
∑︁
𝛼

∞∑︁
𝑛= |𝑚 |

𝑄𝛼
ℓ𝑚

𝑄𝛼
𝑛𝑚

𝜖𝛼 (𝜎𝛼 − 𝜎𝑡 )

(
𝑈𝑛𝑚

𝑈ℓ𝑚

)
. (29)

3 FULLY ISENTROPIC AND STRATIFIED POLYTROPES

In this section we describe the results from tidal calculations for
simple but very rapidly rotating polytropic models with equilibrium
pressure and density related by 𝑃0 ∝ 𝜌

𝛾

0 . We consider two polytropic
relations: 𝛾 = 5/3 and 𝛾 = 3/2. Together with a purely constant first
adiabatic exponent Γ1 = 5/3, 𝛾 = 5/3 and 𝛾 = 3/2 polytropes are
neutrally and stably stratified throughout (respectively). The 𝛾 = 5/3,
neutrally stratified polytropes might be taken as reasonable models
for fully convective compact objects or M-dwarfs. Meanwhile the
𝛾 = 3/2, stably stratified polytropes more closely approximate the
interiors of main sequence stars.
Aside from their general applicability, the separate cases of fully

isentropic and fully stratified stars provide a useful introduction to
the partially stratified models of Jupiter considered in Section 4.
For both values of 𝛾, we compute the 𝑚 = 2 tidal response for
oblate models rotating at up to 99% of the dynamical frequency
Ω𝑑 = (𝐺𝑀/𝑅3eq)1/2. Ω𝑑 provides a rough approximation to the
critical “mass-shedding” limit at which the stars become unbound
at the equator (for 𝛾 = 5/3 and 3/2, the mass-shedding limits are
Ω ' 1.02Ω𝑑 and 1.01Ω𝑑 , respectively; Dewberry et al. 2022).

3.1 Unstratified 𝛾 = 5/3 polytropes

The panels in Fig. 1 show the real (top) and imaginary (bottom) parts
of Love numbers 𝑘222 (Equation 17) as a function of tidal frequency
𝜔𝑡 , computed for isentropic 𝛾 = 5/3 polytropes perturbed by a purely
quadrupolar (𝑛 = 𝑚 = 2) tidal potential. The top panel employs a
symmetric log-scale that transitions to linear at 𝑅𝑒[𝑘222] = 1. From
dark to light, the line colors indicate polytropic models with increas-
ingly rapid rotation. The calculations shown in Fig. 1 involved a con-
stant dynamic viscosity `𝑣 = 10−5 (in units with𝐺 = 𝑀 = 𝑅eq = 1).
This is large from an astrophysical perspective, but sufficiently small
to reveal the important dynamical features of the model.
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Figure 2. Same as Fig. 1, but showing 𝑘442 Love numbers computed for 𝛾 = 5/3 polytropes perturbed by an isolated 𝑛 = 4, 𝑚 = 2 potential. The tesseral
response of inertial modes plays a more significant role than in Fig. 1.

Resonances with internal oscillation modes produce sharp
sign changes in 𝑅𝑒[𝑘222] and corresponding extrema in
𝐼𝑚 [𝑘222]Ω/𝜔𝑡 . Note that 𝐼𝑚 [𝑘222]Ω/𝜔𝑡 remains strictly positive,
since sign(𝐼𝑚 [𝑘𝑛

ℓ𝑚
]) =sign(𝜔𝑡 ) (see Section 2.2.3; Ogilvie 2013).

The strong resonances at tidal frequencies𝜔𝑡/Ω . −2 and𝜔𝑡/Ω & 1
correspond to retrograde and prograde fundamentalmodes (f-modes)
with predominantly sectoral (ℓ ' 𝑚 = 2) structure in their eigenfunc-
tions. With faster and faster rotation, the natural frequencies of these
oscillations become smaller in amplitude compared with the rotation
rate (e.g., Dewberry & Lai 2022), and the resonances consequently
move inward on an x-axis scaled by Ω. For rotation rates Ω & 0.56,
higher degree “tesseral” (ℓ > 𝑚) f-modes appear at higher frequen-
cies in the bottom panel. They produce smaller resonances because
of smaller spatial overlap with the 𝑌22 harmonic; in a non-rotating,
spherically symmetric star the overlap integrals of tesseral f-modes
with the sectoral tide vanish entirely.
The bottom panel in Fig. 1 also illustrates some additional resonant

peaks that remain fixed close to 𝜔𝑡/Ω ' −1.2 and 𝜔𝑡/Ω ' 0.6 as
the rotation rate increases. These resonances are produced by inertial
modes (e.g., Wu 2005a), whose primary restoring force is the Cori-
olis. Inertial modes form a dense spectrum in the (rotating-frame)
frequency range −2Ω < 𝜔 < 2Ω, but only the longest wavelength
modes couple strongly enough with the tidal potential to produce
visible features in Fig. 1. The solitary peaks near 𝜔𝑡/Ω ' −1.2 cor-
respond to the longest wavelength retrograde inertial mode, while
the sequence of peaks with 𝜔𝑡/Ω . 0.6 are due to prograde inertial
modes. The latter grow in amplitude with increasing rotation because
of mixing (avoided crossing) with the prograde sectoral f-mode, as
described in Dewberry & Lai (2022) for isentropic 𝛾 = 2 polytropes.
Fig. 2 plots the real and imaginary parts of 𝑘442 computed for

the same 𝛾 = 5/3 polytropes as shown in Fig. 1. Since inertial
oscillations generically couple more strongly to tesseral components
of the tidal potential than sectoral (Ogilvie 2009, 2013), they feature
more prominently in Fig. 2 than in Fig. 1.
The panels in Fig. 3 compare the real (top) and imaginary (bot-
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Figure 3. Plots comparing the real (top) and imaginary (bottom) parts of 𝑘𝑛
ℓ𝑚

(solid) against the direct ratios 𝑘ℓ𝑚 (dotted) for a 𝛾 = 5/3 polytrope with
Ω/Ω𝑑 = 0.37. Although 𝑘222 and 𝑘22 agree, the 𝑘

4
42 and 𝑘42 profiles deviate

significantly due to centrifugal flattening (see Dewberry & Lai 2022; Idini
& Stevenson 2022a).

tom) parts of 𝑘𝑛
ℓ𝑚
(solid) and 𝑘ℓ𝑚 (dotted) for the 𝛾 = 5/3 polytrope

with Ω/Ω𝑑 = 0.37.We compute the latter by perturbing with a tidal
potential including degrees 𝑛 = 2−12 (rather than isolated potentials
of degree 𝑛 = 2 or 𝑛 = 4). 𝑘22 ' 𝑘222, indicating (unsurprisingly) that
the quadrupolar response of the star is dominated by the quadrupolar
part of the tidal potential. On the other hand, Fig. 3 demonstrates
dramatic disagreement between both the real and imaginary parts
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Figure 4. Same as Fig. 1, but for 𝛾 = 3/2 polytropes. Instead of inertial modes, the stable stratification in these stars supports gravito-inertial and Rossby modes.
Filled circles indicate the frequencies corresponding to the cross-sections shown in Fig. 6.

of 𝑘442 and 𝑘42. The apparent resonance in 𝑅𝑒[𝑘42] at 𝜔𝑡/Ω = −2
has nothing to do with oscillations, instead reflecting the fact that as
Ω𝑜 → 0 the tesseral response of centrifugally flattened bodies be-
comes dominated by the sectoral tide (see Section 2.2.2; Dewberry
& Lai 2022; Idini & Stevenson 2022a). Additionally, 𝐼𝑚 [𝑘42]/𝜔𝑡

becomes negative in the range −2Ω . 𝜔𝑡 . −1, disappearing from
the log-scale of the plot in the bottom panel. Since 𝐼𝑚 [𝑘𝑛

ℓ𝑚
]/𝜔𝑡 is

strictly positive, negative values of 𝐼𝑚 [𝑘ℓ𝑚]/𝜔𝑡 indicate frequency
regimes where the induced tidal response in one harmonic is domi-
nated by driving from a different harmonic in the tidal potential. The
discrepancies between 𝑘442 and 𝑘42 are essential to our discussion of
detectable resonances between Jupiter and its satellites in Section 4.

3.2 Stratified 𝛾 = 3/2 polytropes

Figs. 4-5 are the same as 1-2, but for stably stratified 𝛾 = 3/2 poly-
tropes. The resonances depicted in Figs. 4-5 consequently correspond
to a different selection of internal oscillation modes. Along with f-
modes, the peaks at higher frequencies |𝜔𝑡/Ω| & 0.5 are produced
by gravito-inertial modes (g-modes), which are primarily restored
by buoyancy. As shown in the bottom panel of Figure 4, for a given
rotation rate only a handful of long wavelength g-modes give rise to
significant features in 𝐼𝑚 [𝑘222] for this value of viscosity.
Although the g-mode resonances are regularly spaced in 𝜔𝑡/Ω,

their eigenfunctions can differ significantly from the g-modes of
non-rotating stars. Rotation can confine g-mode eigenfunctions to
the equator, and also mix together modes that in the limit Ω → 0
have different harmonic degrees but nearly degenerate frequencies.
The latter effect leads to “rosette” patterns in the oscillations’ ki-
netic energy distributions (Ballot et al. 2012; Takata & Saio 2013;
Dewberry et al. 2021). The cross-sections (slices along the rotation
axis) shown in Fig. 6 demonstrate the gravitational (left) and radial
velocity (right) perturbations of the tidal response computed (using
the full tidal potential) at the frequencies indicated by the filled cir-
cles in 4 (bottom). We plot the imaginary part of 𝛿Φ (and similarly

the real part of 𝑣𝑟 ) because it better illustrates the structure of the
resonant waves than the real part (with the phase chosen for the
satellite, 𝑅𝑒[𝛿Φ] is dominated at most frequencies by the structure
of non-resonantly driven f-modes). With increasingly rapid rotation,
the induced wave patterns couple across a wide range of spherical
harmonic degrees.
Along with gravito-inertial and rosette waves at larger frequen-

cies, Fig. 4 and 5 (bottom) reveal an additional family of resonant
modes at𝜔𝑡/Ω ' −0.3. “Rossby” modes are purely retrograde oscil-
lations restored by both the Coriolis and buoyancy forces (Papaloizou
& Pringle 1978; Townsend 2003). With relatively large tidal over-
lap integrals, Rossby modes may be important to tidal dissipation
in super-synchronously rotating white dwarfs (Fuller & Lai 2014).
Recently, Papaloizou & Savonĳe (2023) have considered the role
that resonant Rossby mode excitation may play in tidal interactions
between exoplanets and their host stars.

4 TIDES IN PARTIALLY STRATIFIED BODIES:
APPLICATION TO JUPITER

In this section we consider the tidal response of Jupiter interior
models that are simple but self-consistently flattened by rotation.
Particular motivation for this application comes from the fact that
Juno measurements of Jupiter’s interaction with Io produce values
of 𝑘42 ' 1.29 (Durante et al. 2020) that differ significantly from
theoretical calculations of 𝑘hs42 ' 1.74 (Wahl et al. 2017b, 2020;
Nettelmann 2019). We find that dynamical tides are capable of rec-
onciling this discrepancy, essentially due to dynamical driving of the
tesseral response by the sectoral tide.

4.1 Interior models

We focus on 𝛾 = 2 polytropes with Jupiter’s bulk rotation rate
Ω/Ω𝑑 ' 0.3, and different profiles of stable stratification introduced
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Figure 5. Same as Fig. 2, but for 𝛾 = 3/2 polytropes. Rotation causes g-mode eigenfunctions to overlap with multiple spherical harmonics, in turn leading to
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Figure 6. Cross-sections illustrating the gravitational (left) and radial velocity (right) perturbations induced in 𝛾 = 3/2 polytropes at the tidal frequencies
indicated by the filled circles in Fig. 4 (bottom). In rapid rotators, the angular structure of the tidal response is not well described by a single spherical harmonic.

via modification of Γ1. In particular, we assume the functional form

Γ1 (Z) = 2 +
𝐴

2

{
1 − cos

[
2𝜋

(
Z − Zi
Zo − Zi

)]}
. (30)

Here 𝐴 describes the amplitude of the deviation from isentropy,
Z is a dimensionless quasi-radial coordinate equal to one on the
surface (seeAppendixA), and Zi, Zo delimit the boundaries of a stably
stratified region. Along with an isentropic model with 𝐴 = 0, we
consider partially stratified models characterized by 𝐴 = 2, [Zi, Zo] =
[−0.7, 0.7] and 𝐴 = 0.5, [Zi, Zo] = [0.59, 0.76]. Recent models
involving a wide, stably stratified “dilute” core (Wahl et al. 2017a;
Militzer et al. 2022) motivate the former parameterization, while the

latter produces a narrower band of stratification in the outer envelope
(Stevenson et al. 2022). Choosing Zi < 0 for the dilute core model
ensures even symmetry with respect to the origin. These profiles for
stable stratification (shown in Fig. 7) are intended only to capture the
relevant wave dynamics, and not to serve as detailed interior models
for Jupiter.

4.2 Tidal wave mixing

Figs. 8-9 are similar to Figs. 1-2 and 4-5. The solid lines plot real
and imaginary parts of the Love numbers 𝑘222 and 𝑘442 describing
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Figure 7. Equatorial profiles of the squared buoyancy frequency (solid) and
density (dashed) for the Jupiter models considered in this paper.

ℓ = 2 and ℓ = 4 responses to isolated tidal potentials of the same
degree, while the faint dashed lines show the ratios 𝑘22 and 𝑘42
computed by imposing a tidal potential including degrees 𝑛 = 2−12.
The black, blue and orange colors respectively indicate calculations
for the completely isentropic, dilute core, and envelope stratification
models introduced in the previous subsection. We adopt a dynamic
viscosity of `𝑣 = 10−6 for the calculations shown in these figures.
The orange and blue curves demonstrate a more complicated spec-

trumof resonances than the polytropes considered in Section 3, owing
to the fact that these Jupitermodels possess both convective and stably
stratified regions. Inertial wave spectra are generically dense in fre-
quency space (e.g., Papaloizou & Pringle 1982). All gravito-inertial
modes with rotating-frame frequencies𝜔 ∈ [−2Ω, 2Ω] consequently
have the capacity to mix with inertial waves in adjacent convective
regions, so the waves forced by the tidal potential possess an inher-
ently mixed character in the frequency range 𝜔𝑡 ∈ [−2Ω, 2Ω]. This
is illustrated by the cross-sections in Fig. 10, which (like Fig. 6)
show the gravitational and radial velocity perturbations induced by
the full (multiple-degree) tidal potential at the resonant frequencies
indicated by filled circles in Fig. 9 (bottom). The white lines indicate
boundaries between the convective and stably stratified regions, with
calculations for the dilute core and envelope stratification models
shown in the top and bottom rows (respectively).
The cross-sections in Fig. 10 exhibit similar structure to the tidal

waves computed by Lin (2023) without the inclusion of centrifugal
flattening. The gravito-inertial waves show the formation of rosette
patterns, while the non-specular reflection of inertial waves off of the
boundary between the stably stratified regions and the outer envelope
leads to shorter wavelength beams of inertial waves propagating at
an angle that depends on 𝜔𝑡 (Ogilvie 2009; Rieutord & Valdettaro
2010; Ogilvie 2013; Lin & Ogilvie 2021; Lin 2023).
Although the latter scattering to shorter wavelengths can enhance

tidal dissipation at some frequencies, Lin & Ogilvie (2021) showed
that the largest peaks in dissipation for isentropic planets with im-
permeable cores still correspond to underlying flows resembling the
longest wavelength inertial modes of isentropic, coreless models.
From the perspective of the modal expansion described in Section
2.2.4, the susceptibility of a given mixed mode 𝛼 to excitation by a
tidal potential of degree 𝑛 boils down to the requirement of a large
ratio between overlap integrals𝑄𝛼

𝑛𝑚 and 𝜖𝛼 coefficients. This require-
ment in turn filters for waves with some long-wavelength structure
(for low 𝑛), regardless of whether those waves are also scattered to
shorter wavelengths. Most importantly, the induced gravito-inertial

and inertial waves of rotating models overlap with multiple spherical
harmonic degrees, regardless of whether one or multiple harmonics
are included in the perturbing tidal potential.

4.3 Jupiter’s dynamical 𝑘42

Although our calculations produce qualitatively similar waves to
those described by Lin (2023), with our inclusion of centrifu-
gal flattening—excluded by both Idini & Stevenson (2022b) and
Lin (2023)—we observe a much stronger dynamical impact on the
tesseral ratios 𝑘ℓ𝑚 with ℓ > 𝑚. Fig. 11 plots the per cent deviation of
𝑅𝑒[𝑘42] profiles computed for the three models shown in Figs. 8-9
from “hydrostatic” 𝑅𝑒[𝑘hs42] (see Equation 20) values comparable
with those computed by Wahl et al. (2017b, 2020) and Nettelmann
(2019).We compute 𝑘hs42 profiles with the modal expansion described
in Section 2.2.4, using oscillations calculated in the inviscid limit for
the neutrally stratified model. Note that the real parts of the Love
numbers for the isentropic and stratified Jupiter models considered
here agree precisely in the limit 𝜔𝑡 → 0, so this approach yields a
hydrostatic 𝑘hs42 that is relevant for all three.
The inset highlights the frequency range relevant to Jupiter’s

Galilean moons, whose 𝑚 = 2 tidal frequencies are indicated by
dashed grey lines. The solid black line again corresponds to the
neutrally stratified model. Except for a feature near 𝜔𝑡/Ω ' −1.14
corresponding to a resonance with the longest wavelength retrograde
inertial mode, this model exhibits only gradual variation in 𝑅𝑒[𝑘42]
due to the non-resonant influence of f-modes at much larger fre-
quencies. As noted by Idini & Stevenson (2022a), this contributes
a deviation of ' −4% from 𝑘hs42 at Io’s frequency, which is insuffi-
cient to reconcile the tension between observations and hydrostatic
calculations.
On the other hand, the orange and blue curves (corresponding to

the models with stratified regions in the outer envelope and core,
respectively) exhibit much larger deviations. In particular, tidal wave
excitation close to 𝜔𝑡/Ω ' −1.5 (the middle cross-sections in Fig.
10) induces deviations in 𝑅𝑒[𝑘42] of 10 − 15% relative to the lo-
cal 𝑅𝑒[𝑘hs42]. Such deviations are sufficient for agreement with the
observed 𝑘42 to within 3𝜎 (Idini & Stevenson 2022a).
This result contrasts with the calculations of Lin (2023), which

suggested that dynamically excited waves (with notably similar mor-
phology to those shown in Fig. 10) were incapable of significantly
modifying the real part of 𝑘42 (cf., their Fig. 6 and 8). The difference
lies in our inclusion of rotational coupling across spherical harmonic
degrees, as demonstrated by Fig. 12. The curves in this figure plot
𝑅𝑒[𝑘𝑛42−𝑘𝑛42 (𝜔𝑡 = 0)]𝑈𝑛2/𝑈42 for 𝑛 = 2 (solid) and 𝑛 = 4 (dashed).
This quantity describes the amount to which driving by the tidal po-
tential of degree 𝑛 contributes to the response in degree ℓ = 4.With
the inclusion of centrifugal flattening, the Love numbers 𝑘242 and 𝑘

4
42

are comparable for all of the waves shown in Fig. 10. However, since
𝑈22 � 𝑈42 as Ω𝑜 → 0 (i.e., as 𝜔𝑡/Ω → −2), the contribution from
𝑛 = 2 invariably dwarfs that from 𝑛 = 4. Fig. 12 clearly demonstrates
that wave coupling with the degree 𝑛 = 2 part of the tidal potential
is the most important for the degree ℓ = 4 part of the tidal response.
We note that the dynamic viscosity used here (`𝑣 = 10−6 in units

with 𝐺 = 𝑀 = 𝑅eq = 1) is relatively large, ranging from Ekman
numbers of 𝐸𝑘 = `𝑣/(𝜌0Ω𝑅2eq) ' 10−6 at 𝑟 = 0 to 𝐸𝑘 ' 10−3
close to the surface. The simplifying assumption of a constant dy-
namic (rather than kinematic) viscosity in particular leads to stronger
damping in the outer envelope than may be realistic. However, we
do not expect this to affect our main results: the faint, wider curves
in Fig. 12 show calculations with a smaller `𝑣 = 10−7. Decreas-
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Figure 9. Same as Fig. 8, but for 𝑘442 (dotted lines show 𝑘42). The filled circles denote frequencies corresponding to the cross-sections shown in Fig. 10.

ing viscosity does little to affect the real parts of 𝑘42 away from
the strongest resonances, and only causes larger deviations close to
resonance. Moreover, the results shown in Fig. 11 and Fig. 12 do
not require moving particularly close to the strongest resonances (the
widths of which vanish as `𝑣 → 0).
The inherently mixed character of the resonantly driven waves

shown in Fig. 10 means that labelling any of them as a g-mode
of a particular harmonic degree is inappropriate. Nevertheless, we

identify some of the resonances shown in Fig. 12 as involving what
originate as ℓ = 𝑚 = 2 g-modes in the non-rotating regime. We
propose that resonances involving these oscillations provide as viable
a candidate for the observed dynamical variation in Jupiter’s 𝑘42
as the ℓ = 4 g-modes considered by Idini & Stevenson (2022b);
a resonantly driven wave need only have a non-negligible cross-
product 𝑄42𝑄22 of overlap integrals to contribute significantly to
𝑘42 (Dewberry & Lai 2022).
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involving mixed waves at 𝜔𝑡/Ω ' −1.5 (middle panels of Fig. 10) lead to deviations of ' −10% to −15%. Deviations of this magnitude are sufficient to
reconcile observations and hydrostatic calculations to within 3𝜎 (Idini & Stevenson 2022b).
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Figure 12. Curves describing the relative contributions of the degree 𝑛 = 2 (solid) and 𝑛 = 4 (dashed) parts of the tidal potential to the degree ℓ = 4 part of
Jupiter’s response. The 𝑛 = 4 contribution is inconsequential compared to that of 𝑛 = 2. Physically, this reflects the fact that the mixed waves of Fig. 10 overlap
with both 𝑛 = 2 and 𝑛 = 4, but the quadrupolar forcing has a much larger amplitude at the tidal frequencies of the Galilean moons. The faint, thick lines show
calculations with a lower viscosity (`𝑣 = 10−7).

Idini & Stevenson (2022b) used an identification of the resonance
with ℓ = 4 g-modes to infer an extended dilute core. Allowing for the
possibility that Io may instead be in resonance with an ℓ ' 2 g-mode
may lead tomodification of these expectations for stable stratification
in Jupiter. A more exhaustive survey of mixed-mode tidal resonances
in a wider range of Jupiter interior models may therefore be worth
pursuing.

5 CONCLUSIONS

We have introduced a spectral numerical method for self-consistently
computing the viscous tidal response of rapidly rotating, oblate plan-
ets and stars with arbitrary internal structures and rotation profiles.
We have applied this method to fully isentropic (Figs. 1-2) and fully
stratified (Figs. 4-6) polytropes with rigid rotation rates up to nearly
the mass-shedding limit. We have also computed the tidal response
for models of Jupiter’s interior that include both stably stratified and
convective regions (Figs. 8-10).
Contrary to recent work excluding centrifugal flattening (Lin

2023), we find (Fig. 11) that tidally excited oscillations in Jupiter
are capable of reconciling a discrepancy between observed (Durante
et al. 2020) and predicted (Nettelmann 2019; Wahl et al. 2020) val-
ues of 𝑘42 (the ratio between ℓ = 4, 𝑚 = 2 coefficients in multipole
expansions of Jupiter’s tidal response and Io’s tidal potential). We
find that in centrifugally flattened models, ℓ = 2 driving of mixed
gravito-inertial and inertial waves contributes most significantly to
Jupiter’s ℓ = 4 response (Fig. 12). Our results indicate that a wider set
of internal oscillations than considered by Idini & Stevenson (2022b)
(in particular those originating as ℓ = 2 g-modes in the non-rotating
regime) may serve as viable candidates for a Jupiter-Io resonance.
Evaluating resonances with these additional oscillations in a range of
realistic interior models may lead to modified constraints on Jupiter’s
stable stratification.
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APPENDIX A: LINEARIZED EQUATIONS IN NON-ORTHOGONAL COORDINATES

Equations (8)-(12) can be written in tensor notation for an arbitrary curvilinear coordinate system as

−i𝜎𝑣𝑖 + 𝑢
𝑗

0∇ 𝑗𝑣
𝑖 + 𝑣 𝑗∇ 𝑗𝑢

𝑖
0 + 𝑔𝑖 𝑗 [(𝜕 𝑗 + 𝜕 𝑗 ln 𝜌0)ℎ − 𝐺 𝑗 𝛽 + 𝜕 𝑗𝛿Φ] − 1

𝜌0
∇ 𝑗𝛿𝑇

𝑖 𝑗 = −𝑔𝑖 𝑗𝜕 𝑗𝑈, (A1)

𝛿𝑇 𝑖 𝑗 − `𝑣

(
𝑔𝑖𝑘∇𝑘𝑣

𝑗 + 𝑔 𝑗𝑘∇𝑘𝑣
𝑖 − 2
3
𝑔𝑖 𝑗∇𝑘𝑣

𝑘

)
= 0, (A2)

−i𝜔𝛽 + 1
𝐽𝜌0

𝜕 𝑗 (𝐽𝜌0𝑣 𝑗 ) = 0, (A3)

−i𝜔(ℎ − 𝑐2
𝐴
𝛽) + 𝑣 𝑗 (𝐺 𝑗 − 𝑐2

𝐴
𝜕 𝑗 ln 𝜌0) = 0, (A4)

4𝜋𝐺𝜌0𝛽 − 1
𝐽
𝜕 𝑗 (𝐽𝑔 𝑗𝑘𝜕𝑘𝛿Φ) = 0. (A5)

Here 𝜕𝑖 denotes partial differentiation with respect to the 𝑖′th curvilinear coordinate 𝑥𝑖 , and upper (lower) indices denote contravariant
(covariant) vector components associated with the expression of a vector in the covariant (contravariant) basis vectors E𝑖 = 𝜕𝑖r (E𝑖 = ∇𝑥𝑖).
Paired upper and lower indices denote summation, 𝑔𝑖 𝑗 = E𝑖 · E 𝑗 is the inverse of the metric tensor 𝑔𝑖 𝑗 = E𝑖 · E 𝑗 , and 𝐽 =

√︁
det 𝑔𝑖 𝑗 is the

Jacobian of the coordinate system. Lastly, ∇𝑖 denotes covariant differentiation:

∇𝑘𝑣
𝑖 = 𝜕𝑘𝑣

𝑖 + Γ𝑖
𝑗𝑘
𝑣 𝑗 , (A6)

∇𝑘𝛿𝑇
𝑖 𝑗 = 𝜕𝑘𝛿𝑇

𝑖 𝑗 + Γ𝑖
𝑙𝑘
𝛿𝑇 𝑙 𝑗 + Γ

𝑗

𝑙𝑘
𝛿𝑇 𝑖𝑙 , (A7)

where Γ𝑖
𝑗𝑘

= E𝑖 · 𝜕 𝑗E𝑘 are Christoffel symbols of the second kind.
For a general mapping 𝑟 = 𝑟 (Z, \) between spherical radius 𝑟 and a “quasi-radial” coordinate Z defined to be constant on the oblate (but still

axisymmetric) surface 𝑟𝑠 = 𝑟𝑠 (\), EZ = r̂𝜕Z 𝑟, E\ = r̂𝜕\𝑟 + 𝑟 �̂� , and E𝜙 = 𝑟 sin \�̂� (e.g., Rieutord et al. 2016). Our equilibrium velocity field
is then simply u0 = ΩE𝜙 (i.e., 𝑢

𝜙

0 = Ω), and the metric tensor, specified by the line element d𝑠 between two points, is given by

d𝑠2 = 𝑔𝑖 𝑗d𝑥𝑖d𝑥 𝑗 = (𝜕Z 𝑟)2dZ2 + 𝜕Z 𝑟𝜕\𝑟dZd\ + [(𝜕\𝑟)2 + 𝑟2]d\2 + 𝑟2 sin2 \d𝜙2. (A8)

For such a coordinate system, 𝑔𝑖 𝑗 = 𝑔 𝑗𝑖 and Γ𝑖
𝑗𝑘

= Γ𝑖
𝑘 𝑗
. Additionally,

𝑔Z 𝜙 = 𝑔\ 𝜙 = Γ
Z

Z 𝜙
= Γ

Z

\ 𝜙
= Γ\

Z Z = Γ\
𝜙Z = Γ\

𝜙\ = Γ
𝜙

Z Z
= Γ

𝜙

\Z
= Γ

𝜙

\ \
= Γ

𝜙

𝜙𝜙
= 0. (A9)

The viscous stress tensor involves six unique components. These can be eliminated from the equations by noting that covariant derivatives
of 𝑔𝑖 𝑗 vanish, and that in (Z, \, 𝜙) coordinates covariant derivatives commute (since the Riemann curvature tensor vanishes). For a constant
dynamic viscosity `𝑣 , ∇ 𝑗𝛿𝑇

𝑖 𝑗 can then be written as (Hill & Stokes 2018)

∇ 𝑗𝛿𝑇
𝑖 𝑗 = `𝑣

[
1
𝐽
𝜕 𝑗 (𝐽𝑔 𝑗𝑘𝜕𝑘𝑣

𝑖) + 2𝑔 𝑗𝑘Γ𝑖
𝑘𝑙
𝜕 𝑗𝑣

𝑙 + (𝑔 𝑗𝑘𝜕𝑙Γ
𝑖
𝑘 𝑗
)𝑣𝑙 + 1

3
𝑔𝑖𝑘𝜕𝑘D

]
, (A10)

where D = ∇𝑖𝑣
𝑖 is the velocity divergence. Retaining nonzero geometric factors, the separate components of the equations (expressed on the

natural basis) then take the form

i𝜔𝑣Z − 2ΩΓZ
𝜙𝜙

𝑣𝜙 + 𝑔Z 𝑗 [𝐺 𝑗 𝛽 − (𝜕 𝑗 + 𝜕 𝑗 ln 𝜌0)ℎ − 𝜕 𝑗𝛿Φ] + a

[
Δ𝑠𝑣

Z + 2𝑔 𝑗𝑘Γ
Z

𝑘𝑙
𝜕 𝑗𝑣

𝑙 + (𝑔 𝑗𝑘𝜕𝑙Γ
Z

𝑘 𝑗
)𝑣𝑙 + 1

3
𝑔Z 𝑘𝜕𝑘D

]
= 𝑔Z 𝑗𝜕 𝑗𝑈, (A11)

i𝜔𝑣 \ − 2ΩΓ\
𝜙𝜙𝑣

𝜙 + 𝑔\ 𝑗 [𝐺 𝑗 𝛽 − (𝜕 𝑗 + 𝜕 𝑗 ln 𝜌0)ℎ − 𝜕 𝑗𝛿Φ] + a

[
Δ𝑠𝑣

\ + 2𝑔 𝑗𝑘Γ\
𝑘𝑙
𝜕 𝑗𝑣

𝑙 + (𝑔 𝑗𝑘𝜕𝑙Γ
\
𝑘 𝑗
)𝑣𝑙 + 1

3
𝑔\𝑘𝜕𝑘D

]
= 𝑔\ 𝑗𝜕 𝑗𝑈, (A12)

i𝜔𝑣𝜙 − (𝜕ZΩ + 2ΩΓ𝜙

Z 𝜙
)𝑣Z − (𝜕\Ω + 2ΩΓ𝜙

\𝜙
)𝑣 \ − 𝑔𝜙𝜙𝜕𝜙 (ℎ + 𝛿Φ) (A13)

+a
[
Δ𝑠𝑣

𝜙 + 2𝑔 𝑗𝑘Γ
𝜙

𝑘𝑙
𝜕 𝑗𝑣

𝑙 + (𝑔 𝑗𝑘𝜕𝑙Γ
𝜙

𝑘 𝑗
)𝑣𝑙 + 1

3
𝑔𝜙𝜙𝜕𝜙D

]
= 𝑔𝜙𝜙𝜕𝜙𝑈,

i𝜔𝛽 − (𝑣Z 𝜕Z ln 𝜌0 + 𝑣 \𝜕\ ln 𝜌0 + D) = 0, (A14)

i𝜔(ℎ − 𝑐2
𝐴
𝛽) − (𝐴Z 𝑣

Z + 𝐴\ 𝑣
\ ) = 0, (A15)

D −
(
𝜕Z + 𝜕Z ln 𝐽

)
𝑣Z − (𝜕\ + 𝜕\ ln 𝐽) 𝑣 \ − 𝜕𝜙𝑣

𝜙 = 0, (A16)

4𝜋𝐺𝜌0𝛽 −
{
𝑔Z Z 𝜕2Z Z + [(𝜕 𝑗 + 𝜕 𝑗 ln 𝐽)𝑔 𝑗 Z ]𝜕Z + 2𝑔Z \𝜕2\Z + [(𝜕 𝑗 + 𝜕 𝑗 ln 𝐽)𝑔 𝑗 \ ]𝜕\ + 𝑔\ \𝜕2\ \ + 𝑔𝜙𝜙𝜕2𝜙𝜙

}
Φ = 0, (A17)

where Δ𝑠 = 𝐽−1𝜕 𝑗 (𝐽𝑔 𝑗𝑘𝜕𝑘 · ), 𝐴𝑖 = 𝐺𝑖 − 𝑐2
𝐴
𝜕𝑖 ln 𝜌0, 𝜔 = 𝜎 − 𝑚Ω, and a = `𝑣/𝜌0.

MNRAS 000, 1–15 (2022)
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APPENDIX B: NUMERICAL METHODS

To solve Equations (A11)-(A17), we expand the perturbed variables in surface harmonics 𝑌𝑚
𝑛 that are normalized so that 〈𝑌𝑚

ℓ
, 𝑌𝑚

𝑛 〉 =∫ 2𝜋
0

∫ 𝜋

0 𝑌𝑚
ℓ
𝑌𝑚
𝑛 sin \d\d𝜙 = 𝛿ℓ𝑛, writing

𝑣Z = −i
∞∑︁

𝑛= |𝑚 |
𝑌𝑚
𝑛 (\, 𝜙)�̃�𝑛 (Z), (B1)

𝑣 \ = − i
Z

∞∑︁
𝑛= |𝑚 |

[
𝜕\𝑌

𝑚
𝑛 (\, 𝜙)�̃�𝑛 (Z) + i𝐷𝜙𝑌

𝑚
𝑛 (\, 𝜙)𝑐𝑛 (Z)

]
, (B2)

𝑣𝜙 =
−1

Z sin \

∞∑︁
𝑛= |𝑚 |

[
i𝐷𝜙𝑌

𝑚
𝑛 (\, 𝜙)�̃�𝑛 (Z) + 𝜕\𝑌

𝑚
𝑛 (\, 𝜙)𝑐𝑛 (Z)

]
, (B3)

𝛽 =

∞∑︁
𝑛= |𝑚 |

𝑌𝑚
𝑛 (\, 𝜙)𝛽𝑛 (Z), (B4)

D = −i
∞∑︁

𝑛= |𝑚 |
𝑌𝑚
𝑛 (\, 𝜙)D̃𝑛 (Z), (B5)

ℎ =

∞∑︁
𝑛= |𝑚 |

𝑌𝑚
𝑛 (\, 𝜙)ℎ𝑛 (Z), (B6)

𝛿Φ =

∞∑︁
𝑛= |𝑚 |

𝑌𝑚
𝑛 (\, 𝜙)Φ𝑛 (Z). (B7)

Here 𝐷𝜙 = (sin \)−1𝜕𝜙 , and ∼’s indicate phase shifts introduced via factors of i. Note that the coefficientsΦ𝑛 differ from theΦ′
𝑛𝑚,𝛼 discussed

in Section 2.2.4, which are external multipole expansion coefficients in spherical rather than (Z, \, 𝜙) coordinates. Writing ` = cos \, 𝑠 = sin \
and substituting the spherical harmonic expansions (Equations B1-B7) into the linearized equations produces

𝜔Z𝑌𝑚
𝑛 �̃�𝑛 + 2Ω

𝑠
Γ
Z

𝜙𝜙
(i𝐷𝜙𝑌

𝑚
𝑛 �̃�𝑛 + 𝜕\𝑌

𝑚
𝑛 𝑐𝑛) + Z𝑔Z 𝑗

[
𝐺 𝑗𝑌

𝑚
𝑛 𝛽𝑛 − (𝜕 𝑗 + 𝜕 𝑗 ln 𝜌0) (𝑌𝑚

𝑛 ℎ𝑛) − 𝜕 𝑗 (𝑌𝑚
𝑛 Φ𝑛)

]
(B8)

+ Z

𝜌0
∇ 𝑗𝛿𝑇

𝑖 𝑗 = Z𝑔Z 𝑗𝜕 𝑗𝑈,

𝜔(𝜕\𝑌𝑚
𝑛 �̃�𝑛 + i𝐷𝜙𝑌

𝑚
𝑛 𝑐𝑛) + 2Ω

𝑠
Γ\
𝜙𝜙 (i𝐷𝜙𝑌

𝑚
𝑛 �̃�𝑛 + 𝜕\𝑌

𝑚
𝑛 𝑐𝑛) + Z𝑔\ 𝑗 [𝐺 𝑗𝑌

𝑚
𝑛 𝛽𝑛 − (𝜕 𝑗 + 𝜕 𝑗 ln 𝜌0) (𝑌𝑚

𝑛 ℎ𝑛) − 𝜕 𝑗 (𝑌𝑚
𝑛 Φ𝑛)] (B9)

+ Z

𝜌0
∇ 𝑗𝛿𝑇

\ 𝑗 = Z𝑔\ 𝑗𝜕 𝑗𝑈,

𝜔(i𝐷𝜙𝑌
𝑚
𝑛 �̃�𝑛 + 𝜕\𝑌

𝑚
𝑛 𝑐𝑛) − Z 𝑠(𝜕ZΩ + 2ΩΓ𝜙

Z 𝜙
)𝑌𝑚

𝑛 �̃�𝑛 − 𝑠(𝜕\Ω + 2ΩΓ𝜙

\𝜙
) (𝜕\𝑌𝑚

𝑛 �̃�𝑛 + i𝐷𝜙𝑌
𝑚
𝑛 𝑐𝑛) − Z 𝑠𝑔𝜙𝜙 i𝜕𝜙𝑌𝑚

𝑛 (ℎ𝑛 +Φ𝑛) (B10)

+i Z 𝑠
𝜌0

∇ 𝑗𝛿𝑇
𝜙 𝑗 = Z 𝑠𝑔𝜙𝜙 i𝜕𝜙𝑈,

𝜔Z𝑌𝑚
𝑛 𝛽𝑛 + Z𝜕Z ln 𝜌0�̃�𝑛𝑌𝑚

𝑛 + 𝜕\ ln 𝜌0 (𝜕\𝑌𝑚
𝑛 �̃�𝑛 + i𝐷𝜙𝑌

𝑚
𝑛 𝑐𝑛) + Z𝑌𝑚

𝑛 D̃𝑛 = 0, (B11)

𝜔Z𝑌𝑚
𝑛 (ℎ𝑛 − 𝑐2

𝐴
𝛽𝑛) + Z (𝐺Z − 𝑐2

𝐴
𝜕Z ln 𝜌0)𝑌𝑚

𝑛 �̃�𝑛 + (𝐺 \ − 𝑐2
𝐴
𝜕\ ln 𝜌0) (𝜕\𝑌𝑚

𝑛 �̃�𝑛 + i𝐷𝜙𝑌
𝑚
𝑛 𝑐𝑛) = 0, (B12)

Z𝑌𝑚
𝑛 D̃𝑛 − Z𝑌𝑚

𝑛

(
𝜕Z + 𝜕Z ln 𝐽

)
�̃�𝑛 + [𝑛(𝑛 + 1)𝑌𝑚

𝑛 + (`/𝑠 − 𝜕\ ln 𝐽)𝜕\𝑌𝑚
𝑛 ] �̃�𝑛 + (`/𝑠 − 𝜕\ ln 𝐽)i𝐷𝜙𝑌

𝑚
𝑛 𝑐𝑛 = 0, (B13)

4𝜋𝐺𝜌0𝑌
𝑚
𝑛 𝛽𝑛 − Δ𝑠 (𝑌𝑚

𝑛 Φ𝑛) = 0, (B14)

where repeated indices 𝑗 and 𝑛 denote summation, and (assuming a constant dynamic viscosity)
Z

𝜌0
∇ 𝑗𝛿𝑇

Z 𝑗 = −ia
{
ZΔ𝑠 (�̃�𝑛𝑌𝑚

𝑛 ) + Z

[
2𝑌𝑚

𝑛 𝑔Z 𝑘Γ
Z

𝑘Z
𝜕Z + 2𝑔\𝑘ΓZ

𝑘Z
𝜕\𝑌

𝑚
𝑛 + (𝑔 𝑗𝑘𝜕Z Γ

Z

𝑗𝑘
)𝑌𝑚

𝑛

]
�̃�𝑛 (B15)

+
[
2𝑔Z 𝑘ΓZ

𝑘 \
𝜕\𝑌

𝑚
𝑛 (𝜕Z − 1/Z) + 2𝑔\𝑘ΓZ

𝑘 \
𝜕2\ \𝑌

𝑚
𝑛 − 2(𝑚2/𝑠2)𝑔𝜙𝜙Γ

Z

𝜙𝜙
𝑌𝑚
𝑛 + (𝑔 𝑗𝑘𝜕\Γ

Z

𝑗𝑘
)𝜕\𝑌𝑚

𝑛

]
�̃�𝑛

− (𝑚/𝑠)
[
2𝑔Z 𝑘ΓZ

𝑘 \
𝑌𝑚
𝑛 (𝜕Z − 1/Z) + 2𝑔\𝑘ΓZ

𝑘 \
(𝜕\ − `/𝑠)𝑌𝑚

𝑛 − 2𝑔𝜙𝜙Γ
Z

𝜙𝜙
𝜕\𝑌

𝑚
𝑛 + (𝑔 𝑗𝑘𝜕\Γ

Z

𝑗𝑘
)𝑌𝑚

𝑛

]
𝑐𝑛

+ 1
3
Z (𝑔Z Z𝑌𝑚

𝑛 𝜕Z + 𝑔Z \𝜕\𝑌
𝑚
𝑛 )D̃𝑛

}
,

Z

𝜌0
∇ 𝑗𝛿𝑇

\ 𝑗 = −ia
{
Z

(
2𝑌𝑚

𝑛 𝑔Z 𝑘Γ\
𝑘Z

𝜕Z + 2𝑔\𝑘Γ\
𝑘Z

𝜕\𝑌
𝑚
𝑛 + 𝑔 𝑗𝑘𝜕Z Γ

\
𝑗𝑘
𝑌𝑚
𝑛

)
�̃�𝑛 + ZΔ𝑠 (𝜕\𝑌𝑚

𝑛 �̃�𝑛/Z) − 𝑚ZΔ𝑠 [𝑌𝑚
𝑛 𝑐𝑛/(Z 𝑠)] (B16)

+
[
2𝑔Z 𝑘Γ\

𝑘 \
𝜕\𝑌

𝑚
𝑛 (𝜕Z − 1/Z) + 2𝑔\𝑘Γ\

𝑘 \
𝜕2\ \𝑌

𝑚
𝑛 − 2(𝑚2/𝑠2)𝑔𝜙𝜙Γ\

𝜙𝜙𝑌
𝑚
𝑛 + 𝑔 𝑗𝑘𝜕\Γ

\
𝑗𝑘
𝜕\𝑌

𝑚
𝑛

]
�̃�𝑛

− (𝑚/𝑠)
[
2𝑔Z 𝑘Γ\

𝑘 \
𝑌𝑚
𝑛 (𝜕Z − 1/Z) + 2𝑔\𝑘Γ\

𝑘 \
(𝜕\ − `/𝑠)𝑌𝑚

𝑛 − 2𝑔𝜙𝜙Γ\
𝜙𝜙𝜕\𝑌

𝑚
𝑛 + 𝑔 𝑗𝑘𝜕\Γ

\
𝑗𝑘
𝑌𝑚
𝑛

]
𝑐𝑛
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+ 1
3
Z (𝑔\Z𝑌𝑚

𝑛 𝜕Z + 𝑔\ \𝜕\𝑌
𝑚
𝑛 )D̃𝑛

}
,

i
Z 𝑠

𝜌0
∇ 𝑗𝛿𝑇

𝜙 𝑗 = ia
{
2𝑚𝑠Z𝑔𝜙𝜙Γ

𝜙

𝜙Z
𝑌𝑚
𝑛 �̃�𝑛 + 𝑚𝑠ZΔ𝑠 [𝑌𝑚

𝑛 �̃�𝑛/(𝑠2Z)] − 𝑠ZΔ𝑠 [𝜕\𝑌𝑚
𝑛 𝑐𝑛/(𝑠Z)] (B17)

+ 2(𝑚/𝑠)
[
𝑔Z 𝑘Γ

𝜙

𝑘𝜙
𝑌𝑚
𝑛 (𝜕Z − 1/Z) + 𝑔\𝑘Γ

𝜙

𝑘𝜙
(𝜕\ − 2`/𝑠)𝑌𝑚

𝑛 + 𝑠2𝑔𝜙𝜙Γ
𝜙

𝜙\
𝜕\𝑌

𝑚
𝑛

]
�̃�𝑛

− 2
[
𝜕\𝑌

𝑚
𝑛 𝑔Z 𝑘Γ

𝜙

𝑘𝜙
(𝜕Z − 1/Z) + 𝑔\𝑘Γ

𝜙

𝑘𝜙
(𝜕\ − `/𝑠)𝜕\𝑌𝑚

𝑛 + 𝑚2𝑔𝜙𝜙Γ
𝜙

𝜙\
𝑌𝑚
𝑛

]
𝑐𝑛 − 1

3
𝑠2Z𝑔𝜙𝜙 i𝐷𝜙𝑌

𝑚
𝑛 D̃𝑛

}
.

Note that all but the dissipative terms in Equations (B8)-(B14) involve purely real coefficients. We reduce dimensionality through spherical
harmonic projection, first taking the inner product of the Z-component of the equation of motion with 𝑌𝑚

ℓ
for an arbitrary degree ℓ. For

the angular components of the equation of motion we follow Reese et al. (2006), operating with 〈𝜕\𝑌𝑚
ℓ
,(B9)〉 − 〈i𝐷𝜙𝑌

𝑚
ℓ
,(B10)〉 and

〈i𝐷𝜙𝑌
𝑚
ℓ
,(B9)〉 − 〈𝜕\𝑌𝑚

ℓ
,(B10)〉. We finally take the inner product of the continuity, energy, divergence, and Poisson equations with𝑌𝑚

ℓ
. When

Ω = 0, the projected equations separate to produce independent sets of ordinary differential equations (one set for each degree ℓ and azimuthal
wavenmber 𝑚) in radius. In a rotating planet or star, the Coriolis force and centrifugal flattening couple the equations of one degree to another.
We solve the coupled series of ODEs simultaneously using pseudospectral collocation, computing solutions 𝑋 = [𝑋 |𝑚 | , 𝑋 |𝑚 |+1, ..., 𝑋ℓmax ]𝑇 ,

where 𝑋𝑛 = [�̃�𝑛, �̃�𝑛, 𝑐𝑛, 𝛽𝑛, ℎ𝑛, D̃𝑛,Φ𝑛], to the boundary value and eigenvalue problems posed by Equations (A11)-(A17). Numerical
tractability requires truncation at a maximum degree ℓmax. For all of the calculations in this paper, we set ℓmax so that max|𝑋𝑛 | for 𝑛 = ℓmax is
at least 1000 times smaller than for any other degree 𝑛, and adopt a fiducial resolution of 𝑁Z = 100. We find little difference with increasing
𝑁Z for the viscosities used, except near 𝜔𝑡 = 0 for the 𝛾 = 3/2 polytropes (note the small discontinuities near 𝜔𝑡 = 0 in the bottom panels
Figs. 4 and 5). Inaccuracy at this frequency should have no effect on the rest of our results, and so we deem 𝑁Z = 100 to be sufficient.
We use boundary bordering to enforce boundary conditions for each 𝑋𝑛: at the origin, we enforce regularity in all of the perturbed variables.

We additionally enforce the continuity of the gravitational potential and its gradient at the perturbed surface (Reese et al. 2013), andmatchΦ to a
potential in the external vacuum that vanishes at infinity.We finally require that the normal and tangential stresses vanish at the surface. The total
stress at the perturbed surface is defined by the tensor T 𝑖 𝑗 = −Δ𝑃𝑔𝑖 𝑗 + 𝛿𝑇 𝑖 𝑗 , where Δ𝑃 = 𝛿𝑃+ 𝝃 · ∇𝑃0 is the Lagrangian pressure perturbation,
and 𝝃 is the Lagrangian displacement (related to the Eulerian velocity perturbation by v = 𝜕𝑡𝝃 + u0 · ∇𝝃 − 𝝃 · ∇u0). Note that since the un-
perturbed oblate surface is defined by the equation 𝑆 = Z −1 = 0, its surface normal vector is given by n = ∇𝑆/|∇𝑆 | = (𝑔Z Z )−1/2EZ B 𝑛Z EZ .
The condition that the stress vanish at the surface can then be written as T 𝑖 𝑗𝑛 𝑗 = T 𝑖Z 𝑛Z = 0, or

−(𝛿𝑃 + 𝝃 · ∇𝑃0)𝑔Z Z + 𝛿𝑇 Z Z = 0, (B18)

−(𝛿𝑃 + 𝝃 · ∇𝑃0)𝑔Z \ + 𝛿𝑇 Z \ = 0, (B19)

𝛿𝑇 Z 𝜙 = 0. (B20)

In order to retain separability in the limit Ω → 0, we project the latter two boundary conditions following a similar procedure to the angular
components of the equation of motion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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