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We present a method to facilitate Monte Carlo simulations in the grand canonical ensemble given
a target mean particle number. The method imposes a fictitious dynamics on the chemical potential,
to be run concurrently with the Monte Carlo sampling of the physical system. Corrections to the
chemical potential are made according to time-averaged estimates of the mean and variance of the
particle number, with the latter being proportional to thermodynamic compressibility. We perform
a variety of tests, and in all cases find rapid convergence of the chemical potential—inexactness
of the tuning algorithm contributes only a minor part of the total measurement error for realistic
simulations.

I. INTRODUCTION

A fundamental attribute of statistical mechanics is the
equivalence of thermodynamic ensembles in the limit of
large system size. In particular, the canonical ensem-
ble, with fixed particle number, should be equivalent to
a grand canonical ensemble in which the chemical po-
tential µ is suitably selected to fix the average particle
number. However, there may be practical reasons to
prefer working in the grand canonical ensemble, particu-
larly in the context of Monte Carlo (MC) simulations.
In classical MC simulations, for example, moves that
modify the particle number can be useful for reducing
decorrelation times or for studying coexistence between
phases [1–5]. Similarly, the starting point of many [6–12]
(but not all [13–16]) finite temperature quantum Monte
Carlo (QMC) simulations is the grand canonical parti-
tion function Z = Tr exp[−β(H + µN)], where β is the
inverse temperature, H is the Hamiltonian, and N is the
number operator. The trace above runs over all quan-
tum wavefunctions, not just those constrained to a fixed
particle number.

In MC and QMC simulations, we often wish to specify
the average particle number 〈N〉 directly, e.g., to fix the
electron filling fraction. Determining the µ value which
satisfies this condition has traditionally required a te-
dious manual search, with additional searches necessary
after every update to the model parameters. Here we
present a method to efficiently converge the chemical po-
tential µ to a solution value that produces the desired
mean particle number within the same MC/QMC simu-
lation where measurements are performed. We take the
chemical potential µt to be continually evolving in sam-
pling time t. Corrections to µt are performed whenever
new measurements Nt of 〈N〉 are collected.
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A central challenge is that, in certain cases, it can be
difficult to collect good statistical samples for systems
with long autocorrelation times. That is, modifications
to µt may not fully impact the samples Nt until quite
some time later. We address this problem by employ-
ing increasingly long-time averages, which incorporate a
fixed fraction of the entire history of MC data.

Roughly speaking, our proposed strategy for tuning
µt is as follows: Given continually improving approxi-
mate measurements of the particle number 〈N〉 and com-
pressibility κ = d 〈N〉 /dµ, we update the value of the
chemical potential under the assumption of linear re-
sponse. Our method shares some conceptual similarities
with proportional–integral–derivative (PID) controllers,
which have previously been applied to µ-tuning [17, 18].
A disadvantage of PID controllers is that they introduce
several parameters that must be carefully selected for
each new problem. In contrast, the method we introduce
here is simple and works robustly across a wide range of
problems using a single default set of algorithm parame-
ters.

We benchmark the new method on two problems: (1)
Tuning the applied field in the classical two-dimensional
ferromagnetic Ising model to achieve a target magneti-
zation, and (2) tuning the chemical potential in simula-
tions of the quantum Holstein model to achieve a tar-
get electron filling fraction. For the Ising model, simula-
tion temperatures approaching Tc give rise to long auto-
correlation times, which can make it difficult to achieve
good statistical sampling. For QMC simulations of the
Holstein model, phonons mediate an effective attractive
electron-electron interaction, which, in turn, gives rise to
challenging metastability effects.

The benchmarks indicate that accurate measurements
of a system with a specified mean particle number can be
acquired from a single MC simulation run, with µ-tuning
enabled throughout. This works because µt mostly con-
verges within the burn-in period of the MC simulation.
After burn-in there remains a small (and steadily de-
creasing) error in µt, but it does not seem to contribute
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significantly to the overall statistical error in measure-
ments.

II. METHOD

We present a method to tune any thermodynamic field
according to its conjugate observable. For concreteness,
consider the task of tuning the chemical potential µ to
produce a target mean particle number, 〈N〉 = N∗. The
same method could be applied to a magnetic system, in
which case one would replace µ with the applied magnetic
field and 〈N〉 with the total magnetization (an example
is considered in Sec. III A).

At fixed µ, one can estimate the mean particle number
〈N〉 using MC sampling. The compressibility κ will play
an essential role in our tuning scheme. A fundamental
result from thermodynamics states

κ =
d〈N〉
dµ

= βVar[N ], (1)

where Var[N ] = 〈N2〉 − 〈N〉2. Thus, κ can be estimated
using the observed variance of N .

A. Prior work with iterated simulation

Previous work proposed the following µ-tuning strat-
egy [17]: At fixed µ, run MC over some time window to
collect statistical estimates N and κ of the mean par-
ticle number and compressibility. To find the chemical
potential that will approximately achieve a target par-
ticle number N∗, solve for the µ′ value that satisfies
κ = (N∗ −N)/(µ′ − µ). Assign µ← µ′ and repeat.

A practical challenge with this iterated update scheme
is that it may be difficult to acquire sufficiently good
estimates N and κ. It is hard to know a priori how
much sampling time should be devoted to any particular
µ value. Statistical estimates of κ, associated with fluc-
tuations in N , are particularly error prone. Also, if many
iterative updates to µ are required, it would seem advan-
tageous to incorporate information from all previous MC
runs, not just from the most recent sampling window.

B. Dynamical µ-tuning

In contrast to the iterated simulation scheme, here we
explore an approach where µt evolves dynamically in the
context of a single simulation. At each iteration t, a
MC update step or sweep is performed using the instan-
taneous value µt of the chemical potential. Next, the
chemical potential is updated using the rule

µt+1 = µt + (N∗ −N t)/κt. (2)

We use the notation (·)t to signify an appropriate time
average over a subset of the sampled data up to time t.

Note that the effective window size is continually increas-
ing with sampling time. Many types of time-averaging
are possible; for simplicity, we average over the most
recent half of all collected data, weighting each sample
equally. Averages of µ and N up to time t are defined as

µt =
1

Lt

t∑
t′=dt/2e

µt′ (3)

N t =
1

Lt

t∑
t′=dt/2e

Nt′ . (4)

The ceiling function d·e rounds up to the nearest integer
and Lt ≡ t − dt/2e + 1 is the number of samples in the
average. We select this form for the running-time aver-
ages partly for simplicity, and partly because it allows
updates in constant time, as described in Appendix A.

An important aspect of Eq. (2) is that it defines µt+1

as a correction to the time-averaged chemical potential
µt, and not as a correction to the previous instantaneous
chemical potential µt. In this way, the estimator µt cap-
tures important information from the entire sampling his-
tory, and evolves on the same time scale as N t.

1. Estimating compressibility

The success of Eq. (2) depends crucially on the def-
inition of the time-averaged compressibility κt. Equa-
tion (1) suggests that we can estimate κ using the time-
averaged variance,

κfluc
t = βVart[N ]. (5)

For classical systems, Vart[N ] is defined as the sample
variance for the data {Nt/2, . . . Nt}. For quantum sys-
tems, a slightly modified definition is given in Eq. (17).
Generally, the fluctuation-based estimator κfluc

t becomes
valid at late times, once µt settles to a near constant
value. At early times, however, µt is evolving rapidly,
and the estimator κfluc

t is error prone. To ensure that
the update rule of Eq. (2) is reasonable at all times, we
impose carefully defined lower and upper bounds for our
final compressibility estimator,

κt = max
[
κmin
t ,min

(
κmax
t , κfluc

t

)]
. (6)

This ordering of the max and min operators ensures that
κt never vanishes.

Imposing the lower bound κmin
t protects against the

case where early-time fluctuations of N are artificially
small. This could happen in a QMC simulation, for ex-
ample, if the initial guess µt=0 is in one of the system’s
band gaps (Nt associated with fully occupied bands),
leading to a divergence in 1/κfluc

t . Since the error in
statistical observables decays like the inverse square root
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of the number of samples, a reasonable lower bound on
κt is given by

κmin
t =

α√
t+ 1

, (7)

for some appropriately defined α. Referring to Eq. (1), we
see that κ should scale like the system volume V divided
by an intensive energy. For the benchmarks in Sec. (III),
we will select α = Nsites/u0 where Nsites is the number
of lattice sites, and u0 is a characteristic energy scale.
Our tests indicate that algorithm performance is largely
insensitive to the precise choice of α. By design, κmin

t

decays to zero at large times t.
Imposing the upper bound κmax

t protects against the
case where early-time fluctuations of N are artificially
large. Although Eq. (5) is correct in thermodynamic
equilibrium, it produces a very poor estimator in the
out-of-equilibrium context of a dynamically evolving µt.
Changes to µt will, by design, generate a strong response
in Nt. Drift in Nt will cause a large overestimate of the
compressibility, κfluc

t ∼ Vart[N ] ∼ V 2. Recall that physi-
cal compressibility must scale like system size, κ ∼ V ,
which is apparent from the definition κ = d〈N〉/dµ.
To get a compressibility estimator with the correct scal-
ing, we can compare the typical variations in Nt and µt.
Specifically, we define the upper bound on κt to be

κmax
t =

√
Vart[N ]

Vart[µ]
, (8)

where Vart[µ] is the sample variance for {µt/2, . . . µt}.
At early times, when both µt and Nt are varying sig-
nificantly, it is assured that κmax

t ∼ κt ∼ V . At late
times, µt should settle to the target chemical potential,
whereas Nt will continue to exhibit equilibrium fluctu-
ations. Then κmax

t grows very large, and we expect to
recover the fluctuation-based estimator, κt = κfluc

t .

2. Method summary

Pseudocode for the full µ-tuning algorithm is listed in
Algorithm 1. The mean and variance estimators can be
updated in constant time using the methods described in
Appendix A. The user must provide an initial guess µt=0

for the chemical potential. Also required is a parameter
α that sets an approximate scale for the compressibility.

We make two final remarks regarding the algorithm.
Note, first, that convergence, µt+1 = µt, implies that the
target condition is satisfied, N t = N∗. Second, the dy-
namical update rules are inherently self-stabilizing. Sup-
pose that changes to µt are having no major effect on Nt.
Then the sample variance Vart[N ] will decrease, leading
to smaller κt. This, in turn, will drive larger updates
to the chemical potential. Eventually the magnitude of
these updates will be enough to produce the necessary
changes in Nt. Conversely, if changes to µt are having too
large of an effect on Nt, then compressibility estimator κt

will also grow large, and this will dampen the magnitude
of updates to µt+1. These self-stabilizing mechanisms
share conceptual similarities to those in standard PID
controllers [18, 19], though all parameters in our algo-
rithm are physically motivated and work robustly across
a range of systems.

Input: Target particle number N∗

Input: Initial guess µt=0 for the chemical potential
Input: Characteristic compressibility scale α
for t = 0, 1, . . . do

Perform MC sampling with chemical potential µt

Collect samples for 〈N〉 and (in the QMC context)
for 〈N2〉

Update time averages µt and N t

Update variance estimators Vart[µ] and Vart[N ]
Calculate κ estimate κfluc

t = βVart[N ]

Calculate lower bound κmin
t = α/(t+ 1)1/2

Calculate upper bound κmax
t =

√
Vart[N ]/Vart[µ]

Calculate bounded κ estimate
κt = max(κmin

t ,min(κmax
t , κfluc

t ))
Update µt+1 = µ̄t + (N∗ −N t)/κt

end
Algorithm 1: Chemical potential tuning. In the

language of magnetism, we would make the
substitutions of Eq. (10).

III. RESULTS

A. Ising Model

We begin by demonstrating our method on a well-
understood test case, the ferromagnetic Ising model on a
two-dimensional square lattice. The Hamiltonian is

H = −J
∑
〈ij〉

sisj −B
∑
i

si, (9)

where the sum over 〈ij〉 is over all nearest neighbor sites,
and si = ±1. For simplicity, all energies will be measured
in units of J = 1 and we likewise set the Boltzmann con-
stant kB = 1. The tunable quantity here is the magnetic
field B, which couples linearly to the total magnetiza-
tion M =

∑
i si. In this case, the magnetic susceptibility

χ = d〈M〉/dB = β
(
〈M2〉 − 〈M〉2

)
plays the role of the

compressibility κ. Algorithm (1) applies upon making
the following substitutions

µ 7→ B, N 7→M, κ 7→ χ. (10)

It will also be convenient to refer to the magnetization
per site, m = M/Nsites.

In zero field, this system undergoes a second-order
phase transition between the paramagnetic and ferro-
magnetic phases at a critical temperature Tc ≈ 2.27 [20].
Approaching Tc from above causes both the susceptibility
χ and the autocorrelation time to diverge. The distance
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Figure 1: Tuning the magnetic field B of the classical Ising model to achieve a target magnetization per site, m∗ =
1/2. We employ a 100× 100 square lattice, and temperature T = 2.5. (a) The dynamically evolving field Bt and its
running average Bt both eventually converge to B∗ ≈ 3.096(2) × 10−2. (b) Similar plots for mt = Mt/Nsites and its
running average mt; significant equilibrium fluctuations in mt are observed. (c) The susceptibility χ (analogous to
κ) is reasonably estimated by χt, with the lower and upper bounds, χmin

t and χmax
t , playing important roles at early

times. At long times the susceptibility converges to 7.76(4) × 104. Note that panel (c) is a log-log plot and extends
over longer times than panels (a) and (b).

T − Tc from the critical point offers an excellent means
to scale the “tuning difficulty”.

To begin, we investigate an example tuning run on a
100 × 100 Ising system at a temperature of T = 2.5,
starting with a uniformly random initial state. By sym-
metry, zero magnetization is achieved at zero field. To
make the tuning task more interesting, we aim to find
the magnetic field B = B∗ that produces a nonzero tar-
get magnetization-per-site of m∗ = 1/2. Despite the
presence of a small but finite field B∗ > 0, we still ob-
serve very large autocorrelation times when T approaches
Tc. To explore this effective critical slowing down,
we opt to use the standard single spin-flip Metropolis-
Hastings algorithm [21], though more advanced cluster
updates [22, 23] would also be compatible with the tun-
ing algorithm. The time index t is incremented once per
MC sweep, at which point a new measurement of the
total magnetization Mt is taken, and the field Bt+1 is
computed according to Algorithm 1 under the substitu-
tions of Eq. (10). The initial field is Bt=0 = 0. To set a
scale for χmin

t , we select α = Nsites/J .
In Fig. 1, we plot the result of dynamically tuning the

field Bt. Panels 1(a) and 1(b) show the time evolution
of Bt and mt, and their time averages. Panel 1(c) shows
estimators for the susceptibility χ (compressibility κ in
lattice gas language). The dynamics undergoes three dif-
ferent regimes, corresponding to the three branches in
the expression χt = max

[
χmin
t ,min

(
χmax
t , χfluc

t

)]
. For

the first few MC sweeps (t ≤ 3) there is essentially no
good susceptibility data. Here, the lower bound χmin

t of
Eq. (7) controls the estimator χt and prevents the al-
gorithm from making overly large corrections to Bt. In
the intermediate time regime of 3 < t . 103, the field
Bt is evolving significantly, and driving large changes to
mt. Here, the upper bound χmax

t of Eq. (8) controls the
estimator χt and correctly captures the approximate sen-

sitivity of magnetism to changes in the applied field. By
the end of this regime, fluctuations in Bt decrease signif-
icantly. Finally, at times t & 103, the fluctuation-based
estimator χfluc

t becomes accurate, and Bt converges pre-
cisely toward the solution B∗ ≈ 3.096(2)× 10−2.

In Fig. 2, we show the evolution of Bt for the same
Ising model, but now over a variety of temperatures. At
high T , the tuner converges to the correct value B∗ very
quickly. At temperatures approaching Tc ≈ 2.27, both
the autocorrelation time and the magnetic susceptibil-

0 1000 2000 3000 4000
t (MC Sweeps)

0.0

0.1

0.2

0.3

0.4

B

T= 3.5

T= 3.0

T= 2.6

T= 2.5

T= 2.4

T= 2.3

Figure 2: Dynamically tuning the magnetic field Bt
(solid lines) towards the solution B∗ (dashed lines)
which achieves a target magnetization per site m∗ =
1/2 for various temperatures above Tc ≈ 2.27. The
most challenging case tested is T = 2.3, for which early-
time values of Bt can go as high as 2.
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Figure 3: Errors in (a) the dynamically-tuned magnetic field and (b) the running-mean magnetization. We consider
Ising systems of various sizes, with T = 2.5 and target magnetization m∗ = 0.5. Error curves are averaged over 10
independent runs. The reference magnetizations B∗ are estimated, per system size, by averaging Bt at t = 5 × 106

over all 10 runs. The red curve in (b) results from a Nsites = 1002 simulation where B = B∗ is held fixed through-
out the entire simulation.

ity grow large, leading to difficulty in collecting accurate
statistics, and very high sensitivity to small changes in
the applied field. Despite the slower convergence near
Tc, the tuner appears to be working correctly in all cases
tested.

Figure 3 shows the error of the instantaneous field
|Bt−B∗| and the running-mean magnetization |m̄t−m∗|,
throughout the tuning process. Here we take T = 2.5
and m∗ = 1/2 as in Fig. 1, and allow system size to vary.
Our best estimates for B∗ are obtained by averaging over
10 independent runs, extending to t = 5 × 106 Monte
Carlo sweeps. The results are B∗ = 3.113(3)× 10−2 and
B∗ = 3.096(1) × 10−2, for lattice sizes Nsites = 252 and
1002, respectively. The system size dependence is rela-
tively minor, given our choice of T = 2.5. At tempera-
tures nearer to Tc ≈ 2.27, the B∗ would become smaller,
and their relative variation would depend more strongly
on system size.

The early time dynamics (up to ∼ 102 sweeps) of both
errors are seen to be system-size independent due to the
dynamics being dominantly controlled by our χmin and
χmax bounding scheme. Once χfluc gains control, we can
see a separation emerge as larger systems enjoy improved
statistics from increased self-averaging, resulting in faster
tuning. At these large times, the errors decay as t−1/2,
and the limiting factor in tuning becomes the statistical
error in the Monte Carlo estimates. In this regime, note
that the error in the average magnetization, |m̄t −m∗|,
is roughly independent of whether Bt is being tuned dy-
namically, or fixed to the correct value B = B∗ through-
out the simulation [shown as the red curve in Fig. 3(b)].

B. Holstein Model

We now demonstrate our method in a quantum Monte
Carlo (QMC) setting. As a test case we consider the
Holstein model, one of the simplest models describing
interactions between electrons and phonons on a lattice
[24]. The Hamiltonian is

Ĥ = −th
∑
〈ij〉,σ

(ĉ†i,σ ĉj,σ + h.c.)− µ
∑
i,σ

n̂i,σ

+
1

2

∑
i

P̂ 2
i +

ω2

2

∑
i

X̂2
i + λ

∑
i,σ

n̂i,σX̂i. (11)

The operator ĉ†i,σ creates an electron on site i with spin
σ, and n̂i,σ = ĉ†i,σ ĉi,σ is the electron number. The first
term in Ĥ describes hopping between nearest-neighbor
sites 〈ij〉. The Hamiltonian also includes bosonic posi-
tion and momentum operators, X̂i and P̂i, which models
a local phonon mode on site i with frequency ω. The
term proportional to λ couples the electrons and phonons
leading to a phonon mediated effective electron-electron
interaction. We set our energy units in terms of the hop-
ping amplitude th = 1, in which the value of the chemical
potential needed to obtain half-filling (i.e. one electron
per site on average) is known to be µ = − λ2

ω2 from a
particle-hole transformation [25]. Due to the Pauli ex-
clusion principle, at most two electrons can exist on a
single site.

The total electron number operator is N̂ =
∑

i,σ n̂i,σ.
Our goal is to tune the chemical potential µ to produce
a target density, 〈N̂〉 = N∗. Here, the expectation of an
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observable Ô is understood to mean〈
Ô
〉

= Z−1Tr e−βĤÔ, (12)

Z = Tr e−βĤ , (13)

and the trace runs over the entire Fock space.

1. Overview of quantum Monte Carlo

There are many forms of QMC. One widely used set of
methods begins by expressing the many-body partition
function Z = Tr e−βĤ as a path integral involving fields
that fluctuate in imaginary time. The aim is then to per-
form ordinary Monte Carlo sampling of these fluctuating
variables according to some appropriate probability dis-
tribution. In the determinant-QMC approach [6], which
is our focus here, one uses a Suzuki-Trotter expansion
inside the trace

Z = Tr e−∆τĤ0e−∆τĤ1 . . . e−∆τĤ0e−∆τĤ1︸ ︷︷ ︸
β/∆t imaginary time slices

+O(∆τ2),

(14)
with a carefully selected decomposition Ĥ = Ĥ0+Ĥ1. In-
serting a complete set of states at each discrete imaginary
time slice, 0 ≤ τ < β, introduces an effectively classical
field xτ,i which, when sampled, allows to estimate ob-
servables

〈
Ô
〉
. Each sample xτ,i is typically weighted ac-

cording to a fermionic determinant, P [x] ∝
∣∣∣detM†↑M↓

∣∣∣,
for an appropriate matrix function Mσ[x].

When this procedure is applied to the Holstein model,
the field xτ,i can be interpreted as “imaginary time fluctu-
ations” of the phonons. An analogous formalism is used
for sampling the gluon field in lattice quantum chromo-
dynamics (QCD), and we can borrow techniques from
that community. In particular, Langevin [7] and hybrid
Monte Carlo (HMC) sampling [26, 27] have both proven
effective for simulating electron-phonon models [28, 29],
and make it possible to update the entire field xτ,i at a
cost that scales near-linearly with system size. Here we
employ HMC. A complete account of our QMC method-
ology is presented in [30].

2. Chemical potential tuning for quantum models

Algorithm 1 remains valid in the QMC context pro-
vided that we are careful in estimating the compressibil-
ity κ. The thermodynamic relationship of Eq. (1) con-
tinues to hold,

κ =
d〈N̂〉
dµ

= βVar[N̂ ], (15)

where Var[N̂ ] = 〈N̂2〉−〈N̂〉2, and each expectation value
on the right-hand side is to be interpreted in the sense

of Eq. (12). An interesting feature of QMC, however, is
that unbiased samples Nt of 〈N̂〉 do not generally contain
sufficient information to estimate the variance of N̂ due
to neglecting within-sample fluctuations [31]. We can
still define a fluctuation-based estimator in the form of
Eq. (5),

κfluc
t = βVart[N̂ ], (16)

but now we must use

Vart[N̂ ] = N
(2)
t −

(
N t

)2
, (17)

whereN (2)
t denotes a statistical sample of the expectation

value 〈N̂2〉 defined in Eq. (12). Time-averages have the
same form as in Eqs. (3) and (4), but now we must also
track,

N
(2)
t =

1

Lt

t∑
t′=dt/2e

N
(2)
t′ . (18)

The quantity κmax
t remains as in Eq. (8), but using the

sample variance of Eq. (17). With these refinements to
κfluc
t and κmax

t , we can directly apply Algorithm 1 to tune
the chemical potential.

3. Single-Site Limit

As an initial demonstration, we examine the behav-
ior of Algorithm 1 in the single-site limit of the Holstein
model (th = 0). This model admits an analytic solution
by the Lang-Firsov transformation [32, 33], but nonethe-
less serves as a challenging test-case for µ-tuning. The
effective action S[x] resulting from Eq. (11) possesses
two deep local minima (associated with electron number
0 or 2) due to an effective electron-electron attraction
that is mediated by the phonons. MC sampling of the
phonon field xτ is characterized by long periods of trap-
ping within one minima, punctuated by rare hops across
the barrier into the other. Strong hysteresis creates a
challenge for µ-tuning; adjusting the chemical potential
µt may affect measurements of electron number Nt′ only
after a very large amount of simulation time, t′ � t.

We consider a model with ω = 1, λ =
√

2 at β = 4.
These are values commonly used in studies of the charge
density wave transition in the Holstein model, which oc-
curs at βc ∼ 6 when th = 1 [34]. We aim for a tar-
get electron number of 〈N̂〉 = 1, i.e. half filling. This
corresponds to finding the chemical potential at which
the average occupancies of the two metastable states are
equal. In the single site limit at half filling, the exact
chemical potential and compressibility are µ∗ = −λ2/ω2

and κ∗ = β/(1 + eβµ
∗/2). We use an initial guess for the

chemical potential, µ0 = 0, that is purposefully distant
from the true value µ∗ = −2. To set a scale for κmin

t , we
select α = Nsites/ω.
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Figure 4: Tuning the chemical potential µt of a single-site Holstein model with ω = 1, λ =
√

2, and β = 4 to achieve
half-filling, N∗ = 1. The target chemical potential is exactly µ∗ = −2. Early time fluctuations in µt are of order 10.
In the absence of dynamical µ-tuning, the natural transition rate between metastable wells is of order ∆t = 102.

Figure 4 illustrates a representative µ-tuning run.
Each increment in time t corresponds to a single HMC
trial update. At early times, Fig. 4(b) shows sharp transi-
tions (“jumps”) in the measurementsNt, which are largely
driven by changes in µt. These jumps correspond to tran-
sitions between the two metastable wells, and in the ab-
sence of µ-tuning, would occur on the time-scale of 102

HMC trial updates.
Figure 4(c) shows that each of the early-time jumps be-

tween metastable wells is accompanied by a large spike
in κ̄t, which reflects the large change in Nt. After each
jump, there is a significant period of time where Nt is
roughly constant, which causes κ̄t to drop. At times
t . 100, the upper bound κmax is instrumental in allow-
ing the tuning dynamics to make significant corrections
to µ, which drive the density back and forth between
metastable wells on an exponentially growing time scale.
At around t ≈ 100, we reach the time scale required
for natural (equilibrium) jumps between the the two
metastable wells. At this point, the algorithm switches
over to the fluctuation-based compressibility estimator
κ̄t = κfluc

t , as observed Fig. 4(c). At times t & 100, the
errors in statistical estimators decay like t−1/2 in a con-
trolled fashion.

4. Full 2D system

Finally, to benchmark our algorithm in a more realis-
tic setting, we consider a square lattice Holstein model
with phonon frequency ω = 1 and coupling strength
λ =
√

2. We consider a square lattice of size L = 10, with
Nsites = L2 total sites. At half-filling the ground state is
characterized by a finite temperature phase transition to
charge-density-wave (CDW) order, where the electrons
localize onto one of the two sublattices, spontaneously
breaking a Z2 symmetry. For our chosen parameters the
critical inverse temperature is approximately β ∼ 6.

We test our algorithm at an inverse temperature β =
10. At half-filling, this low temperature gives rise to

a gapped CDW phase. When doped sufficiently away
from half filling, and at sufficiently low temperature, the
system is expected to transition to a superconducting
phase[35, 36].

We measure the CDW order using the staggered charge
susceptibility

χcdw =

∫ β

0

∑
r

(−1)
(rx+ry)

C (r, τ) dτ, (19)

defined in terms of the real-space density-density corre-
lation function

C (r, τ) =
1

N

∑
i

〈n̂i+r(τ)n̂i(0)〉 , (20)

where n̂i(τ) = n̂i,↓(τ)+ n̂i,↑(τ) denotes the total electron
number on site i at imaginary time τ . A signature for
superconducting order is given by the pair susceptibility

Ps =
1

Nsites

∫ β

0

〈
∆̂ (τ) ∆̂† (0)

〉
dτ, (21)

where ∆̂ (τ) =
∑
i ĉi,↓ (τ) ĉi,↑ (τ).

In Fig. 5 we compare two sets of simulation results,
one where µ is held fixed, and the other where we tune
µ to a target density that was measured in the first set
of results. All simulations employed t = 5×103 thermal-
ization HMC steps. Following this, we performed 5×104

steps, with measurements taken at every step. For the
dynamical µ simulations we initialized the chemical po-
tential to µt=0 = 0 and set α = Nsites/ω. The chemical
potential was continually updated throughout the simu-
lation, but had largely converged already by the end of
the thermalization process. There is very good agree-
ment between the two sets of data; the error bars with
µ-tuning enabled are not discernibly larger than with µ
fixed to its target value.

Figure 5(a) shows the density as a function of the
chemical potential. The plateau at half filling (µ = −2)
illustrates the gapped CDW phase. The relatively large
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Figure 5: Comparison of several observables measured
in a 10 × 10 Holstein model under the fixed-µ scheme
(black), and under dynamic µ-tuning scheme aiming to
achieve a target density (red). Horizontal error bars on
the red markers indicate uncertainty as measured by
the standard error of µ.

horizontal error bars in the tuned value of µ near half-
filling are associated with a vanishing compressibility κ,
Fig. 5(b). In other words, a fairly wide range of chemical
potentials give rise to (approximately) half-filling. Ob-
serve that the plateau in 〈n〉 = 〈N〉/Nsites corresponds
to a strong enhancement of χcdw in Fig. 5(c) and a sup-
pression of Ps in Fig. 5(d). With enough doping, at ap-
proximately µ = −2.3 and µ = −1.7, the marker χcdw for
CDW order rapidly vanishes. Simultaneously, the den-
sity rapidly shifts away from half-filling, as reflected by
the two peaks in the compressibility κ. We emphasize
that the µ-tuning algorithm performs well throughout
the diverse range of behaviors exhibited in this model.

IV. DISCUSSION

The dynamical µ-tuning algorithm presented in Algo-
rithm 1 enables simulation in the grand-canonical ensem-
ble while targeting a fixed mean particle number. The
algorithm is straightforward to implement, and imposes
negligible computational overhead. Note that all running
time averages can be updated in constant time using the
formulas of Appendix A.

Under the proposed scheme, the chemical potential µ is
adjusted concurrently with the MC sampling. Although
we do not provide formal convergence guarantees, the
method works well in practice. For long-running simu-
lations, most statistical samples will be collected after µ
has approximately converged to its target value, and our
benchmarks show that errors are well controlled.

Models with long autocorrelation times present a prac-
tical challenge, in that it becomes difficult to assess the
impact of a modified µ value on the resulting mean par-
ticle number 〈N〉. Our solution is to effectively collect
statistics over increasingly large time-windows such that,
eventually, both 〈N〉 and its sensitivity κ = d 〈N〉 /dµ
can be accurately measured. We demonstrated that our
scheme works well even in very challenging cases, such as
the Ising model approaching criticality, and the single-
site Holstein model with strong metastability due to
phonon-mediated electron binding and associated large
energy barriers. The method also works well for larger-
size quantum Monte Carlo simulations of the Holstein
model on the square lattice, including at filling fractions
coinciding with a charge density wave gap, where κ ap-
proximately vanishes.

Many variations of the µ-tuning algorithm could be
studied. For example, one could modify the definition
of the running time averages in Eqs. (3) and (4) to
“smoothly forget” past data, with the goal of reducing un-
derdamped oscillations in the early-time dynamics of the
tuned field, e.g., in Figs. 1(a) and 4(a). One might also
explore whether ideas for accelerating fixed point solvers
(e.g., Anderson mixing) could somehow be incorporated
into Eq. (2), which updates µ as a correction to the time-
average µ. In our preliminary tests, however, we could
not find any modifications to the algorithm that signif-
icantly improved accuracy over large simulation times.
Indeed, Figs. 3 and 5 suggest that the µ-tuning algorithm
is already close to optimal; errors in long-time statisti-
cal measurements are observed to be about the same,
whether µ is dynamically tuned or statically fixed to the
exactly correct value.
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CODE AVAILABILITY

Code and an interactive interface to explore tuning
for the Ising system is available at https://colemiles.
github.io/ising-tuner. Code for Holstein simula-
tions, with µ-tuning built-in, is available at https://
github.com/cohensbw/ElPhDynamics. A general pur-
pose implementation of the algorithm is provided by
the Julia package MuTuner.jl, available at https://
github.com/cohensbw/MuTuner.jl.

Appendix A: Updating running time-averages

The µ-tuning algorithm require to maintain running
averages of the form

xt =
1

Lt

t∑
t′=dcte

xt′ , (A1)

where Lt = t − dcte + 1 is the count of samples in the
average, and d·e denotes the ceiling function. We selected
c = 1/2 for our study, but other values 0 < c < 1 are
possible. The xt data could be one of the following: the
instantaneous chemical potential µt, a sample Nt for the

particle number, or (in the QMC context) a sample N (2)
t

for the particle number squared.
After each MC time step, we wish to update the run-

ning average from xt to xt+1. It is helpful to distinguish
between two cases,

Case A : dc(t+ 1)e = dcte
Case B : dc(t+ 1)e = dcte+ 1.

These are the only two possibilities given our assumptions
that 0 < c < 1 and t is integer.

In Case A we must add the new datapoint xt+1 to the
running average. In Case B we must additionally remove
the datapoint xdcte from the running average. The up-
date rule is then,

xt+1 =

{
(Ltxt + xt+1)/Lt+1 Case A
(Ltxt + xt+1 − xdcte)/Lt+1 Case B.

(A2)

In Case A the number of datapoints increases by one,
Lt+1 = Lt + 1, whereas in Case B, Lt+1 = Lt. We can
therefore rearrange as,

xt+1 =

{
xt + (xt+1 − xt)/Lt+1 Case A
xt + (xt+1 − xdcte)/Lt+1 Case B,

(A3)

which improves numerical accuracy.
We are also interested in keeping a running estimate

of the sample variance,

Vart[x] = x2
t − (xt)

2
, (A4)

or, for quantum observables, the closely related Eq. (17).
The formula suggests that we maintain a running average
x2
t , through which the variance follows immediately. To

estimate Var[N̂ ] in QMC simulations, such a strategy
may be necessary. Whenever possible, however, direct
numerical implementation of Eq. (A4) should be avoided
due to potentially large floating point round-off error. A
much improved algorithm was proposed by Welford [37],
which we here adapt.

The sample variance can be equivalently written,

Vart[x] = Mt/Lt, (A5)

where

Mt =

t∑
t′=dcte

(xt′ − xt)2
. (A6)

After a somewhat lengthy derivation, one finds the recursion relation,

Mt+1 =

{
Mt + (xt+1 − xt)(xt+1 − xt+1) Case A
Mt +

(
xt+1 − xdcte

) (
xt+1 − xt+1 + xdcte − xt

)
Case B,

(A7)

which is numerically stable and easy to implement given that we are already maintaining the running average xt.

https://colemiles.github.io/ising-tuner
https://colemiles.github.io/ising-tuner
https://github.com/cohensbw/ElPhDynamics
https://github.com/cohensbw/ElPhDynamics
https://github.com/cohensbw/MuTuner.jl
https://github.com/cohensbw/MuTuner.jl
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Note that Cases A and B coincide when xdcte = xt.
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