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The concept of multifractality offers a powerful formal tool to filter out a multitude of the most relevant characteristics of complex
time series. The related studies thus far presented in the scientific literature typically limit themselves to evaluation of whether a
time series is multifractal, and width of the resulting singularity spectrum is considered a measure of the degree of complexity
involved. However, the character of the complexity of time series generated by the natural processes usually appears much more
intricate than such a bare statement can reflect. As an example, based on the long-term records of the S&P500 and
NASDAQ—the two world-leading stock market indices—the present study shows that they indeed develop the multifractal
features, but these features evolve through a variety of shapes, most often strongly asymmetric, whose changes typically are
correlated with the historically most significant events experienced by the world economy. Relating at the same time the index
multifractal singularity spectra to those of the component stocks that form this index reflects the varying degree of correlations
involved among the stocks.

1. Introduction

Multifractality is a concept that is central to the science of
complexity. The related multiscale approach [1–3] aims at
bridging the wide range of time and length scales that are
inherent in a number of complex natural phenomena, and
as such, it pervades essentially all scientific disciplines [4].
By now, it finds applications in essentially all areas of the
scientific activity, including physics [5, 6], biology [7–9],
chemistry [10, 11], geophysics [12, 13], hydrology [14],
atmospheric physics [15], quantitative linguistics [16, 17],
behavioural sciences [18], cognitive structures [19], music
[20, 21], songbird rhythms [22], physiology [23, 25], human
behaviour [24, 26, 27], social psychology [28], and even
ecological sciences [29], but especially frequently in economic
and in financial contexts [30–41] as stimulated by practical
aspects and by needs to develop models of the financial

dynamics based on multifractality [31, 42–45] such that they
help in making predictions. Indeed, the multifractal analyses
of the financial time series have provided so far most of the
quantitative evidence for the factors that induce the genuine
multifractality, such as the temporal long-range nonlinear
correlations and, only when such correlations are present,
the fat tails in the distribution of fluctuations [46]. In order
to unambiguously identify action of such factors and to sup-
press potential spurious multifractality, the time series under
study have to be, however, sufficiently long [47]. In addition,
the realistic time series, as generated by the natural phenom-
ena, even if of multifractal character, are typically more
involved in composition than the model mathematical uni-
formmultifractals, and they may contain several components
of different multifractality characteristics. In such frequent
cases, the global hierarchical organization of the series gets
distorted, and themultifractal spectrumbecomes asymmetric,
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either left- or right-sided, as recently demonstrated in ref.
[48]. Detecting such effects may provide even more valuable
information about the mechanism that governs dynamics of
a particular time series than just a bare statement that it is
multifractal. Such effects of asymmetry are, for instance,
already found to constitute a very helpful formal tool in
identifying a specific organization of complex networks
[49]. Furthermore, directions of the relevant distortions
may vary in time parallel to changes of weight of the constit-
uent components in a series. The most straightforward can-
didate to experience this kind of impact is the stock market
index which, by construction, is already a sum, most often
weighted, of prices of the constituent companies, and those
companies themselves may react differently for the same
external news depending of the sector they belong to. It is
primarily for this reason that below, the world largest stock
market indices are studied. Of course another, more specific,
market-oriented reason for this study is to broaden our
historical perspective on evolution of the stock market
multiscale characteristics over periods comprising the global
crashes or transitions due to the technological revolution
in trading.

2. Multifractal Formalism

At present, there exist two distinct, commonly accepted, and
complementary computational methods that serve quantifi-
cation of the multifractal characteristics of the time series.
One of them—the wavelet transform modulus maxima
(WTMM) [3]—makes use of the wavelet expansion of the
time series under consideration, and the other one—the mul-
tifractal detrended fluctuation analysis (MFDFA) [50]—is
based on inspecting the scaling properties of the varying
order moments of fluctuations evaluated after an appropriate
trend removal. While the former of those techniques allows a
better visualization of the underlying patterns in the time
series, the latter one often appears more accurate and more
stable numerically, and it will therefore be used here. Fur-
thermore, at present, there exists a consistent generalization
of MFDFA such that it even allows to properly identify and
quantify the multifractal aspects of cross-correlations
between two time series [51–53]. This novel method, termed
multifractal cross-correlation analysis (MFCCA), consists of
several steps that at the beginning are common to all the
methods based on detrending.

One thus considers two time series xi and yi, where
i = 1, 2,… , T . The signal profile is then calculated for each
of them:

X j = 〠
j

i=1

xi − x ,

Y j = 〠
j

i=1

yi − y ,

1

where denotes averaging over the entire time series. Next,
both these signal profiles are split up into 2Ms (Ms = int T/s )
disjoint segments ν of length s starting both from the

beginning and the end of the profile, and in each ν, the
assumed trend is estimated by fitting a polynomial of order

m (P
m
X,v for X and P

m
Y ,v for Y). In typical cases, an optimal

choice corresponds to m = 2 [54]. This trend is subtracted
from the series, and the detrended cross-covariance within
each segment is calculated:

F2
xy v, s =

1

s
〠
s

k=1

X v − 1 s + k − P
m
X,v k

× Y v − 1 s + k − P
m
Y ,v k

2

Since F2
xy v, s can assume both positive and negative

values, the qth-order covariance function is defined by the
following equation:

Fq
xy s =

1

2Ms

〠
2Ms

v=1

sign F2
xy v, s F2

xy v, s
q/2
, 3

where sign F2
xy v, s denotes the sign of F2

xy v, s . The

parameter q in (3) can take any real number except zero.How-
ever, for q = 0, the logarithmic version of this equation can be
employed [50]:

F0
xy s =

1

2Ms

〠
2Ms

v=1

sign F2
xy v, s ln F2

xy v, s 4

Fractal cross-dependencies between the time series xi and
yi manifest themselves in the scaling relations:

Fq
xy s 1/q = Fxy q, s ∼ sλq , 5

or exp F0
xy s = Fx,y 0, s ∼ sλ0 for q = 0, where λq is the cor-

responding scaling exponent whose range of dependence on q
quantifies the degree of the complexity involved. Scaling with
the q-dependent exponents reflects a richer,multifractal char-
acter of correlations in the time series as compared to the
monofractal case when λq is q-independent.

The conventional MFDFA procedure of calculating the
singularity spectra for single time series can be considered a
special case of the above MFCCA procedure and corresponds
to taking xi and yi as identical. Equation (3) then reduces to

F q, s =
1

2Ms

〠
2Ms

v=1

F2 v, s
q/2

1/q

, 6

and to a corresponding counterpart of (4) for q = 0. The sig-
natures of multifractality (monofractality) are then reflected,
analogously to (5), by

F q, s ∼ sh q , 7
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where h q denotes the generalized Hurst exponent. The sin-
gularity spectrum (also referred to as multifractal spectrum)
f α is then calculated from the following relations:

α = h q + qh′ q ,

f α = q α − h q + 1,
8

where α denotes the Hölder exponent characterizing the sin-
gularity strength and f α reflects the fractal dimension of
support of the set of data points whose Hölder exponent
equals α. In the case of multifractals, the shape of the singu-
larity spectrum typically resembles an inverted parabola
and the degree of their complexity is straightforwardly quan-
tified by the width of f α :

Δα = αmax − αmin, 9

where αmin and αmax correspond to the opposite ends of the α
values as projected out by different q-moments (see (6)). For
monofractal signals, the spectrum converges to a single point,
though in practice, this often turns out to be a subtle matter
[47]. Another important feature of the multifractal spectrum
is its asymmetry (skewness), which can be quantified by the
asymmetry coefficient [48]:

Aα =
ΔαL − ΔαR
ΔαL + ΔαR

, 10

where ΔαL = α0 − αmin and ΔαR = αmax − α0, and for α0, the
spectrum f α assumes maximum. The positive value of Aα

reflects the left-sided asymmetry of f α ; that is, its left arm
is stretched with respect to the right one and, thus, more
developed multifractality on the level of large fluctuations
in the time series. Negative Aα, on the other hand, reflects
the right-sided asymmetry of the spectrum and indicates
temporal organization of the smaller fluctuations as the main
source of multifractality.

A family of the fluctuation functions as defined by (3) can
also be used to define a q-dependent detrended cross-
correlation (qDCCA) [55] coefficient

ρq s =
Fq
xy s

Fq
xx s Fq

yy s
, 11

which allows to quantify the degree of cross-correlations
between two time series xi and yi after detrending and at
varying time scales s. Furthermore, by varying the parameter
q, one is able to identify the range of detrended fluctuation
amplitudes that are correlated the most in the two signals
under study [55]. This filtering ability of ρq s constitutes

an important advantage as cross-correlations among time
series typically are not uniformly distributed over their
fluctuations of different magnitude [56].

3. Data Specification

In the present study, two sets of data are used:

(i) Daily prices of the S&P500 and NASDAQ indices
covering the period January 03, 1950–December 29,
2016 (16,496 data points). The values of theNASDAQ
before 1971 (official launching date of the index is
February 05, 1971) were reconstructed from the
historical data [57].

(ii) Daily prices of 9 stocks listed on the NYSE over the
period from January 1, 1962, to July 07, 2017 (13,812
points). The analysed companies are GE (General
Electric), AA (Alcoa), IBM (International Business
Machines), KO (Coca-Cola), BA (Boeing), CAT
(Caterpillar), DIS (Walt Disney), HPQ (Hewlett-
Packard), andDD (DuPont). These in fact are the only
stocks that participate in the Dow Jones Industrial
Average (DJIA) over such a long period of time and
thus also in the S&P500. They, however, represent a
large spectrum of the economy sectors and may thus
be considered as a reasonable representation for the
larger American indices.

For each time series, the logarithmic returns are calcu-
lated according to the equation:

r t + Δt = ln p t + Δt − ln p t , 12

where p t denotes the stock price or index value and Δt
stands for time interval (Δt = 1 day). All time series are
normalized to have unit variance and zero mean.

4. Results

4.1. S&P500 and NASDAQ. The MFDFA multifractal spectra
f α for the S&P500 and NASDAQ indices are shown in
Figure 1. For both these indices, the fluctuation functions F
q, s reveal a convincing power-law behaviour over almost
two decades, which is shown in the corresponding lower-
right insets; thus, f α is determined unambiguously. The
parameters q are taken within the interval −4 ≤ q ≤ 4, which
is common in financial applications because it allows to
safely avoid the danger of divergent moments when the fluc-
tuation functions F q, s are computed. Cumulative distribu-
tions of the return fluctuations for the two indices considered
here are shown in the corresponding upper-left panels of
Figure 1 and can be seen not to develop thicker tails than
the inverse cubic power law [58, 59], and there is thus no
danger of the divergent moments. The width of the resulting
spectra Δα ≈ 0 4 for the S&P500 and 0.32 for the NASDAQ,
correspondingly. The significance of this result is also tested
against the two null hypotheses of f α calculated from (i)
the series obtained from the original ones by a random
shuffling, thus destroying all the temporal correlations (green
triangles), and (ii) Fourier-phase randomized counterparts of
the original series which destroys the nonlinear correlations
(blue squares). Clearly, the f α spectra in these two tests
get shrank to a form characteristic to monofractals. An
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additional form of surrogates tested here are time series with
the Gaussianized pdfs. In the latter case, the original pdf is
replaced by a Gaussian distribution while the amplitude
ranks of fluctuations remain preserved. The resulting multi-
fractal spectra appear only slightly narrower than the original
ones, and therefore, they are not shown in Figure 1. All these
tests thus provide a convincing evidence for quite a rich
multifractality of the original time series and, moreover, cor-
roborate the fact that this multifractality is, as expected [47],
due to the nonlinear temporal correlations. The obtained
multifractal spectra are at the same time visibly left-sided
asymmetric [48]. The asymmetry coefficient Aα ≈ 0 3 for
the S&P500 and 0.31 for the NASDAQ. The left side of
f α is determined by the positive q values which filter
out larger events, and the opposite applies to the right side
of this spectrum. In the present context, this thus means
that it is the dynamics of the large returns which develop
more pronounced multifractal organization than those of
the small returns.

Figure 1 shows the result of calculations over the entire
time span where the time series are taken. It appears that
probing this period with a shorter window rolling in time
reveals a nontrivial and a very interesting time dependence
of the corresponding multifractal spectra. Here, the window
size is taken over 5000 data points (equivalent to about 20
years) which in the presence of temporal correlations is suffi-
ciently long to guaranty stability of the result [47] (absence of
such correlations demands significantly longer series [47]),

and the window is moved with the step of 20 points (approx-
imately one calendar month). The results of such a procedure
are highlighted in Figure 2 for the S&P500 and in Figure 3 for
the NASDAQ. Panels (a) in these figures show sequences of
the singularity spectra f α , calculated within such windows
consecutively, and the calendar date assigned to each f α
corresponds to the end point within a window. Thus, for
the time series which begin, as here, in January 1950, the first
date appearing in Figures 2 and 3 corresponds to January
1969. In order to better visualize evolution of Δα and of Aα,
the panels (b) in these figures show projections of f α onto
the time t − α plane. The three historically most recognized
events that influenced the world financial markets are indi-
cated by the vertical dashed lines. These are the Black Mon-
day of October 19, 1987; burst of the Dot-com bubble in
March 10, 2000; and bankruptcy of Lehman Brothers in
September 15, 2008. Clearly, evolution of f α in such a
20-year time window reveals sizeable changes in the width
of f α and in its asymmetry, both going somewhat differ-
ently in the two indices, however. For S&P500 until about
1985, the spectrum is comparatively broad and then starts
quick narrowing, but this narrowing primarily results from
shrinkage of the right arm in f α . For the time window
ending in around 1993, this arm almost disappears and
starts recovering only in recent years. Interestingly, the left
side of f α got broadened even a few years earlier. The
NASDAQ spectrum f α also experiences sizeable changes
in time but differently than the one for the S&P500. On
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Figure 1: Main panels: multifractal spectra calculated for the S&P500 and NASDAQ returns (black dots) covering the period January 03,
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series are denoted by blue squares and green triangles, respectively. Upper-left insets display cumulative distributions of return
fluctuations, and lower-right insets display the fluctuation functions calculated for the original S&P500 and NASDAQ series.

4 Complexity



average, this spectrum is broader and strongly asymmetric
for time windows ending between about Black Monday and
the burst of the Dot-com bubble in 2000, but here, this asym-
metry results from a sudden stretching of the left side of f α
while the right side does not experience much changes.

In Figures 2 and 3, one also sees changes in location of
the maxima of f α which are related to a degree of persis-
tence in time series. A parameter that directly quantifies
this property is the Hurst exponent H = h 2 . Figure 4
shows the Hurst exponents H, the widths Δα, the asymme-
try coefficients Aα, and the widths ΔαL R , for the time

sequence of the multifractal spectra already presented in
Figure 2 (S&P500), whereas Figure 5 shows these character-
istics corresponding to Figure 3 (NASDAQ). The two dates
seen to be related to almost discontinuous changes in some
of these quantities are the Black Monday of October 19,
1987, and the bankruptcy of Lehman Brothers in September
15, 2008, and these two dates are indicated by the vertical
dashed lines. While Black Monday affected the NASDAQ
much more spectacularly than the S&P500, though the lat-
ter started assuming similar trends already some 2 years
earlier, the effect of the bankruptcy of Lehman Brothers
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Figure 2: (a) For the S&P500 from January 03, 1950, to December 29, 2016, the sequence of singularity spectra f α calculated within a rolling
20-year window. The calendar date assigned to each f α corresponds to the end point within a window. This window is moved with the step
of 20 points which corresponds approximately to one calendar month. The black sold line corresponds to the left and the blue line to the right
side of f α . (b) Projections of f α of (a) onto the time t − α plane. The red line illustrates displacement of the maxima of f α in the
consecutive windows. Vertical dashed lines indicate the Black Monday of October 19, 1987; burst of the Dot-com bubble in March 10,
2000; and bankruptcy of Lehman Brothers in September 15, 2008.
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was just the opposite. This time, it is the S&P500 which
reveals a sudden increase of Δα by a factor of about 2,
but remarkably, this increase is entirely due to stretching
of the left arm of f α . A partial identification of the origin of
these S&P500 versus NASDAQ differences comes from
Figure 6, which displays fluctuations of the daily returns of
these two indices and, as the most informative, the time
dependence of the local (in the rolling window of s = 500
trading days) detrended variance. In around the Black
Monday, this variance is much larger for the NASDAQ than
for the S&P500, and this goes in parallel with a sharp stretch-
ing of the left arm in f α for the NASDAQ. On the other
hand, in around the bankruptcy of Lehman Brothers, even
though the NASDAQ detrended variance still is somewhat
larger than the one of the S&P500, it is much smaller than
around the period of the Dot-com burst. In the S&P500 case,

the corresponding development is just reversed, and larger
variance accompanies the bankruptcy of Lehman Brothers.
Thus, in this latter period, the detrended variance of the
NASDAQ decreases while the one of the S&P500 increases,
and it is in this period when the left arm of f α for the
S&P500 experiences a sudden stretching. Worth noticing is
also the fact that the Hurst exponents H of these two indices
on average decrease when going from past to present and in
recent years assume values even lower than 0.5, which indi-
cates antipersistence [60]. Especially monotonic in this
respect is the S&P500—one of the most significant global
indicators of the world economy—whose Hurst exponent
on average systematically decreases over the whole time
span considered, and in the last couple of years, it even
steadily dropped down below 0.4. There are presumptions
[60, 61] that such values of H indicate proximity to a
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Figure 3: The same as in Figure 2, but analysis is carried out for the NASDAQ data.
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crash zone. In view of this result, the log-periodic scenario
[62] indicating danger of a much larger world economic
decline in around 2025 than anything the World has expe-
rienced so far needs to be taken into consideration more
and more seriously.

The window-probed multifractal spectra of Figures 2 and
3 for the S&P500 and for the NASDAQ resemble each other
more in the first half of the entire considered interval, until
about the mid-1980s, than in the following second half. This
similarity or dissimilarity appears to occur even on the
deeper level of their multifractal synchrony as reflected by
the appropriate cross-correlation measures expressed by (5).
The two approximately 20-year-long time periods taken from
inside of these halves are selected as September 25, 1957–
August 26, 1977, and May 19, 1989–March 20, 2008; the
cross-correlation fluctuation functions between the S&P500
and the NASDAQ calculated according to (5), and the
result is shown in Figure 7. It is very interesting to see
that in the first of these periods, the fluctuation functions
display a clear tendency to scaling, which indicates cross-
correlations between the two indices even on the level of
their multifractal organization. This holds down to the
level of their small fluctuations as measured by the nega-
tive q values. In the second of these time intervals, while
for the positive q values one may still see some remnants
of scaling, for the negative q values there is none; thus,
the indices are systematically losing their multifractal syn-
chrony, and on the level of the small fluctuations, this
synchrony is lost completely.

4.2. Index versus Companies. It is natural to expect that sig-
nificant changes in time of the multifractal features of the

two indices seen in the previous subsection reflect different
market phases, and such phases vary in a degree of coupling
among the component shares [63]. These are the individual
stocks which are traded, and only a superposition of their
multifractal characteristics, not necessarily identical, deter-
mines f α of an index. It is clear that in an uncorrelated
sum of many multifractal time series, the multifractality
gradually disappears when the number of component series
increases, and in addition, this limiting case is typically
approached asymmetrically [48]. One may thus anticipate
that stronger coupling among the companies that form a
basket of an index favours multifractality of that index as
well. In the present context, in order to study such effects in
more detail, by summing up prices of the 9 companies listed
in Section 3, a proxy of the DJIA is formed. It, however,
amazingly accurately follows changes in the full DJIA and
even all the significant moves in the S&P500, as can be seen
from Figure 8. This is likely to reflect the fact that the 9
companies are dispersed over different market sectors, and
in total, they well represent the global DJIA market.

The results of calculations relating to the multifractal
spectra f i α , projected onto the time t − α plane, of these
N = 9 companies labelled by i (thus, here i = 1,… , 9), for
illustrative clarity represented by one average f α =N−1

∑i=N
i=1 f i α and of the index constructed from these 9 compa-

nies, in the same rolling window as before, are displayed in
panels (a) and (b) of Figure 9, correspondingly. Several inter-
esting observations based on these results can be made. One
main finding is that the width Δα of f is never smaller than
that of the global 9-company index, which is understandable
because equality is expected in the case of perfect correlation
among prices of all the participating companies. Some dec-
orrelation, which is always the case in real markets, should
result in narrowing f α of the global, here 9 companies,
index. A significantly larger difference between the widths
of multifractal spectra in the two cases considered is observed
for the time period between the Black Monday and the bank-
ruptcy of Lehman Brothers, and the transition is nearly
sharp. This difference originates, however, from a sudden
stretching of the left side in f α within that period, which
indicates that multifractality of the price changes of individ-
ual companies is much more pronounced on the level of
larger fluctuations than on the level of small ones. When
prices of these companies are summed up to form a global
9-company index, this huge left-side stretching is signifi-
cantly reduced, which indicates that the large fluctuations
of individual stocks are not fully correlated among them-
selves. Still, within this most volatile period (Figure 6) in
the market, even the global index preserves the left-sided
asymmetry in f α indicating dominance of nonlinear corre-
lations on the level of large fluctuations.

An especially interesting related case occurs in the period
between October 1990 and April 1994 indicated in Figure 9
by the two vertical dotted lines. In this period, the multifrac-
tal spectra of the individual companies on average develop
broad multifractal spectra while f α of the corresponding
global 9-company index is so narrow that it can be consid-
ered as monofractal. One possible reason for such a result is
a substantial suppression of cross-correlations among price
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changes of the component stocks [48]. Such a possibility is
verified using the correlation matrix

C =
1

T
MM

T, 13

whereM denotes a N × T rectangular matrix formed from N
time series xi t of length T . Entries of the matrix C thus
correspond to the conventional Pearson correlation coeffi-

cients. By diagonalizing C (Cvk = λkv
k), one obtains the

eigenvalues λk k = 1,… ,N and the corresponding eigenvec-

tors vk. In the limiting case of entirely random signals, the
density of eigenvalues ρC λ is known analytically [64, 65] as

ρC λ =
Q

2πσ2
λmax − λ λ − λmin

λ
, 14

where the lower λmin and upper λmax bounds of this distribu-
tion are given by

λmax
min = σ2 1 +

1

Q
± 2

1

Q
15

In this expression, Q = T/N ≥ 1 and σ2 is equal to the
variance of the time series. The degree of departure of the
largest eigenvalue λ1 above λmax is a measure of the strength
of correlations among the time series participating [4, 66].

Changes of the magnitude of the largest eigenvalue λ1 in
the rolling time window of length T = 100 trading days for
the present N = 9 versus the noise regime as set by λmax and
λmin for these particular values of T and N are shown in
Figure 10. Furthermore, in the same figure, changes of the
largest eigenvalue γ1 of an analogous matrix composed of
the ρq s coefficients as defined by (11) taking q = 2 for

s = 100 are also shown. Clearly, in both these measures, the
largest eigenvalues assume the lowest values in the period
of interest, just between October 1990 and April 1994. At
one point, the λ1 value even touches the border of purely
random series. Thus, the scenario of the least correlated 9
companies here studied in this time period applies, indeed,
which explains a narrow f α of the global 9-company index.

5. Conclusions

Quantification of the complex time series in terms of multi-
fractality nowadays finds a multitude of applications in
diverse areas. Thus far, however, majority of the related stud-
ies presented in the scientific literature limit themselves to a
sole estimation of the singularity spectrum, and if found mul-
tifractal, it usually is treated as evidence of the hierarchical
organization of such series, and the width of such a spectrum
is considered a measure of the degree of complexity involved.
While this indicates some kind of a cascade-like, hierarchical
organization indeed, in realistic cases, such an organiza-
tion is rarely uniform. The time series generated by natu-
ral processes may include many convoluted components
with different hierarchy generators each, which results in
asymmetry of the singularity spectra. Even more, contribu-
tion of such components may vary in time, and this thus
may introduce further dynamical variability. Definitely, the
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financial markets constantly functioning in evolving external
conditions represent a natural candidate to become a subject
of such effects. This can be anticipated to apply almost
straightforwardly to the stock market indices as they by
construction constitute an average (typically weighted but
not always) of the prices of selected stocks representing dif-
ferent economy sectors, thus not necessarily obeying the
same multiscaling characteristics. The degree of correlations
among such stocks is also known to depend on the global
market phases. In the present paper, based on over half a
century daily recordings of the S&P500 and NASDAQ, the
two world-leading stock market indices, it is shown that they
reveal the multiscaling features which expressed in terms of
the multifractal spectrum evolve through a variety of shapes
whose changes typically appear correlated with the histori-
cally most significant events experienced by the world
economy. From a more general perspective, these results
indicate that the form of the multifractal spectrum, and espe-
cially its departures from the model mathematical cases of
the uniform cascades, contains richness of information that,
if properly interpreted and potentially disentangled, may
provide very valuable insight into the underlying dynamics
which may be of crucial value for a more accurate modelling
of the financial markets. Taking into consideration the effects
exposed here may also be very helpful for market regulators
and policymakers in stabilizing markets as well as for a
flexible portfolio optimization.

Finally, the methodology introduced in Section 4.2 of
relating the global (here, index) multifractal spectrum to
the corresponding multifractal spectra of subsystems (here,
companies) provides an appropriate quantitative tool with
potential applications extending far beyond the financial
context when various questions related to the so-called
complexity matching [67] are addressed and studied empiri-
cally as, for instance, those in a psychological/cognitive
domain [24, 68–71]. Differences between widths—as an
example in Figure 9 shows—of such spectra reflect strength

of the underlying complexity matching between subsystems,
and this strength may vary in time. The weakest matching,
for instance, corresponds to the period between October
1990 and April 1994. Furthermore, appreciating the relative
changes in asymmetry of f α may allow to selectively scan
the varying strengths of such a matching for different ranges
of fluctuations. Of course, as far as the world financial mar-
kets are concerned, one may rely on observations only since,
by their very nature, there exists no realistic possibility to set
up the world financial experiments. Since phenomena
belonging to the domain of social psychology definitely con-
stitute a significant factor driving the markets, a properly
coordinated joint multidisciplinary effort may crucially help
in understanding the cross-scale dependencies and informa-
tion flows in the financial markets and in other complex
systems as well.
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