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We have implemented the dynamical vertex approximation (DŴA) in its full parquet-based version to include

spatial correlations on all length scales and in all scattering channels. The algorithm is applied to study the

electronic self-energies and the spectral properties of finite-size one-dimensional Hubbard models with periodic

boundary conditions (nanoscopic Hubbard rings). From a methodological point of view, our calculations and

their comparison to the results obtained within dynamical mean-field theory, plain parquet approximation, and

the exact numerical solution allow us to evaluate the performance of the DŴA algorithm in the most challenging

situation of low dimensions. From a physical perspective, our results unveil how nonlocal correlations affect the

spectral properties of nanoscopic systems of various sizes in different regimes of interaction strength.
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I. INTRODUCTION

Models and materials with reduced dimensionality typ-
ically show enhanced correlation effects beyond the limit
of standard density-functional or perturbation-theory-based
schemes, calling for corresponding developments of theoret-
ical tools. From a general point of view, the challenge for a
theoretical description is much bigger than in bulk systems:
In three dimensions (3D), even in the presence of strong
electronic correlations, very accurate material calculations can
be performed by means of the dynamical mean-field theory
(DMFT) [1–4], combined with ab initio methods [5–7]. This
is possible because DMFT captures, nonperturbatively, the
purely local part of electronic correlations, which drives most
important phenomena of correlated electrons in the bulk,
such as, e.g., the Mott-Hubbard metal-insulator transition
(MIT) [8]. Formally, DMFT becomes exact in the limit
of infinite dimensions [1] where all nonlocal correlations
in space are averaged out. Corrections to DMFT in finite-
dimensional systems originate from nonlocal correlations.
While in 3D deviations from the DMFT description become
predominant only in specific parameter regimes [9,10], e.g.,
in the proximity of a second-order phase transition [9], the
situation is completely different in case of lower dimensions.
In fact, reducing the dimensionality magnifies effects of
nonlocal correlations, undermining the main assumption of
DMFT. Already for extended two-dimensional (2D) systems,
the physics deviates qualitatively from the DMFT predictions,
e.g., the Mott-Hubbard MIT is found to disappear in a weak-
coupling crossover in the phase diagram of the 2D Hubbard
model [11–13]. Evidently, even stronger nonlocal effects can
be expected if the dimensionality is further reduced towards
one dimension (1D) or zero dimensions (0D).

As for the theoretical description of electronic correlations

at the nanoscale, several algorithmic implementations based

on DMFT have recently been implemented under the name

of nano-DMFT or real-space DMFT [14–18]. Despite some

technical differences, all these algorithms essentially extend

the DMFT scheme to finite-size and possibly nontranslational

invariant systems. The common idea consists in solving simul-

taneously several single-impurity problems for calculating,

separately, the local self-energies of the different sites compos-

ing the system of interest, while the DMFT self-consistency is

then enforced at the level of the whole nanostructure. This way,

a number of interesting results have been obtained both for

model [15,22,23] and realistic studies [19–21,24]. However,

the applicability of these DMFT-based methods is restricted

to the weakly correlated and/or the high-temperature regime,

where the effects of nonlocal correlations are weaker [9,10,25]

and can be, to a certain extent, neglected. Such limitations were

also openly discussed in the previous literature [17,22], where

numerical comparisons between DMFT-based calculations

and exact solutions (where available) have shown large

deviations already in the intermediate-coupling regime.

A promising theoretical answer to this challenging situation

has already been proposed, but not implemented, in Ref. [17]:

The application of diagrammatic extensions [26–32] of DMFT

such as the dynamical vertex approximation (DŴA) [31,32]

for nanoscopic systems (nano-DŴA). The basic idea of DŴA

is the following: Instead of assuming the locality of the

one-particle self-energy [�(k,ω) = �(ω)], as in DMFT, one

raises the assumption of the locality to a higher level of

the diagrammatics, i.e., from the one- to the two-particle

irreducible vertex (Ŵirr) [33–35]. Once local vertex functions

are computed, e.g., with the same impurity solvers used for the

standard DMFT [31,32,34–38], nonlocal correlation effects

can be directly included through diagrammatic relations, e.g.,

in the most general case, through the parquet equations [39].

In the specific case of the DŴA implementation for

nanoscopic systems [17], the nano-DŴA algorithm requires

a separate calculation of the local irreducible vertex function

for each inequivalent site of the nanostructure. The inclusion

of the nonlocal effects should be performed at the level of

the whole nanostructure via a self-consistent solution of the

parquet equations. This procedure is less demanding than the

exact treatment of the corresponding quantum Hamiltonian:

the exponential scaling with the number of sites required

for a diagonalization of the Hamiltonian is replaced by a

polynomial effort to solve the parquet equations. Moreover,
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the necessity of calculating the vertex functions only locally

mitigates secondary (but important) numerical problems such

as the sign problem in quantum Monte Carlo (QMC) solvers.

Nonetheless, the overall numerical efforts for treating the

parquet equations have limited, so far, a wide application of

DŴA-based methods in their more complete (parquet-based)

form: Hitherto, all successful applications of DŴA to 2D and

3D systems have been performed in cases where fluctuations in

a given scattering channel predominate [9,13,25]. In this case,

the solution of the parquet equations can be replaced by a much

simpler ladder resummation performed in the most relevant

channel only [25]. We note, in passing, that such considerations

apply, with very few exceptions [30,40], also to almost all

other diagrammatic extensions of DMFT. For similar reasons,

no application of the nano-DŴA algorithm, as illustrated

in Refs. [17,22] has been realized hitherto. Exploiting the

constant improvements of the numerical performance both in

the DMFT calculation of vertex functions [34,35,38] as well as

in the numerical solution of the parquet equations [41–43], we

will present here our first results of the full (i.e., parquet-based)

nano-DŴA, applied to a set of correlated nanoscopic rings of

increasing size.

The importance of the results presented in the following

is twofold, and goes beyond the demonstration of a full

applicability of the algorithm proposed in Ref. [17]: Physically,

our calculations allow us to understand the interplay of local

and nonlocal correlations in spectral and transport properties

of finite systems of different sizes; from a methodological

perspective, the application of a full (parquet-based) DŴA

scheme to these nanoscopic systems represents one of the most

severe benchmarks conceivable for this theoretical approach.

In fact, the accuracy of a DŴA calculation depends on the

correctness of the locality assumption for the two-particle

irreducible vertex functions. Heuristically, this assumption

looks plausible for 3D and 2D systems with local interactions,

where strong spin, charge, and pair fluctuations are already

generated by the corresponding collective modes built on

local irreducible vertices. Numerically, a direct verification

of the DŴA assumption is difficult in 2D or 3D: While

the irreducible vertex surely displays a strong frequency

dependence [34,35], taken into account by the DŴA, its

dependence on momentum has been shown explicitly only

in few calculations [44] beyond DMFT, and it was found to

be weak. In this work, we focus instead on systems where

an exact numerical solution is available, so that both, the

DŴA performances and assumptions, can be tested. Let us

emphasize that the low connectivity and the peculiarity of

1D physics represent the most challenging situation for DŴA.

In this perspective, our numerical analysis will also allow us

to draw conclusions, on a more quantitative ground, on the

physical content of parquet-based approximations. The paper

is organized as follows: In Sec. II, we introduce the general

properties of the nanoscopic systems under consideration,

namely, Hubbard rings of different sizes. In Sec. III, we

discuss the parquet implementation of DŴA. In Sec. IV,

we present the numerical parquet DŴA results, while in

Sec. V we also make a comparison with data obtained within

the ladder approximation of the DŴA scheme. Finally, Sec. VI

provides a summary and our conclusions, while the Appendix

contains the technical details of the numerical calculations.

FIG. 1. (Color online) Energy-momentum dispersion relation

ǫ(k) with respect to the Fermi level μ (dashed line) for nanorings

with N = 4,6,8 sites. The symbols denote the discrete eigenstates

corresponding to the allowed values of the momentum: k = 2πn/N ,

with n ∈ N.

II. MODELING THE NANORINGS

The correlated nanoscopic rings considered in the following

consist of N isolated correlated atoms, arranged in a chain with

periodic boundary conditions, and described by the Hubbard

Hamiltonian

H = −t
∑

σ

N
∑

i=1

(

c
†
iσ ci+1σ + c

†
i+1σ ciσ

)

+ U

N
∑

i=1

ni↑ni↓, (1)

where c
†
iσ (ciσ ) denote the creation (annihilation) operators

of an electron on site i with spin σ , fulfilling the periodic

boundary conditions c(i+N)σ = ciσ , while niσ = c
†
iσ ciσ de-

notes the number operator; the parameters t and U denote

the nearest-neighbor (NN) hopping amplitude and the onsite

Hubbard interaction, respectively. Due to the translational

invariance of the system, granted by the periodic boundary

conditions of the ring, it is convenient to formulate the hopping

term in the reciprocal space, yielding a tight-binding dispersion

ǫ(k) = −2t cos(ka) − μ, where μ is the chemical potential.

In the following, we set the lattice spacing a = 1 and consider

rings with N = 4,6,8 sites. We restrict ourselves to the

half-filled case, i.e., μ = U/2, where electronic correlations

stemming from the local Hubbard interaction are expected to

be most effective. Under these conditions, all rings display

a particle-hole-symmetric density of states and, in particular,

in the noninteracting case (U = 0) the systems display either

a “band” gap (as in the case of the N = 6 sites ring) or a

twofold-degenerate state at the Fermi level (as in the case of

N = 4,8 sites rings). The rings considered in this work and

the corresponding dispersions ǫ(k) are shown in the upper and

lower panels of Fig. 1, respectively.

III. PARQUET-BASED IMPLEMENTATION

OF THE NANO-DŴA

We recall that the idea of DŴA is to apply the locality

assumption of DMFT at a higher level of the diagrammatics:

While in DMFT all one-particle irreducible (1PI) one-particle

diagrams (i.e., the self-energy �) are assumed to be purely

local, DŴA confines the locality to the two-particle irreducible

(2PI) two-particle diagrams, i.e., the fully irreducible vertex

Ŵirr is approximated by all local Feynman diagrams [45].

Hence, in the DŴA framework, the purely local, but frequency-

dependent [46], 2PI vertex Ŵirr = �ωνν ′

iiii is calculated for a site i
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and then used as the input for the parquet equations. In practice,

this vertex is obtained by solving the Anderson impurity model

(AIM) numerically. Hence, nonlocal correlations on top of the

DMFT solution are generated in all scattering channels by the

(numerical) solution of the parquet equations [39], without

any restriction to specific (ladder) subsets of diagrams [25].

For the sake of clarity, we should emphasize here that this

is different from the so-called parquet approximation (PA).

In fact, the PA corresponds to approximating the 2PI vertex

with the bare interaction of the theory (e.g., Ŵirr = U ) in

a merely perturbative fashion. On the contrary, in DŴA all

nonperturbative DMFT correlations, which control, e.g., the

physics of the Mott-Hubbard transition, are actually included

through the frequency dependent Ŵirr = �ωνν ′

, and nonlocal

correlations beyond DMFT are generated via the solution of

the parquet equations.

The specific implementation of the parquet-based DŴA

scheme for the case of nanoscopic systems, such as the Hub-

bard nanorings, is briefly sketched in the flowchart of Fig. 2,

and incorporates all main aspects of the original proposal of

Ref. [17]. Let us start by recalling the DMFT scheme for a

nanoscopic system with N constituents (e.g., atoms), which

is self-consistent at the one-particle level only. The first step

consists in mapping the full problem onto a set of auxiliary

AIMs, one for each of the N sites of the nanostructure.

Each auxiliary problem is characterized by a dynamical Weiss

field (i.e., the noninteracting Green’s function of the AIM)

G0i(ν). The numerical solution of the AIM yields the local

Green’s function Gii(ν) and the local DMFT self-energy

�ii(ν) = G−1
0,ii(ν) − G−1

ii (ν). Through the Dyson equation, the

local (yet site-dependent) DMFT self-energies determine the

new nonlocal Green’s function Gij , and the self-consistency

is realized at the level of the whole nanostructure.

In the case of the DŴA this procedure is raised to the

two-particle level. For each inequivalent AIM, the local 2PI

FIG. 2. (Color online) Flowchart of the parquet implementation

of the nano-DŴA. See text for a related discussion.

vertex function is computed as following (for the sake of

clarity, we omit the temporal and spatial indexes in this

derivation, and yet recall that those steps are performed at

the local level of each AIM). Typically, one first calculates the

generalized local susceptibility χ with the impurity solver of

the AIM [31,34]. Then, one extracts the full vertex F from the

local susceptibility as

χ = χ0 −
1

β2
χ0Fχ0, (2)

where χ0 is the bubble part of χ , while F includes all possible

vertex corrections and β = 1/T is the inverse temperature. In

order to obtain the fully irreducible vertex �, it is necessary to

separate the two-particle reducible (�r ) and irreducible (Ŵr )

contributions to the full vertex F in each scattering channel r ,

by solving the corresponding Bethe-Salpeter equation

F = Ŵr + �r = Ŵr +

∫

ŴrGGF, (3)

where the integral symbol denotes a summation over all

internal degrees of freedom (e.g., frequencies, spin, . . .). The

fully irreducible vertex � is obtained from F and the �r ’s by

inverting the parquet equation of the AIM

F = � +
∑

r

�r . (4)

Further details can be found in Ref. [34], which provides

a comprehensive discussion of the local two-particle vertex

functions and of the parquet equations in a unified formalism.

Once all inequivalent local 2PI vertices �iiii are obtained

for each site i, they are used as an input for the solution of the

parquet equations for the whole nanoscopic system. This yields

the nonlocal full two-particle vertex function Fijkl and, through

the Dyson-Schwinger equation, the nonlocal self-energy

�ij =
Un

2
δij −

U

β2

∫

∑

klm

GikGliGimF
↑↓

klmj , (5)

where the integral symbol, as above, denotes a summation

over all the internal degrees of freedom, while the sum

over the spatial indices of the nanoscopic system is explicit.

For clarity, we recall that the local Hartree shift of the

self-energy �H = Un/2 is already included in the definition

of the chemical potential. The set of equations (3)–(5) can

be solved self-consistently until the nonlocal self-energy (5)

is converged [41,42]. The flowchart of the parquet DŴA is

shown schematically in Fig. 2. Finally, after having determined

�ij one can either skip the outermost loop, i.e., updating the

AIM and simply start from Gii of DMFT, as we did in this

paper, or one can perform fully self-consistent calculations;

in the latter case, the Gii of the corresponding inequivalent

AIMs has to be adjusted to yield the given DŴA Gii from the

previous iteration before recalculating the 2PI vertex (which

is defined diagrammatically in terms of U and Gii). One then

needs to iterate this scheme until convergence. We refer to

Refs. [47,48] for a more detailed discussion of the DŴA

scheme, including also the Feynman diagrams and all the

equations. From the flowchart of the algorithm, one can clearly

see how in the DŴA nonlocal correlations beyond DMFT

are systematically generated in all scattering channels in a

two-particle self-consistent framework.
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IV. RESULTS

In the following, we present the numerical results for all

Hubbard nanorings discussed in Sec. II, characterized by the

dispersions ǫ(k) shown in Fig. 1 (lower panels). For each

system, we compare different approximations, i.e., DMFT, PA,

and parquet DŴA, to the exact QMC solution. Each method

employed in this work is associated to a specific diagrammatic

content, as discussed in Sec. III, which allows us to understand

the relevance of specific subsets of Feynman diagrams for the

description of the systems considered. Later, in Sec. V, we

will also compare the self-energies shown in the following with

the ones obtained within the ladder approximation of the DŴA

scheme, which represents the typical framework of previous

DŴA calculations [9,13,25,31].

We will discuss the results obtained for the electronic

self-energy �(k,ıνn), the local Green’s function Gii(τ ), and

the two-particle irreducible local (i.e., DMFT) vertex function

�ωνν ′

iiii . The analysis of the self-energy allows us to resolve a k-

selective behavior in the (discrete) reciprocal space. In particu-

lar, we analyze two low-energy parameters, i.e., the scattering

rate γ (k) ≡ −2 Im�(k,ıνn → 0), which corresponds to a

damping or to the inverse lifetime of quasiparticle excitations

in the Fermi-liquid regime, and the (static) renormalization

of the bare dispersion �(k) ≡ Re�(k,ıνn → 0). We will

discuss the effect of the local and nonlocal self-energy on

the low-energy spectral properties of the system which can be

deduced by the local Green’s function, and is related to the

k-resolved spectral function A(k,ν) by

Gii(τ ) =
∑

k

∫ ∞

−∞

dν
e−τν

1 + eβν
A(k,ν). (6)

The value of the Green’s function at τ = β/2 represents an

estimate of the value of the local spectral function at the Fermi

level (averaged over an energy window proportional to the

temperature T ), i.e.,

−βGii(β/2) ≈ π
∑

k

A(k,0). (7)

In order to understand the nonlocal self-energy corrections

beyond mean-field, we will also relate our results to the

frequency structure of the local 2PI vertex (�iiii), which is

the input for the parquet equations of the DŴA. To this end,

the generalized susceptibility of the AIM is computed and the

2PI vertex is obtained following the steps discussed in Sec. III.

For the analysis of the 2PI vertex we will adopt the notation

of Refs. [34,47], and in particular we will consider the 2PI

vertex in the (particle-hole) density and magnetic channels [49]

with respect to their static asymptotics, i.e., �ωνν ′

d,m ∓ U .

Moreover, the comparison to numerically exact two-particle

vertex functions, and in particular the fully irreducible one,

will also allow us to directly test the assumption behind the

DŴA, i.e., the locality of �.

In the following, we will start presenting in Sec. IV A the

numerical results for the N = 6 sites nanoring before turning,

in Sec. IV B, to nanorings with N = 4,8 sites. The reason for

this choice is that the low-energy physics of the N = 6 sites

ring is controlled by an energy scale �0 = 2t , associated to

the gap in the noninteracting density of states, which makes

the system behave similarly to a correlated band insulator.

On the other hand, the N = 4,8 sites rings are both character-

ized by the presence of a twofold-degenerate state at the Fermi

energy, which induces a physical behavior similar to the one

of a correlated metal.

A. N = 6: “Insulating” ring

In previous works [17,22], we analyzed by means of

nano-DMFT the electronic and transport properties in a N = 6

Hubbard nanoring in the presence of hybridization with a

substrate. In particular, it was shown [17,22] that in the

weak-hybridization regime, and especially in the case of an

isolated nanostructure considered here, nonlocal correlations

beyond DMFT are not negligible and have an important effect

on the electronic and transport properties of the system. In

fact, local electronic correlations within DMFT shrink the gap

with respect to the value predicted, e.g., within a Hückel [50]

picture, akin to what happens in bulk-correlated band insula-

tors [51,52]. Instead, the numerically exact solution (obtained

by means of Hirsch-Fye [53] QMC simulations, see Appendix

for details) shows that nonlocal correlations yield a wider

spectral gap due to the effective renormalization of the hopping

parameter by a non-negligible NN self-energy in real space.

With increasing hybridization between the correlated sites

and the substrate, nonlocal spatial correlations are gradually

suppressed, while local correlations remain sizable [22].

We now extend the analysis done in previous works

including nonlocal correlations via the parquet DŴA, which

yields a qualitative and quantitative agreement with exact

QMC simulations. We note that the DŴA results for the N = 6

sites ring presented in this section are expected to hold also

for generic semiconducting nanostructures in the weak- and

intermediate-coupling regimes, i.e., where the bare interaction

U is comparable with the size of the gap. We have tested this

claim to hold for another gapped Hubbard ring with N = 10

sites and we have found a similar agreement (not shown).

In Fig. 3, we compare the local DMFT self-energy with

the k-resolved self-energy for representative k points [54]

in the discrete Brillouin zone (DBZ), namely k = 0 and

π/3, obtained by means of PA, DŴA, and exact QMC

solution. Concerning the imaginary part of the self-energy

Im�(k,ıνn), one can note that all the approximations employed

provide a qualitative and quantitative agreement with the exact

solution. The system displays a low scattering rate γk , which

is consistent with the picture of an insulating ground state

reminiscent of the band gap of the noninteracting spectral

function (renormalized by electronic correlations), rather than

driven by a Mott MIT. More specifically, the exact QMC

self-energy displays a weak k dependence at low frequencies,

resulting in a slightly different scattering rate γk for different

k points in the DBZ. While this feature cannot be reproduced

within DMFT by definition, it is well captured including

nonlocal correlations beyond mean-field. Concerning the

real part of the self-energy, we observe that within DMFT,

Re�(ıνn) = 0, i.e., all contributions averaging out in the local

picture, except for the Hartree term, which is included in the

redefinition of the chemical potential, i.e., μ → μ − U/2 at

half-filling. On the contrary, including nonlocal correlations

beyond mean-field, we find a sizable k-dependent self-energy
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FIG. 3. (Color online) Comparison between the local DMFT

self-energy in Matsubara representation and the k-resolved PA, DŴA,

and the exact self-energy, for representative k points in the DBZ. In

this case, including the full frequency dependence of � results in

negligible corrections to the static PA. Parameters: N = 6, U = 2t ,

and T = 0.1t .

Re�(k,ıνn). In all cases, the exact self-energy is quantitatively

well reproduced.

In Fig. 4 we show the effect of nonlocal correlations on the

local Green’s function Gii(τ ). In the case of the N = 6 sites

ring, the interpretation of the results is straightforward. In fact,

all methods predict an insulating solution, and this is reflected

by Gii(β/2) ≈ 0 (which is a measure for the spectral weight

in an energy interval ∼T around the chemical potential; it is

exactly zero only in the limit T → 0). However, at a closer

look one can notice that the DMFT predicts more spectral

weight A(0) or, equivalently, a smaller value of the spectral

gap, than the other methods. It is interesting to notice that,

considering specifically A(0), the DMFT is worse than the

noninteracting case, while obviously DMFT is superior in

several other respects, e.g., lifetime of one-particle excitation.

This is clearly shown in the inset of Fig. 4, where we plot

the difference �Gii(τ ) of the local Green’s function for the

different approximations with respect to the one of the exact

solution. Hence, we can “disentangle” the roles played by local

and nonlocal correlations on an insulator considering that, in

an insulator, (i) taking into account only local correlations

-0.5

-0.4

-0.3

-0.2

-0.1

 0

0 β/2 β

R
e

G
ii
(τ

)

τ

DMFT
DΓA

exact
0

0.01

0.02
0 β/2 β

|R
e

Δ
G

ii
(τ

)| non-interacting

FIG. 4. (Color online) Comparison of the local Green’s function

Gii(τ ) obtained from the corresponding DMFT, DŴA, and exact

self-energy. The inset shows the difference �Gii(τ ) between the

corresponding approximation and the exact solution. Parameters:

N = 6, U = 2t , and T = 0.1t .

within DMFT reduces the noninteracting spectral gap [52],

and (ii) the nonlocal correlations in the exact solution display

the opposite trend, as correctly described by the DŴA. Indeed,

the analytic continuation of the Green’s function by means

of the maximum entropy method (not shown) confirms the

expectations, yielding a spectral gap � ≈ 1.9t within DMFT

and � ≈ 2.2t within DŴA and the exact solution, to be

compared to the noninteracting value �0 = 2t .

We can understand the results obtained for both the self-

energy and the local Green’s function within the different

approximations, by taking a closer look at the local fully

irreducible vertex calculated from the DMFT Green’s function.

The isolines and the density plot in the left and right panels of

Fig. 5, respectively, highlight the sign and the logarithmic in-

tensity of the frequency structure of �d,m. The fully irreducible

vertex displays the typical butterfly structure previously re-

ported [34,35], with positive and negative lobes decaying to the

bare interaction value at high frequency (beyond the frequency

range shown here). The frequency structure of the 2PI vertex

beyond the static asymptotics is negligible with respect to the

bare interaction U = 2t . This is a consequence of the spectral

gap, resulting in insulating Green’s functions already within

DMFT. The inversion of sign at low frequencies in the first

and third quarters of the (ν,ν ′) plane originates, instead, from

the precursor lines of the Mott transition recently found in the

DMFT phase diagram [35]. The negligible frequency structure

of the local 2PI vertex explains why the DŴA self-energy does

not deviate from the plain PA result in this case. On the other

hand, the quantitative agreement with the exact QMC solution

suggests that the local DŴA assumption of the 2PI is justified

in this system. The direct numerical analysis of the exact

2PI vertex confirms that, besides a structure in momentum

space, its overall values yield moderate corrections to the bare

interaction U = 2t (not shown).

B. N = 4 and N = 8: “Correlated metallic” rings

In contrast to the previous system, both the N = 4 and

8 sites rings are characterized by the presence of a (doubly

degenerate) eigenstate at the Fermi level of the noninteracting
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FIG. 5. (Color online) Local two-particle fully irreducible vertex

calculated in DMFT in the (particle-hole) density and magnetic

channels with respect to the static asymptotics, i.e., �d − U (upper

row) and �m + U (lower row), as a function of the two fermionic

frequencies νn and νn′ , for bosonic frequency ω = 0. The isoline plot

(left panels) highlights the frequency and sign structure of the vertex,

while the grayscale density plot (right panels) shows its logarithmic

intensity. Parameters: N = 6, U = 2t , and T = 0.1t .

density of states. For this reason, we would expect them to

display a similar behavior, and a different low-energy physics

with respect to the N = 6 sites ring. As we will show, this is

only partially true.

Let us start discussing the k-resolved self-energy of the

N = 4 ring, shown in Fig. 6 for representative k points in the

DBZ, namely k = 0 and π/2 (the latter at the Fermi surface). In

this case, the DMFT self-energy displays a non-Fermi-liquid

behavior, characterized by a large yet finite scattering rate γ

(obviously independent on k). As we will see in the following,

the system is not gapped in DMFT. The DMFT picture,

however, is substantially changed by nonlocal correlations, as

reflected in a strong k-dependent behavior of the self-energy,

found within all approximations considered. In particular,

away from the Fermi surface (e.g., at k = 0) all approximations

yield a low scattering rate γk=0 due to the bending towards

zero of Im�(k,νn). The situation is drastically different at the

Fermi surface (e.g., at k = π/2), where in the exact solution,

the divergent tendency of the self-energy marks the opening

of a gap in the spectral function. Taking into account all

scatting channels within the parquet DŴA formalism leads

to an improvement with respect to the DMFT results. While

the PA yields a sizable scattering rate γk=π/2 ≈ 0.4, including

the frequency dependence of the fully irreducible vertex

within DŴA further enhances γk=π/2 and reproduces correctly

the qualitative trend of the exact self-energy, as well as an

overall better description of the Re�(k,νn) with respect to PA

and DMFT. The quantitative difference between the parquet

DŴA and the exact solution may originate either from the

momentum dependence of the 2PI vertex, neglected in DŴA,

or by the lack of self-consistency.
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FIG. 6. (Color online) As in Fig. 3 but for the N = 4 ring. In

contrast to the previous case, including the full frequency dependence

of � leads to a substantial improvement of the DŴA over the static

PA. The inset shows the low-energy tendency toward a divergency of

the exact self-energy for k = π/2.

Further insights can be obtained by considering the spin

propagator χω
s (q), in particular, at ω = 0. Within DMFT,

we find that χs(q = π ) < 0. The unphysical value of the

susceptibility indicates that the system is below the Néel

temperature of DMFT, i.e., T < T DMFT
N , while no ordering

is expected at finite temperature. Including nonlocal spatial
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FIG. 7. (Color online) As in Fig. 4, but for the N = 4 ring.
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FIG. 8. (Color online) As in Fig. 5, but for the N = 4 ring.

correlations within the parquet DŴA scheme reduces [55]

TN . However, it is plausible that the local physics described

by DMFT, and hence the information encoded into the 2PI

vertex of DMFT, can be very different from the local physics

of the exact solution.

We discuss the effect of local and nonlocal correlations

on the Green’s function, as shown in Fig. 7, as we already

did for the N = 6 sites ring. Both in DMFT and DŴA, a

sizable value of Gii(β/2) indicates a metallic spectral function,

while in the exact solution this quantity is strongly suppressed,

revealing an insulating nature. In this respect, we note that,

even in the insulating state, a value of Gii(β/2) = 0 can

only be achieved at T = 0, while here we observe a finite

value due to the average over an energy window due to the

broadening of the Fermi distribution at finite temperature.

The combined information of a sizable value of Gii(β/2)

and the large scattering rate γk at the Fermi surface (i.e.,

k = π/2) in the corresponding self-energy in Fig. 6 suggest

the presence of a local minimum in the spectral function

at the Fermi level (pseudogap). Hence, we can conclude

that the DŴA, in its full parquet-based implementation,

yields a quantitative improvement over the DMFT description,

however, the nonlocal correlations stemming from the 2PI

local vertex of DMFT are not yet strong enough to completely

open a well-defined gap in the spectral function, which is

instead present in the exact solution.
A deeper understanding of the above results can be obtained

by the analysis of the frequency and momentum structure of
the 2PI vertex. Let us first discuss the local 2PI vertex, shown in
Fig. 8. The most striking feature of the vertex of the N = 4 sites
ring is the strongly enhanced low-frequency structure which
now exhibits strong deviations from the bare interaction U =

2t . In fact, the vertex corrections are orders of magnitude larger
than for the N = 6 insulating ring, and the low-frequency
structure is also more complex. In particular, one can observe
additional negative “spots” (of highest intensity) which are
generated by the change of sign of several eigenvalues of
the generalized local susceptibility [35]. This low-frequency
structure of the local 2PI vertex is responsible for a k-selective
enhancement of the DŴA self-energy over the one obtained
within the PA.

The direct numerical evaluation of the exact 2PI vertex,

shown in Fig. 9, allows us to understand the role of its

momentum structure. The q-resolved exact fully irreducible
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FIG. 9. (Color online) Exact fully irreducible vertex in the (particle-hole) density and magnetic channels with respect to the static

asymptotics, i.e., �d − U (upper row) and �m + U (lower row), as a function of the two fermionic frequencies νn and νn′ , for bosonic

frequency ω = 0. The q-resolved vertex �(q) [panels (a), (b), (c), (e), (f), and (g)] corresponds to the fully irreducible vertex averaged over k

and k′, while the local � [panels (d) and (h)] is averaged over q as well. In addition to the nontrivial momentum structure of �(q), neglected

within the parquet DŴA, it is worth noting that the complex frequency structure of the local � is not captured from the DMFT vertex (cf.

Fig. 8). This suggests that a full self-consistency at the two-particle level, via a corresponding redefinition of the AIM, might improve the

present DŴA results. Parameters: N = 4, U = 2t , and T = 0.1t .
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vertex �(q) = 1

N2
k

∑

kk′ �kk′q shows that �(q) displays a

change in both sign and magnitude for different values of q

(the vertex is identical at q = ±π/2 due to symmetry reasons).

Such a large frequency and momentum dependence of the

exact 2PI vertex can be possibly interpreted in terms of a

proximity to a nonperturbative instability of the Bethe-Salpeter

equations, such as those already reported for the Hubbard and

Falikov-Kimball models [35,56,57]. The strong momentum

dependence of the fully irreducible vertex is certainly one of

the reasons of the failure of the present DŴA calculation to

open a spectral gap at the Fermi level of the N = 4 sites

ring. However, an important piece of information is also

enclosed in the exact local vertex � = 1
Nq

∑

q �(q). As shown

in Fig. 9, the exact local � displays a complex frequency

structure, which is not fully captured by the local � of DMFT

(cf. with Fig. 8). This suggests that, in this case, DMFT

does not provide a good description of the two-particle local

physics of the system. For this reason, performing a full self-

consistency at the two-particle level, i.e., updating the local

� including the effect of nonlocal correlations, is expected

to lead to improvements over the present DŴA results. This

idea is also supported by the calculations performed within

the ladder approximation of the DŴA, which we discuss in

Sec. V in comparison with the parquet DŴA. We anticipate

that the divergent self-energy for k = π/2 is already well

approximated by the ladder DŴA with Moriya corrections

(which, however might fail in other regions of the DBZ, see

also the related discussion in Sec. V). The results of the

ladder approximation, shown in Fig. 14, suggest that it is

not the momentum structure of the 2PI to control the (large)

self-energy, but rather the enhanced scattering induced by a

strongly renormalized local vertex. Hence, a similar picture

might also be obtained within a fully self-consistent parquet

DŴA scheme, where the local 2PI vertex will be further

enhanced with respect to DMFT by nonlocal correlations.

We finally discuss the results for the N = 8 sites ring, where

the presence of additional structures in the noninteracting

density of states, besides the (doubly degenerate) eigenstate

at the Fermi level and the one at the band edge, lead to a

somewhat different physical situation. Let us start discussing

the k-resolved self-energy shown in Fig. 10. As N increases,

the number of inequivalent k points in the DBZ increases

with respect to the previous cases. By symmetry, it is

sufficient to consider k = 0, π/4, and π/2 (the latter at the

Fermi surface). In this case, in contrast to the N = 4 sites

ring, the DMFT self-energy shows a metallic bending, with

a (k-independent) scattering rate γ ≈ 0.1. The comparison

with the exact solution shows that the largest corrections

with respect to DMFT are the enhanced scattering rate at

the Fermi surface γk=π/2, and the renormalization of the

dispersion �k=0,π/4 = Re�(k,ıνn → 0). The PA and the DŴA

give rise to similar nonlocal correlations, displaying a strong

k-dependent scattering rate at the Fermi surface γk=π/2 ≈ 0.3.

The large scattering rate reflects physically in the Green’s

function through a suppression of Gii(β/2), and hence of the

low-energy spectral weight, with respect to DMFT, as shown in

Fig. 11. Although DŴA provides an overall better description

of the low-energy physics of the system with respect to

DMFT, also in this case the parquet-based approximations fail
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FIG. 10. (Color online) As in Fig. 3 but for the N = 8 ring. In

this case, including the full frequency dependence of � results in

negligible corrections to the self-energy, and the DŴA results do not

deviate appreciably from the one obtained within the static PA.

to reproduce the divergent behavior of Im�(k = π/2,ıνn).

Analogously to the case of the N = 4 sites ring, the good

agreement obtained within the ladder DŴA for the self-energy

at the Fermi surface, shown in Fig. 15, points at the importance

of the self-consistency at the two-particle level.

As for the interpretation of the results, from the similarity

of the PA and DŴA results for the N = 8 sites ring one
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FIG. 11. (Color online) As in Fig. 4, but the N = 8 ring.
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FIG. 12. (Color online) As in Fig. 5, but for the N = 8 ring.

would not expect a strong frequency dependence of the local

2PI vertex, as confirmed from the numerical data shown in

Fig. 12. The 2PI vertex qualitatively resembles the one of

the N = 6 sites ring, with the difference that there is no

suppression of the low-frequency structure. On the other hand,

the difference between DŴA and the exact solution might

suggest an important momentum structure of the 2PI vertex.

Unfortunately, in this case a direct analysis is not feasible, due

to the extremely high computational effort required to calculate

the exact momentum-dependent two-particle vertex functions

for the N = 8 site ring. While a strong momentum dependence

of the exact 2PI vertex is possible, also in this case the deviation

observed between the parquet DŴA and the exact solution

might be induced by the poor approximation of the local

physics of the system provided by the 2PI vertex of DMFT.

This scenario, supported by the qualitatively correct behavior

found within the Moriya corrected ladder approximation,

suggests that the parquet DŴA results might be further

improved performing a fully self-consistent calculation.
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FIG. 13. (Color online) k-resolved ladder DŴA self-energy in

Matsubara representation, for representative k points in the DBZ. The

ladder resummation was supplied with the Moriyasque correction to

the spin propagator. Parameters: N = 6, U = 2t , and T = 0.1t .
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FIG. 14. (Color online) As in Fig. 13, but for the N = 4 ring.

The noncausal self-energy for k = 0 (gray dashed line) observed in

this case is an extreme consequence of the breakdown of the ladder

approximation far from the Fermi surface, as discussed in the text.

The inset shows the low-energy tendency toward a divergency of the

ladder DŴA self-energy for k = π/2.

V. RELATION TO THE LADDER APPROXIMATION

Hitherto, all the previous applications of the DŴA scheme

to bulk systems [9,13,25,31] were carried out within the

ladder approximation only. This approximation is obtained

by replacing the solution of the parquet equations in the

flowchart of Fig. 2 with a simpler calculation at the level of

Bethe-Salpeter equations. Hence, in ladder DŴA, the nonlocal

corrections to the local physics will be generated only in (a)

selected channel(s). In practice, this corresponds to an essential

simplification of the algorithm, because in ladder DŴA only

the corresponding irreducible vertex in the selected channel

(e.g., spin) needs to be extracted from the AIM, and used to cal-

culate the DŴA self-energy via the Bethe-Salpeter equation.

The application of the ladder approximation is well justified

in case the system displays predominating fluctuations in a

given scattering channel, which is known a priori, e.g., in the

case of the antiferromagnetic instability in the 3D Hubbard

model at half-filling [9]. However, the significant numerical

simplification of avoiding the solution of the direct and inverse

parquet equations comes at the price of a more approximative

approach, which is mitigated by performing the so-called

Moriya correction [25,32,47]. This correction is done at the

level of the propagator of the (e.g., spin) fluctuations, obtained

from the generalized susceptibility by performing the sum

over the fermionic Matsubara frequencies and corresponding

momenta. In the Moriya scheme, a mass term λ is added to the

propagator, so that in the selected (spin) channel it reads as

χω
s (q)−1 → χω

s (q)−1 + λ. (8)
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FIG. 15. (Color online) As in Fig. 13, but for the N = 8 ring.
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As the mass is determined by imposing a condition over the

local physics, the procedure mimics to a reasonable extent the

effect of a full self-consistency of the algorithm, where also

the local 2PI vertex would be renormalized by nonlocal spatial

correlations.

In the following, we discuss the results obtained within the

ladder approximation of the DŴA scheme for the self-energy

of the N = 4,6,8 sites rings. In the case of the N = 6 sites

ring, the ladder DŴA self-energy, shown in Fig. 13, is in good

agreement with both the parquet DŴA and the exact results (cf.

also Fig. 3 for a direct comparison). As expected, at half-filling

the physics is substantially dominated by spin fluctuations.

However, slight deviations suggest that, in low dimensions,

considering all the scattering channels (and their interplay) on

the same footing, via the solution of the parquet equations,

leads to quantitative corrections in this parameter regime.

The situation is different in the cases of the N = 4,8 sites

rings. In particular, the ladder DŴA self-energy, shown in

Figs. 14 and 15, is able to capture the large scattering rate at

the Fermi surface γk=π/2 of the exact solution, improving over

the parquet DŴA results. This unexpected result is likely to be

attributed to the ability of the Moriyasque corrections to mimic

the self-consistency of the local (irreducible) vertex [25,32].

This suggests that also the full parquet DŴA might be able

to reproduce the divergent trend of the self-energy at the

Fermi surface with a better starting point for the local fully

irreducible vertex than the one provided by DMFT. This would

definitely be achieved by performing fully self-consistent DŴA

calculations.

The ladder DŴA calculations performed here also pointed

out an important issue, i.e., the failure of the ladder approxi-

mation far away from the Fermi surface. This is indicated for

the N = 4 sites ring by the noncausal self-energy obtained

at the lowest Matsubara frequency for k = 0. Several tests in

this case ruled out the possibility that the nonanalyticity of the

self-energy is a physical artifact due to numerics (e.g., due to

the finite frequency mesh).

By exploiting the (hitherto) unique possibility of having

at disposal both ladder and parquet DŴA self-energy and

vertex results, we have performed a decomposition of the DŴA

self-energy by separating the contributions coming from the

different channels, following a similar “philosophy” as in the

recently introduced fluctuation diagnostics for the electronic

self-energy [58]. The assumption, under which a simplification

of the parquet DŴA algorithm to the ladder DŴA is possible, is

that the (k-dependent) nonlocal corrections to the DMFT self-

energy are dominated by the contribution of a specific channel

(e.g., at half-filling, the spin channel). The fluctuation diagnos-

tics of the ladder DŴA self-energy, shown in the left and middle

panels of Fig. 16, demonstrate that this is indeed the case for

the calculations of the self-energy at the Fermi level (k = π/2).

On the other hand, we also see that, in the case of the N = 4

sites ring, the ladder assumption does not apply any longer far

from the Fermi surface. In fact, as shown in Fig. 16, at k = 0

the contribution of the spin channel to the DŴA self-energy

is strongly reduced with respect to the k = π/2, becoming

comparable with the contributions of the other channels. This

means that the error introduced by ladder assumptions might

become even larger than the value of Im�(k) itself, which is of-

ten strongly reduced by nonlocal correlation far from the Fermi

surface. It is important to emphasize that the overall trend of

a strong reduction of Im�(k = 0) due to nonlocal correlation,

which is also visible in the exact results, is correctly captured

even by the ladder DŴA calculations. However, quantitatively,

the breakdown of the ladder assumption for this k point leads

to a large relative error on Im�(k = 0), and eventually to an

analyticity violation, preventing the applicability of the ladder

DŴA for this k point. Our explanation is numerically supported

by the comparison with the corresponding decomposition

of the full parquet DŴA self-energy. Specifically, in the

right panel of Fig. 16, we show the momentum dependence

of the “secondary”(particle-particle) channel contribution to

Im�(k,ıνn). The DŴA correction ��pp is obtained by

replacing F ↑↓ → �pp − �DMFT
pp in the equation of motion (5).

At k = 0, the correction ��pp (neglected in ladder DŴA) is

actually of the same order, if not larger, than the contribution

of the “dominant” channel and/or of the overall value of

Im�(k = 0), shown in the left panel of Fig. 16. Although

the deterioration of accuracy of the ladder approximation far

from the Fermi surface may be expected as a general trend, the

error introduced is often not significant. For instance, in the

parameter regime considered for the N = 8 sites ring, causality
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of the different self-energy contributions at k = 0. (Right panel) Nonlocal parquet DŴA correction to the DMFT self-energy computed in the

particle-particle scattering channel ��pp . Its strong k dependence, neglected within the ladder approximation, is at the origin of the causality

violation of the ladder DŴA self-energy at k = 0 (cf. Fig. 14). Parameters: N = 4, U = 2t , and T = 0.1t .
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is preserved. As the particle-hole channel is dominant in the

vicinity of the Fermi level, neglecting the particle-particle

channel is justified for this (most relevant) part of the DBZ,

and the ladder approximation can still be employed.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a numerical study of

correlated Hubbard nanorings, employing the parquet DŴA.

This algorithm corresponds to the actual realization of the

original DŴA idea, in which the local (DMFT) assumption is

made only at the level of the 2PI local vertex of the theory, while

nonlocal correlations beyond DMFT are computed simulta-

neously in all channels by solving the corresponding parquet

equations. This represents a methodological improvement over

the ladder DŴA algorithms used hitherto, where additional

approximations (e.g., restriction to a given subset of ladder

diagrams) were performed. The overall numerical effort of

a full DŴA calculation is clearly larger than in the case of

ladder approximations, but the numerical workload is still

manageable in 1D and 2D [41,42].

Specifically, we have shown results for correlated Hubbard

rings of different sizes N = 4,6,8, and performed a systematic

comparison of the parquet DŴA against DMFT, PA, ladder

DŴA, and the exact QMC solution of the problem. We

achieved a twofold goal: (i) on the methodological side,

we could test the accuracy of the DŴA approximation for

quasi-1D systems, which is arguably most challenging regime

for the locality assumption of Ŵirr; (ii) on the physical side,

we could understand the different roles played by local and

nonlocal correlations in determining the spectral properties

of the systems considered. Our numerical calculations show

that, for semiconducting nanostructures, the parquet DŴA

quantitatively reproduces the exact many-body solution of the

system, improving over the corresponding local description

of DMFT. Instead, if the bare dispersion displays a (doubly

degenerate) peak at the chemical potential, the 2PI vertex

acquires a nontrivial frequency and momentum dependence.

As the local � of DMFT captures, to some extent, the

dynamical structure of the 2PI vertex, the parquet DŴA,

although not perfect, provides a better qualitative description

than those of DMFT and the static PA. Updating the 2PI

vertex, i.e., performing fully self-consistent DŴA calculations,

is expected to further improve the present results. However,

this lies beyond the scope of this work.

In conclusion, we have shown how the parquet DŴA

algorithm can be implemented and applied with success

to analyze the physics of correlated Hubbard nanorings.

Exploiting the recent improvements in the calculation of the

local vertex of DMFT [34,38] and in the numerical solution of

the parquet equations [41,42], our results, which are obtained

in one of the most difficult regimes for the DŴA, pave the path

for a more accurate theoretical treatment of strongly correlated

electron systems.
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APPENDIX: COMPUTATIONAL DETAILS

In the following, we provide the technical details for

each step of our calculations. Both the nano-DMFT and

exact calculations were performed employing a Hirsch-Fye

QMC impurity solver. This allowed us to compare the results

obtained on the same footing, i.e., with the same systematic

discretization error �τ , as already done in previous stud-

ies [17,22]. Here, we compared QMC calculations performed

for values of �τ = 0.16 and 0.083. Although no systematic

extrapolation to �τ → 0 [59] has been done, we verified

that the DMFT data are substantially converged in �τ by a

direct comparison against independent continuous-time QMC

calculations. Also, we tested the exact solution against the

exact diagonalization of the Hamiltonian. In both cases, we

obtained satisfactory agreement.

In this work, we evaluated the local two-particle vertex

functions of DMFT with an exact diagonalization (ED)

impurity solver. To this end, we fit the hybridization function

of the AIM corresponding to the converged DMFT(QMC)

calculation with a discrete number of sites Ns in order to

obtain the corresponding Anderson parameters. We performed

calculations with Ns = 5 sites, i.e., Nb = 4 bath sites and one

impurity, which represents the current numerical limitation

of ED for the calculation of two-particle Green’s function,

in its full frequency dependence, denoted as G2(ν,ν ′,ω) in

the notation of Ref. [34]. ED calculations with (few) more

bath sites might become feasible in the future, under specific

conditions, e.g., by exploiting some additional symmetries of

the AIM, and further optimizing the algorithm [60].
As for the present calculations, we have verified the

accuracy of our numerical data for the vertex against
continuous-time QMC calculations, and, for Ns = 5, we
have found very satisfying agreement at low (Matsubara)
frequencies. At high frequencies, the ED data generally display
a better asymptotic behavior with respect to QMC data,
despite the schemes proposed to overcome this issue [61–63].
As the calculation of fully irreducible vertex functions, as
well as the solution of the parquet equation, involve several
matrix inversions, the asymptotic behavior of vertex functions
plays a crucial role for the stability of the algorithm and the
numerical accuracy of the final DŴA results. This motivates
our choice of ED as (two-particle) impurity solver for this
study, while not excluding different choices for the future.
The calculation of the two-particle Green’s function from its
Lehmann representation [31,34] scales polynomially with the
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number of frequencies Nf as O(N3
f ), and exponentially with

the number of bath sites. In our calculations, we obtained
the full vertex F within ED up to Nf = 320 Matsubara
frequencies. In each case, Nf have been chosen in order
to get, at the temperature considered, a fully irreducible
vertex � displaying a smooth asymptotic behavior towards
its static value at high frequency. Typical calculations of the
two-particle Green’s function performed in this work require
about 50.000 CPU-h. The numerical solution of the parquet
equations [41,42] scales as O(N4

t ), where Nt = N × Nf .

For the systems considered here, i.e., for N = 4,6,8, we
performed calculations on a mesh of Nf = 100 Matsubara
frequencies. The input of the parquet solver is the local fully
irreducible vertex of DMFT, calculated as discussed above
on the corresponding frequency mesh. Typical self-consistent
parquet calculations performed in this work require about
1.000 CPU-h, depending on both the value of Nt and of the
convergency threshold.

The relatively limited number of frequencies available

results in numerical issues, e.g., the internal sums over the

frequencies in the Dyson-Schwinger equation of motion may

fail to yield the correct 1/ν high-frequency behavior for the

imaginary part of the DŴA self-energy, and also decreases

the overall accuracy of the DŴA calculation. Since the

high-energy tail of the self-energy is entirely determined by

the bare interaction U , we overcome the issue performing a

correction using the tail of the DMFT self-energy. To this

end, we compute a local self-energy �∗ solving the local

parquet equations, using as an input the local � and G0 of

DMFT. We correct the self-energy of DŴA by subtracting

�∗ and adding the � of DMFT. Calculations for larger

systems or with more frequencies than the one presented here

are possible, although network communication and memory

storage, rather than the computational time, become the main

bottlenecks.
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[35] T. Schäfer, G. Rohringer, O. Gunnarsson, S. Ciuchi, G. Sangio-

vanni, and A. Toschi, Phys. Rev. Lett. 110, 246405 (2013).

115115-12

http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevB.83.075122
http://dx.doi.org/10.1103/PhysRevB.83.075122
http://dx.doi.org/10.1103/PhysRevB.83.075122
http://dx.doi.org/10.1103/PhysRevB.83.075122
http://dx.doi.org/10.1209/epl/i1996-00315-2
http://dx.doi.org/10.1209/epl/i1996-00315-2
http://dx.doi.org/10.1209/epl/i1996-00315-2
http://dx.doi.org/10.1209/epl/i1996-00315-2
http://dx.doi.org/10.1209/epl/i2003-00584-7
http://dx.doi.org/10.1209/epl/i2003-00584-7
http://dx.doi.org/10.1209/epl/i2003-00584-7
http://dx.doi.org/10.1209/epl/i2003-00584-7
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.59.2549
http://dx.doi.org/10.1103/PhysRevB.59.2549
http://dx.doi.org/10.1103/PhysRevB.59.2549
http://dx.doi.org/10.1103/PhysRevB.59.2549
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevB.86.075141
http://dx.doi.org/10.1103/PhysRevB.86.075141
http://dx.doi.org/10.1103/PhysRevB.86.075141
http://dx.doi.org/10.1103/PhysRevB.86.075141
http://dx.doi.org/10.1103/PhysRevB.82.195115
http://dx.doi.org/10.1103/PhysRevB.82.195115
http://dx.doi.org/10.1103/PhysRevB.82.195115
http://dx.doi.org/10.1103/PhysRevB.82.195115
http://dx.doi.org/10.1103/PhysRevLett.107.146604
http://dx.doi.org/10.1103/PhysRevLett.107.146604
http://dx.doi.org/10.1103/PhysRevLett.107.146604
http://dx.doi.org/10.1103/PhysRevLett.107.146604
http://dx.doi.org/10.1063/1.3692613
http://dx.doi.org/10.1063/1.3692613
http://dx.doi.org/10.1063/1.3692613
http://dx.doi.org/10.1063/1.3692613
http://dx.doi.org/10.1103/PhysRevB.86.115418
http://dx.doi.org/10.1103/PhysRevB.86.115418
http://dx.doi.org/10.1103/PhysRevB.86.115418
http://dx.doi.org/10.1103/PhysRevB.86.115418
http://dx.doi.org/10.1140/epjb/e2012-30829-y
http://dx.doi.org/10.1140/epjb/e2012-30829-y
http://dx.doi.org/10.1140/epjb/e2012-30829-y
http://dx.doi.org/10.1140/epjb/e2012-30829-y
http://dx.doi.org/10.1103/PhysRevLett.107.197202
http://dx.doi.org/10.1103/PhysRevLett.107.197202
http://dx.doi.org/10.1103/PhysRevLett.107.197202
http://dx.doi.org/10.1103/PhysRevLett.107.197202
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1103/PhysRevB.69.165113
http://dx.doi.org/10.1103/PhysRevB.69.165113
http://dx.doi.org/10.1103/PhysRevB.69.165113
http://dx.doi.org/10.1103/PhysRevB.69.165113
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevLett.110.246405
http://dx.doi.org/10.1103/PhysRevLett.110.246405
http://dx.doi.org/10.1103/PhysRevLett.110.246405
http://dx.doi.org/10.1103/PhysRevLett.110.246405


DYNAMICAL VERTEX APPROXIMATION IN ITS PARQUET . . . PHYSICAL REVIEW B 91, 115115 (2015)

[36] H. Hafermann, C. Jung, S. Brener, M. I. Katsnelson, A. N.

Rubtsov, and A. I. Lichtenstein, Europhys. Lett. 85, 27007

(2009).
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