
Dynamically Adapting File Domain Partitioning

Methods for Collective I/O Based on Underlying

Parallel File System Locking Protocols

Wei-keng Liao and Alok Choudhary

Electrical Engineering and Computer Science Department

Northwestern University

Evanston, Illinois 60208-3118

Email: {wkliao,choudhar}@ece.northwestern.edu

Abstract—Collective I/O, such as that provided in MPI-IO,
enables process collaboration among a group of processes for
greater I/O parallelism. Its implementation involves file domain
partitioning, and having the right partitioning is a key to
achieving high-performance I/O. As modern parallel file systems
maintain data consistency by adopting a distributed file locking
mechanism to avoid centralized lock management, different
locking protocols can have significant impact to the degree of
parallelism of a given file domain partitioning method. In this
paper, we propose dynamic file partitioning methods that adapt
according to the underlying locking protocols in the parallel
file systems and evaluate the performance of four partitioning
methods under two locking protocols. By running multiple
I/O benchmarks, our experiments demonstrate that no single
partitioning guarantees the best performance. Using MPI-IO as
an implementation platform, we provide guidelines to select the
most appropriate partitioning methods for various I/O patterns
and file systems.

I. INTRODUCTION

A majority of scientific parallel applications nowadays are

programmed to access files in a one-file-per-process style [1].

This programming style is simple and often gives satisfactory

performance when applications run on a small number of

processes. One immediate drawback is that the application

restart must use the same number of processes as the run

that produced the checkpoint files. A more serious problem is

that this method can create a management nightmare for file

systems when applications run on a large number of processes.

A single production run using thousands of processes can

produce hundreds of thousands or millions of files. Simul-

taneous file creation in such a scale can cause the network

traffic congestion at the metadata servers, as modern parallel

file systems employ only one or a small number of metadata

servers. Furthermore, accessing millions of newly created files

becomes a daunting task for post-run data analysis. In order

to reduce such file management workload, one solution is to

adopt the shared-file I/O programming style.

Shared-file I/O provides a way to preserve the canonical

order of structured data. Parallel programs often use global

data structures, such as multi-dimensional arrays, to present

the problem domain and partition them so that processes can

concurrently operate on the assigned sub-domains. During a

checkpoint, maintaining arrays’ canonical order in files can

ease up the task of post-run data analysis and visualization.

However, shared-file I/O often performs poorly when the

requests are not well coordinated. To address this concern,

the message passing interface (MPI) standard defines a set

of programming interfaces for parallel file access, commonly

referred as MPI-IO [2]. There are two types of functions in

MPI-IO: collective and independent. The collective functions

require process synchronization which provides an MPI-IO

implementation an opportunity to collaborate processes and

rearrange the requests for better performance. Well-known ex-

amples of using such a collaboration are two-phase I/O [3] and

disk directed I/O [4]. Process collaboration has demonstrated

significant performance improvements over uncoordinated I/O.

However, even with these improvements, the shared-file I/O

performance is still far from the single-file-per-process ap-

proach. Part of the reason is that shared-file I/O incurs higher

file system locking overhead from data consistency control,

which can never happen if a file is only accessed by a unique

process.

ROMIO is a popular MPI-IO implementation developed at

Argonne National Laboratory [5]. It has been incorporated

as part of several MPI implementations, including MPICH,

LAM [6], HP MPI, SGI MPI, IBM MPI, and NEC MPI. To

achieve the portability, ROMIO implements a layer of abstract-

device interface named ADIO that contains a set of I/O

drivers, one for a different file system [7]. This design allows

ADIO to utilize the system dependent features for higher

I/O performance. ROMIO’s collective I/O implementation is

based on the two-phase I/O strategy proposed in [3], which

includes a data redistribution phase and an I/O phase. The two-

phase strategy first calculates the aggregate access file region

and then evenly partitioned it among the I/O aggregators

into file domains. The I/O aggregators are a subset of the

processes that act as I/O proxies for the rest of the processes.

In the data redistribution phase, all processes exchange data

with the aggregators based on the calculated file domains. In

the I/O phase, aggregators access the shared file within the

assigned file domains. Two-phase I/O can combine multiple

small non-contiguous requests into large contiguous ones and

wkliao
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

has demonstrated to be very successful, as modern file systems

handle large contiguous requests more efficiently. However,

the even partitioning method does not necessarily produce the

best I/O performance on all file systems.

Modern parallel file systems employ multiple I/O servers,

each managing a set of disks, in order to meet the requirement

of high data throughput. Files stored on these systems can

be striped across the I/O servers so that large requests can

be concurrently served. For parallel I/O on striped files, it

is not easy to enforce data consistency and provide high

performance I/O at the same time. Two most important data

consistency issues that file systems must enforce are I/O

atomicity and cache coherence. Most file systems rely on a

locking mechanism to provides a client an exclusive access

to a file region and hence to implement the data consistency

control. Due to the nature of file striping, lock granularity is

usually the file block size or stripe size, instead of a byte.

If two I/O requests simultaneously access the same file block

and at least one of them is a write, they must be carried out

serially, even if they do not overlap in bytes. On file systems

that perform client-side file caching, this situation can also

cause false sharing in which a block is cached by a process

but flushed immediately, so the block can be accessed by the

other process. Both I/O serialization and false sharing could

happen in a collective I/O, if the partitioned file domains are

not aligned with the lock boundaries.

In this paper, we investigate three file domain partitioning

methods in addition to the even partitioning method used by

ROMIO. The first method aligns the partitioning with the

file system’s lock boundaries. The second method, named

static-cyclic method, partitions a file into fixed-size blocks

based on the lock granularity and statically assigns the blocks

in a round-robin fashion among the I/O aggregators. The

third method, named group-cyclic method, divides the I/O

aggregators into groups, each being of size equal to the number

of I/O servers. Within each group, the static-cyclic partitioning

method is used. This method is particularly designed for the

situation that the number of I/O aggregators is much larger

than the I/O servers. We evaluate these methods using four

I/O benchmarks on two parallel file systems, Lustre and

GPFS. Due to the different file locking protocols adopted

in Lustre and GPFS, these partitioning methods result in

significant performance differences on the two file systems.

Our experiments conclude that the group-static and lock-

boundary aligned methods give the best write performance on

Lustre and GPFS, respectively. We analyze these behaviors and

propose a strategy that dynamically chooses the partitioning

method best fit to the underlying file system locking protocol.

The rest of the paper is organized as follows. Section II

discusses background information and related work. Design

and implementation of the file domain partitioning methods

are described in Section III. Performance results are presented

and analyzed in Section IV and the paper is concluded in

Section V.

II. BACKGROUND AND RELATED WORK

MPI-IO inherits two important MPI features: MPI commu-

nicators defining a set of processes for group operations and

MPI derived data types describing complex memory layouts.

A communicator specifies the processes that can participate

in a collective operation for both inter-process communication

and file I/O. When opening a file, the MPI communicator is a

required argument to indicate the group of processes accessing

the file. MPI collective I/O functions also require all processes

in the communicator to participate. Such an explicit synchro-

nization allows a collective I/O implementation to exchange

access information among all processes and reorganize I/O

requests for better performance. Independent I/O functions, in

contrast, requiring no synchronization make any collaborative

optimization very difficult. While the MPI-IO design goals

are mainly for parallel I/O operations on shared files, one

can still program in the one-file-per-process style using the

MPI_COMM_SELF communicator, but it provides no benefit

over using POSIX I/O directly.

A. Two-phase I/O Implementation in ROMIO

Two-phase I/O is a representative collaborative I/O tech-

nique that runs at user space. It assumes that file systems

handle large contiguous requests much better than small non-

contiguous ones. ROMIO implements the two-phase I/O for all

the collective functions. It first calculates the aggregate access

region, a contiguous file region starting from the minimal

access offset among the requesting processes and ending at

the maximal offset among the processes. The aggregate access

region is then divided into non-overlapping, contiguous sub-

regions denoted as file domains, and each file domain is

assigned to a unique process. A process makes read/write calls

on behalf of all processes for the requests located in its file

domain. In ROMIO’s current implementation, the file domain

partitioning is done evenly at the byte range granularity in

consideration of balancing the workload.

The two-phase method is generalized in ROMIO by tak-

ing two user-controllable parameters: the I/O aggregators

and the collective buffer size [8]. Both parameters can be

set through MPI info objects using hints cb_nodes and

cb_buffer_size. The I/O aggregators are a subset of

the processes that act as I/O proxies for the rest of the

processes. On the parallel machines where each compute nodes

contains a multi-core CPU or multiple processors, the ROMIO

default picks one of the core/processor as the aggregator each

node. Only aggregators make system calls, such as open(),

read(), write() and close(). The collective buffer size

indicates the space of temporary buffers that can be used for

data redistribution. It is useful for memory-bound applications

where spare memory space is limited. When a file domain is

bigger than the collective buffer size, the collective I/O will be

carried out in multiple steps of two-phase I/O and each two-

phase I/O operates on a file sub-domain of size no larger than

the collective buffer size. Figure 1 shows a two-dimensional

array of size 10 × 15 partitioned among six processes in a

block-block fashion and the array is written in the array’s

2

P3 P4 P5

5

5 5 5

5

X

Y

(a)

aggregate access region = 150

64 102 14026

42 80 118 156

4810 86 124 160

1st two−phase I/O

2nd two−phase I/O

3rd two−phase I/O

P ’s
3

P ’s
21

P ’s
0

P ’s

file domain

38 38 38 36

file domainfile domain file domain

file

offsets
file

P

(b)

0 1P P

Fig. 1. (a) A 10 × 15 array stored in a file in a row major is partitioned
among six processes. Each subarray is of size 5 × 5. (b) The aggregate access
region is calculated and partitioned evenly among the I/O aggregators. Each
aggregator is assigned a contiguous region as its file domain. In this example,
the first four processes are picked as the I/O aggregators. Given the collective
buffer size of 16 bytes, a collective I/O operation is carried out in 3 steps of
two-phase I/O. Each step covers a file region equal or less than 16 bytes.

canonical order to a shared file starting from file offset 10.

In this example, the I/O aggregators are set to be the first four

processes. Under the even partitioning policy, file domains are

non-overlapping contiguous file regions of size 38 bytes for

processes P0, P1, and P2 and 36 bytes for process P3. If a

collective buffer size of less than the file domain size, say 16

bytes, the collective I/O will be completed by running two-

phase I/O three times. In each two-phase I/O, an aggregator

only handles data redistribution for a file region equal or less

than 16 bytes.

Nitzberg and Lo studied three file domain-partitioning meth-

ods for two-phase I/O, namely block, file layout, and cyclic

target distributions [9]. The block method uses all processes as

I/O aggregators and chooses an unlimited collective buffer size

so that the two-phase I/O can be completed in a single step.

The file layout method uses the number of I/O aggregators

equal to the number of system I/O servers and the data redis-

tribution matches the file striping layout. The two-phase I/O

is carried out in rounds, each round processing the aggregate

access region of size equal to the collective buffer size times

the number of aggregators. In each round, an aggregator will

make n read/write calls to the file system, where n is the

number of stripe units in a collective buffer. The cyclic method

is generalized from the file layout method, which allows file

domain size to be set by the users to a multiple of file stripe

size. Their experiments showed all three methods perform

competitively and with selected collective buffer sizes the

cyclic method can outperform others in some cases. They

concluded that no single partitioning method provides the best

performance and the performance varies depending on the I/O

patterns. However, there is no analysis from the file system

perspective on why these methods behave differently, but

merely a performance observation. The file-layout and cyclic

methods are similar to our static-cyclic partitioning method

presented in this paper. The difference is that we consider the

file system’s lock granularity and our motivation came from

the idea of how to minimize the lock contentions.

B. File Locking in Parallel File Systems

Many modern parallel file systems are POSIX compliant,

which abide by the data consistency rules that were de-

signed under the traditional non-parallel environment. It has

been known that POSIX requirements on I/O consistency

and atomicity are the two main factors causing significant

performance degradation for parallel shared-file I/O [10], [11].

Data consistency requires the outcomes of concurrent I/O

operations as if they were carried out in a certain linear

order. It is relatively easy for a file system with one server

to guarantee the sequential consistency, but much difficult for

parallel file systems where files are striped across multiple

servers. The atomicity requires that the results of an individual

write call are either entirely visible or completely invisible to

any read call [12]. Implementation for both requirements can

become further sophisticate when client-side file caching is

performed. Two well-known parallel file systems support file

caching are the IBM’s GPFS [13], [14] and Lustre [15].

Currently a popular solution for I/O atomicity and cache

coherency uses a locking mechanism to provide a process

the exclusive access privilege to the requested file region.

However, exclusive access can potentially serialize concurrent

operations. Especially, as the number of processors goes into

the scale of thousands or millions, guaranteeing such consis-

tency without degrading the parallel I/O performance is a great

challenge. To avoid the obvious bottleneck from a centralized

lock manager, various distributed file locking protocols have

been proposed. For example, GPFS employs a distributed

token-based locking mechanism to maintain coherent caches

across compute nodes [16]. This protocol makes a token holder

a local lock authority for granting further lock requests to its

corresponding byte range. A token allows a node to cache data

that cannot be modified elsewhere without first revoking the

token. GPFS’s file stripe size is set at the system boot time

and not changeable by users. The Lustre file system uses a

different distributed server-based locking protocol where each

I/O server manages locks for the stripes of file data it stores.

Unlike GPFS, users can customize striping parameters for a

file on Lustre, such as stripe count, stripe size, and the starting

I/O server. If a client requests a lock held by another client,

a message is sent to the lock holder asking it to release the

lock. Before a lock can be released, dirty cache data must be

flushed to the servers. To guarantee atomicity, file locking is

used in each read/write call to guarantee exclusive access to

the requested file region.

Both GPFS and Lustre adopt an extent-based locking pro-

tocol in which a lock manager tends to grant a request as the

largest file region as possible. For example, the first requesting

process to a file will be granted the lock for entire file. When

the second write from a different process arrives, the first

process will relinquish part of the file to the requesting process.

If the starting offset of the second request is bigger then the

first request’s ending offset, the relinquished region will start

from the first request’s ending offset toward the end of file.

Otherwise, the relinquished region will contain a region from

file offset 0 to the first request’s staring offset. The advantage

of this protocol is if a process’s successive requests are within

the already granted region, then no lock request is needed.

The extent-based protocol is carried out by the lock manager

on both GPFS and Lustre. On GPFS, the lock token holder is

the lock manager and hence the extent of a lock can virtually

cover the entire file. On Lustre, since an I/O server is the lock

manager for the file stripes stored in that server, the extent of

a lock can only cover those file stripes.

III. DESIGN AND IMPLEMENTATION

There is no doubt that process collaboration is a key for

high-performance I/O. In addition to the two-phase I/O and

disk-directed I/O, many collaboration strategies have been

proposed and demonstrated their success, including server-

directed I/O [17], persistent file domain [18], [19], active

buffering [20], collaborative caching [21], [11], etc. In this

paper, we focus on the two-phase I/O method implementation

in ROMIO. The primary idea of two-phase I/O assumes

that file access cost is much higher than the inter-process

communication. This assumption is still reasonable for the

configuration of today’s parallel machines where the I/O

servers are much less than the compute nodes. In addition

to the potential network congestion on the servers, the disk’s

slow latency and file system’s overhead on data consistency

and cache coherence controls also attribute to the higher I/O

cost.

The significance of such file system control costs will be-

come clear as we examine how a file system reacts differently

to the one-file-per-process and shared-file I/O styles. Both

styles deal with concurrent I/O requests to the file system,

but only the shared-file method bears the consistency control

cost. The one-file-per-process style does not introduce any lock

conflicts and hence causes no I/O serialization. Its cost for

acquiring locks is even smaller when the extent-based locking

protocol is used. On the other end, multiple locks to the same

file must be resolved by the file system in the shared-file I/O

style and the more concurrent I/O requests, the higher cost

of the lock acquisition. If two I/O requests overlap and at

least one is a write request, the I/O will be serialized, which

further worsens the I/O performance. Therefore, avoiding lock

conflicts is very important and the first step for a two-phase

I/O implementation to achieve better performance.

0

3

P
2

0
P

1
P P

2
P

P
1

P P
3

lock boundaries
granularity

lock

align align

aggregate access region

even
partitioning

boundaries

aligned
with lock

file

Fig. 2. File domains produced by the even and lock-boundary aligned
partitioning methods.

A. Partitioning Aligned with Lock Boundaries

The lock granularity of a file system is the smallest size of

file region a lock can protect. For single-disk file systems, it is

the disk sector size. For file systems using a single RAID disk,

it is the sector size times the number of redundant disks. For

most of the parallel file systems, such as GPFS and Lustre,

it is set to the file stripe size. Reasonably good parallel I/O

performance has been seen from many parallel I/O bench-

marks that used the I/O sizes being multiples of stripe sizes to

avoid conflicts at lock granularity level. However, this perfect

alignment does not always happen in real applications. In the

two-phase I/O implementation, although the even partitioning

method generates non-overlapping file domains at the byte

level, it can still cause lock contentions at the lock granularity

level. To avoid such contentions, the simplest method is to

align each partitioning to a lock boundary. As depicted in

Figure 2, our implementation aligns the partitioned boundary

of two file domains to the nearest lock boundary. Similar

approaches have been proposed and demonstrated performance

enhancement on several benchmarks for both Lustre and GPFS

file systems [22], [11].

B. Static-cyclic Partitioning

The static-cyclic partitioning method divides the entire file

into equal-size blocks and assigns the blocks to the I/O

aggregators in a round-robin fashion. The block size is set

to the file system’s lock granularity. The association of a

block to an aggregator does not change from one collective

I/O to another. For instance, given n I/O aggregators, blocks

i, i + n, i + 2n, · · · are assigned to aggregator rank i. We

refer these blocks as process i’s partitioning fileview, which

is similar to the MPI fileview concept that defines the file

regions visible to a process. Note that in the even and aligned

partitioning methods, file domains only exist in the current

collective I/O call and must be redefined in every collective

I/O. In the static-cyclic method, the partitioning fileview of an

aggregator does not change from one collective I/O to another.

If the lock granularity is the same size as the file stripe and

there is a common divisor between the number of I/O servers

I/O servers

aggregate access regionfile

lock
granularity

P
3 0

P
1

P P
2

P
3 0

P
1

P P
2

S
0

S
1

from P1

from P3

from P1

from P3
from P0

from P2

from P2

from P0

file stripe

Fig. 3. Static-cyclic partitioning method. When the lock granularity is equal
to the file stripe size, process P0 and P2 always communicate with I/O server
S0, and P1 and P3 always communicate with S1.

and aggregators, each aggregator will always communicate

with the same set of servers. Figure 3 depicts an example of

the partitioning fileviews and file domains partitioned by the

static-cyclic method. If persistent communication channels can

be established between compute processor and I/O servers, this

method can further reduce the network cost across multiple

collective I/Os.

Compared with the even and aligned methods where each

file domain is a contiguous region, the implementation of

static-cyclic method is more complicate, especially when the

collective buffer size is small. Given a collective I/O, what

an aggregator will access is the intersection of its partitioning

fileview and the collective I/O’s aggregate access region. Al-

though an aggregator’s file domain still does not overlap with

another aggregator like the other two partitioning methods,

it is no longer a single contiguous file region. The size of

a file domain is the sum of the coalesced strided blocks an

aggregator is responsible within the aggregate access region.

If the file domain size is larger than the collective buffer

size, the collective I/O is decomposed into multiple steps of

two-phase I/O. In each step, a file sub-domain is covering

a subset of blocks whose coalesced size is equal or less than

the collective buffer size. Figure 4 illustrates an example of an

aggregator’s file domain and sub-domains. For instance, after

the redistribution phase of a collective write, the collective

buffer contains non-contiguous data blocks spanning across the

aggregate access region. There will be one write call for each

of the blocks. Thus, the number of read/write calls made by

each aggregator is more than the even and aligned partitioning

methods. Apparently a performance trade-off exists, depending

on how well a file system can handle such a request pattern.

C. Group-cyclic Partitioning

When the number of I/O aggregators is much larger than

the number of I/O servers, the static-cyclic method may cause

(c)

granularity

lock

(b)

P0 1P

P3P2

(a)

X

Y

buffer size

collective

file sub−domain of 1st two−phase I/O

file sub−domain of 2nd two−phase I/O

file sub−domain of 3rd two−phase I/O

file sub−domain of 4th two−phase I/O

Fig. 4. (a) Data partitioning of a 2D array among four processes. It also
represents the processes’ MPI fileviews. The 2D array is stored the file in
a row major. (b) The gray area is process 0’s file domain generated by the
static-cyclic partitioning method. (c) Process 0’s file domain is further divided
into four sub-domains, given the collective buffer size is one-forth of the file
domain size. The collective I/O is carried out in four steps of two-phase I/O,
each using a sub-domain.

higher lock acquisition cost if the underlying file system uses

the server-based locking protocol. In the example shown in

Figure 3, there are four I/O aggregators and two I/O servers.

In the static-cyclic method, although server S0 only receives

requests from processes P0 and P2, the file stripes accessed

by the two processes are interleaved. Similarly, the file stripes

accessed by processes P1 and P3 are also interleaved at

server S1. In this case, if the extent-based locking protocol

is used, lock requests to each of the interleaved stripes must

be resolved by remote processes. Such lock acquisition pattern

can be harmful to the performance.

To avoid the interleaved access, the group-cyclic partitioned

method divides the I/O aggregators into groups, each of size

equal to the number of I/O servers. The aggregate access

region of a collective I/O is then divided among the groups

with the boundaries aligned to the file stripe size. Within each

group, the static-cyclic method is used. Figure 5 illustrates

an example of the group-cyclic partitioning method using

eight I/O aggregators and four I/O servers. The first group,

group 0, contains aggregators 7, 0, 1, and 2. Group 1 includes

aggregators 3, 4, 5, and 6. The aggregator rank alignment is

based on the starting file offset of the aggregate access region.

The starting aggregator rank, 7 in this example, is calculated

by the formula

⌊
starting offset

stripe size
⌋ mod np (1)

where np is the number of aggregators. The grouping is made

file

group 1group 0

aggregate access region

P
2

P
7 0

P
1

P P
7

P
2

P
3

P
4

P
5

P
6

P
3

P
4

P
5

P
60

P
1

P

S
1

S
2

S
3

S
0

from P7

from P3

from P3

from P7

from P4

from P0

from P4

from P0
from P2

from P6

from P6

from P2

from P1

from P5

from P5

from P1

file stripe

I/O servers

lock
granularity

Fig. 5. Group-cyclic partitioning method. The I/O aggregators are divided into 2 groups, each of size equal to the number of servers. In this example, the
file stripes accessed by P0 have file offsets prior to the ones by P4 at server S0. Similarly, the stripes accessed by P1 have offsets prior to the stripes by P5

at server S1, and so on.

in the continuous, round-robin aggregator rank order. Within

each group, an aggregator will only make requests to one I/O

server. Since group 0 covers the file region prior to group 1

and no aggregator is assigned to two groups, the interleaved

access is eliminated. Under the server-based locking protocol,

file stripes requested by a process are considered contiguous by

the I/O server. Unlike the static-cyclic method, the association

of file stripes to the I/O aggregators is no longer static across

multiple collective I/O operations. However, the association of

I/O servers to the aggregators is still static, if the numbers of

the servers is a factor or multiple of the the aggregators. In

other words, the group-cyclic method is static at the I/O server

level while the static-cyclic method is static at the file stripe

level. Note that the group-cyclic method only takes effective

when the number of I/O aggregators is greater than the number

of I/O servers. Otherwise, it operates exactly the same as the

static-cyclic method.

IV. EXPERIMENTAL RESULTS

Our performance evaluation was conducted on two parallel

machines: Jaguar at the National Center for Computational

Sciences and Mercury at the National Center for Supercom-

puting Applications. Jaguar is a 7832-node Cray XT4 cluster

running Compute Node Linux operating system. Each of the

compute nodes contains a quad-core 2.1 GHz AMD Opteron

processor and 8 GB of memory. The communication network

is a Cray SeaStar router through a bidirectional HyperTrans-

port interface. The parallel file system is Lustre with a total of

144 object storage targets (I/O servers). Lustre allows users to

customize the striping configuration of a directory and all new

files created in that directory inherit the striping configuration.

In our experiment, we configure a directory to store all output

files with 512 KB stripe size, 64 stripe count (number of I/O

servers), and the start server to be randomly picked by the file

system. On Lustre, the lock granularity is the stripe size, 512

KB in our experiments. Mercury, a TeraGrid Cluster, is an 887-

node IBM Linux cluster where each node contains two Intel

1.3/1.5 GHz Itanium II processors sharing 4 GB of memory.

Running a SuSE Linux operating system, the compute nodes

are inter-connected by both Myrinet and Gigabit Ethernet.

Mercury runs an IBM GPFS parallel file system version 3.1.0

configured in the Network Shared Disk (NSD) server model

with 54 I/O servers and 512 KB file block (stripe) size. Unlike

Lustre, users cannot change the file striping parameters on

GPFS. The lock granularity on GPFS is also the stripe size,

512 KB in our case. The MPI library installed on Mercury is

MPICH version 1.2.7p1 configured with Myrinet.

We developed the proposed I/O methods in the ROMIO

source codes from the MPICH package developed at Argonne

National Laboratory. On Jaguar, we extracted the ROMIO

package from the MPICH2 release of version 1.0.7 and on

Mercury we used the ROMIO from MPICH version 1.2.7p1.

We configured the ROMIO by enabling the ADIO Unix file

system driver for both Lustre and GPFS and built the ROMIO

as a stand-alone library separately from the MPICH. The

library is then linked with the native MPI library on the

two machines when generating application executable binaries.

For performance evaluation, we use two artificial benchmarks,

ROMIO collective I/O test and BTIO, and two I/O kernels

from production applications, FLASH and S3D. The band-

width numbers were obtained by dividing the aggregate I/O

amount by the time measured from the beginning of file open

until after file close.

A. ROMIO Collective I/O Test

ROMIO software package includes a set of test programs in

which the collective I/O test, named coll_perf, writes and

reads a three-dimensional integer array that is block partitioned

along all three dimensions among processes. An example

of its partitioning pattern on 64 processes is illustrated in

32 256 512 1024

Number of processes

16 64

100%

 0

20%

40%

60%

80%

12816 32 64 256 512 1024

I/
O

 p
h

a
s
e
 p

e
rc

e
n

ta
g

e

Number of processes Number of processesNumber of processes

100%

 0

20%

40%

60%

80%

128

Lustre − writeLustre − write

 3000

32 64 128 256 512 1024

 14000

 12000

 10000

 8000

 6000

 4000

 2000

 0

128x128x128 subarray size

Number of processes

Lustre − write

B
a
n

d
w

id
th

 i
n

 M
B

/s

16 32 64 128 256 512 1024

100x100x100 subarray size

Number of processes

Lustre − write

16 32 64 128 256

B
a
n

d
w

id
th

 i
n

 M
B

/s

 0

 2000

 4000

 6000

 8000

 10000

Number of processes

Lustre − read

16 32 64 128 256

Number of processes

Lustre − read

32 64 128 25616

 500

 1000

 1500

 2000

 2500

16

 3500

 4000

Number of processes

GPFS − read

32 64 128 25616

Number of processes

GPFS − read

8 16 32 64 128 256 512

GPFS − write

8 16 32 64 128 256 512

GPFS − write

8 16 32 64 128 256 512

128x128x128 subarray size

Number of processes

GPFS − write

 0

 500

 1000

 1500

 2000

8 16 32 64 128 256 512

100x100x100 subarray size

Number of processes

GPFS − write

static−cyclicaligned with lock boundarieseven partitioning group−cyclic

Fig. 6. Performance results of ROMIO collective I/O test.

Figure 11(a). In order to get stable performance numbers,

we measured ten iterations of the collective operations. The

subarray size in each process is kept constant, independent

from the number of processes used, and hence the total I/O

amount is proportional to the number of processes. We choose

two sets of subarray size: 128×128×128 and 100×100×100.

The 128×128×128 size allows the even partitioning method

to generate some file domains aligned with the file lock

boundaries. The 100 × 100 × 100 subarray size is chosen to

make the unaligned case. The experimental results are shown

in Figure 6.

On Lustre, the write bandwidths for both even and aligned

partitioning methods are similar, but significantly lower than

the cyclic methods. On GPFS, for 128 × 128 × 128 subarray

size, the even and aligned methods are close to each other

and both are much better than the static-cyclic method. For

the 100 × 100 × 100 subarray size, bandwidths of the even

method drop close to the static-cyclic method. This drop of

the even method is because the file domains are no longer

aligned with the lock boundaries like the 128 × 128 × 128

case. The performance difference between Lustre and GPFS

implies the important role of the system locking protocol

to the I/O performance. On Lustre, every I/O server is the

lock manager for the file stripes stored locally. If a process

makes a write request of amount larger than a file stripe,

it must acquire locks from those I/O servers responsible for

the stripes that are part of the request. Lustre enforces I/O

atomicity by having the process obtain all the locks to these

stripes and hold the locks until the entire write data have

been received by the servers. The cyclic methods best fit for

this protocol, because they make the I/O aggregators access

to the same set of I/O severs and hence minimize the cost

of lock acquisition. An advantage of the static-cyclic method

is that the client-side file system caches are always coherent

across multiple collective I/O operations, since file stripes are

statically assigned and no file stripe will be accessed by more

than one aggregator. In other words, the file system’s cache

coherence control will ever be triggered and cached data are

evicted only when the operating system is under memory

space pressure or the cache pages are explicitly flushed. This

property is not presented in the other methods, because their

file domains may change from one collective I/O to another.

However, the interleaved file stripe access starts to occur

for the static-cyclic method when the number of processes

is larger than 512. Since each compute node on Jaguar is

a quad-core processor, the number of I/O aggregators in a

collective I/O is a quarter of the number of MPI processes.

In the 512-process case, the number of aggregators is 128,

twice the number of the I/O servers used in our experiments.

Similarly for the 1024-process case, there are 4 aggregators

requesting file stripes that are interleaved in each I/O server.

Initially, the group-cyclic method behaves the same as the

static-cyclic method till the 256-process case. It keeps scaling

up beyond 256 processes. The scalable results are attributed

to the goal of the group-cyclic method that is to rearrange the

file domains by removing any possible interleaved file stripe

access and hence minimizing the number of lock requests for

each process. This phenomena demonstrates the importance of

avoiding any conflicted lock acquisition to the parallel shared-

file I/O performance.

On GPFS, the cyclic methods do not perform as well as on

Lustre. We only show the results of the static-cyclic method

as they are very similar to the group-cyclic method. Under

GPFS’s token-based locking protocol, any client process can

become a lock manager for future lock requests to its already

granted file range. Both even and align partitioning methods

produce file domains as single contiguous file regions, one for

each I/O aggregator. Since file domains are not overlapping,

all write locks can be immediately granted if the align method

is used. On the other hand, the cyclic methods produce file

domains containing many non-contiguous file stripes. An I/O

aggregator must make a write call for each stripe and thus

there is a lock request for each write. Since the file stripes

from one aggregator are interleaved with all other aggregators,

multiple lock requests must be made and most likely will be

served by remote token holders. From our experiments, it is

the cost of waiting for lock requests to be served that slows

down the write speed, not because of the conflicted locks,

as file domains are not overlapping for all four partitioning

methods. The aligned method is more suitable for the token-

based locking protocol, because it results in each aggregator

making only one large contiguous write request and thus there

is only a lock request from a process in a collective I/O.

To understand the detailed impact of these file domain

partitioning methods to the two-phase I/O, we measure the two

phases separately. The percentage of the I/O phase to the total

execution time, also shown in Figure 6, is a key indicator to

the effectiveness of a partitioning method. The cyclic methods’

I/O phase percentages are significantly lower than the other

two methods on Lustre. In some cases, the I/O phase even

takes less time than the data redistribution phase. Note that

the aggregate access regions and hence the total write amounts

are equal for all partitioning methods. On GPFS, although the

difference in the I/O phase percentages is not as dramatic as

on Lustre, we can see the aligned method has the lowest I/O

phase percentage and hence the highest write bandwidth.

The read performance tells a different story, because read

locks are sharable. The fact that collective read operations

do not cause any lock conflict suppresses the significance

of file domain partitioning methods. Although there is no

dramatic difference among the three partitioning methods,

the static-cyclic method performs slightly worse than the

X

slice 1

combined view

local−to−global
mapping

4D subarray in
each process

ghost cells

slice 2

Z

Y

slice 0

0

P

P P P

P

P

P

P

0

3

6 7

4

1 2

5

8

P

P

P P

P

P P

P

P5

8

2 0

6

3 4

7

1

P

P

P P P

P P

P P

7

1

4 5

2

8 6

P
3

P6

P6

P6

Fig. 7. BTIO data partitioning pattern. The 4D subarray in each process is
mapped to the global array in a block-tridiagonal fashion. This example uses
9 processes and highlights the mapping for process P6.

other two methods on both Lustre and GPFS. This is owing

to the read-ahead operations performed by the underlying

file system. File systems prefetch a certain amount of data

immediately following the read request. In the static-cyclic

method, the prefetched data by an aggregator in fact belong

to the file domains statically assigned to different aggregators.

All prefetched data will never be used and the more read

requests, the more cost of prefetching. Compared to the even

and aligned methods that make only one read request, the

static-cyclic method makes many read requests, one per file

stripe. Therefore, it is not recommended for collective read

operations to use the cyclic methods.

B. BTIO Benchmark

Developed by NASA Advanced Supercomputing Division,

the parallel benchmark suite NPB-MPI version 2.4 I/O is

formerly known as the BTIO benchmark [23]. BTIO presents

a block-tridiagonal partitioning pattern on a three-dimensional

array across a square number of processes. Each process is

responsible for multiple Cartesian subsets of the entire data

set, whose number increases with the square root of the

number of processors participating in the computation. Figure

7 illustrates the BTIO partitioning pattern with an example

of nine processes. In BTIO, forty arrays are consecutively

written to a shared file by appending one after another. Each

array must be written in a canonical, row-major format in the

file. The forty arrays are then read back for verification using

the same data partitioning. We evaluate the Class C data size

which sets the global array size to 162 × 162 × 162 and the

total write amount for forty arrays is 6.34 GB. The global

array size is fixed disregarding the number of MPI processes

used. Hence, the I/O amount of individual processes decreases

as the number of processes increases.

We measured BTIO write and read operations separately.

Number of processes

60%

100%

80%

40%

20%
Lustre − write

0

GPFS − write

Number of processes

60%

100%

80%

40%

20%

0

Lustre − read

Lustre − write GPFS − write

GPFS − read

I/
O

 p
h

a
s
e
 p

e
rc

e
n

ta
g

e

 500

16 36 49 64 100 144 256 576

Number of processes

 1000

 1500

 2000

 2500

 3000

 3500

 4000

static−cyclic with default I/O aggregators

14410016

16

 400

 200

36 49 64 100 144 256

16 36

 0

 100

 200

 300

 400

 500

 600

 700

Number of processes

16 36 49 64 100 576256144

aligned with lock boundaries

49 64 100 144 256 5761024

Number of processes

even partitioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
B

a
n

d
w

id
th

 i
n

 M
B

/s

16 36 49 64 100 144 256 576

B
a
n

d
w

id
th

 i
n

 M
B

/s

 1400

 1200

 1000

 800

 600

5761024

644936

 0

Number of processes

576256

 0

static−cyclic with adjusted I/O aggregators

Fig. 8. Performance results for BTIO benchmark.

Figure 8 shows the write bandwidths, I/O phase percentages,

and the read bandwidths. We use the static-cyclic method

to represent both cyclic methods as their results are about

the same on both Lustre and GPFS. On Lustre, the static-

cyclic method outperforms the even and aligned methods

for the write operation. The write bandwidth curve shows

a few spikes in the cases of 16, 64, and 256 processes. In

these cases, the number of default I/O aggregators are 4, 16,

and 64, respectively. Since these numbers are factors of the

number of I/O servers 64, the cyclic methods produce the

file domains such that each aggregator is served by the same

servers and no server receives write requests from more than

one aggregator. Since BTIO runs only on square numbers

of processes, other cases have no such advantage and their

bandwidths are significantly lower.

To overcome this advantage, we also ran additional experi-

ments for the cyclic methods by changing the default numbers

of aggregators. The number of I/O aggregators can be set

by the ROMIO collective buffering node hint, cb_nodes,

and passed to ROMIO library as an MPI info object when

opening the file. We set the number of aggregators to 8, 8,

16, 32, and 128 for the cases of 36, 49, 100, 144, and 576

processes, respectively. These numbers are the largest numbers

that are factors of 64 and smaller than the default number of

I/O aggregators. Adjusting the I/O aggregator numbers clearly

further improves the write performance.

file

1

P2

P3

P0

variable 1

variable 2

variable 24

Checkpoint write

1. for ecah of 24 variables

2. call HD5write()

Plot file with centered data

1. for ecah of 4 plot variables

2. call HD5write()

Plot file with corner data

1. for ecah of 4 plot variables

2. call HD5write()

P1

P2

P3

P0

P1

P2

P3

P0

P

Fig. 9. I/O pattern of FLASH I/O benchmark.

As the number of processes reaches beyond 256, the write

bandwidth of the static-cyclic method with 64 aggregators

starts going down. This behavior is attributed to the smaller

subarray size partitioned in each process, because the subar-

ray size decreases as the number processes increases. When

using 576 processes, each process only holds subarray size

of 288.3 KB. When redistributing data from 576 processes

to 64 aggregators, there are nine processes completing one

aggregator during the data redistribution phase. With small

write requests and large number of processes, the cost of data

redistribution phase starts to grow and interfere the overall

write performance. This can be observed from the Lustre’s I/O

phase percentage chart for those cases using adjusted numbers

of I/O aggregators.

On GPFS, the aligned partitioning method outperforms the

even and static-cyclic methods. The even method is never close

to the aligned method because the 162× 162× 162 array size

only generates unaligned file domains for the even partitioning

method. The even method is also slower than the static-cyclic

method and the gap increases as the number of processes goes

up. This implies that the cost of lock boundary conflict for a

large number of small write requests is worse than the cost

of communication contention at the lock token holders caused

by the static-cyclic method.

Similar to the results of the ROMIO collective I/O test,

the read bandwidths of the static-cyclic method are the worst.

The same reason of data prefetching overhead slows down

the static-cyclic method on Lustre. On GPFS, as the number

of processes increase, both aligned and static-cyclic methods

become worse. This behavior is caused by the smaller I/O

amount from each process resulting uneven workload among

the I/O aggregators. Of all three methods, the lock-boundary

aligned partitioning generates the worst unbalanced workload.

C. FLASH I/O Benchmark

The FLASH I/O benchmark suite [24] is the I/O kernel

of a block-structured adaptive mesh hydrodynamics code that

solves fully compressible, reactive hydrodynamic equations,

developed mainly for the study of nuclear flashes on neutron

Lustre

Number of processes

 0

20%

100%

80%

40%

60%

80%

100%

20%

 0

60%

40%

GPFS

Number of processes

I/
O

 p
h

a
s
e
 p

e
rc

e
n

ta
g

e

Lustre

256128

8 16 32 64 128 256 512

 800

 1000

 1200

 1400

 1600

3216

W
ri

te
 b

a
n

d
w

id
th

 i
n

 M
B

/s
 10000

 8000

 6000

8 16 32 64 128 256 512

2561286432

group−static

GPFS

 4000

 2000

 0

even partitioning

Number of processes

16

static−cyclic

1024512

aligned with lock boundaries

Number of processes

64

 0

 200

 400

 600

512 1024

Fig. 10. Performance results for FLASH I/O benchmark.

stars and white dwarfs [25]. The computational domain is

divided into blocks that are distributed across a number of

MPI processes. A block is a three-dimensional array with an

additional 4 elements as guard cells in each dimension on

both sides to hold information from its neighbors. There are

24 variables per array element, and about 80 blocks on each

MPI process. A variation in block numbers per MPI process

is used to generate a slightly unbalanced I/O load. Since the

number of blocks is fixed for each process, increase in the

number of MPI processes linearly increases the aggregate I/O

amount as well. FLASH I/O produces a checkpoint file and

two visualization files containing centered and corner data. The

largest file is the checkpoint, the I/O time of which dominates

the entire benchmark. Figure 9 depicts the I/O pattern and

extracts the program loops for the write operations. FLASH

I/O uses the HDF5 I/O interface to save data along with

metadata in the HDF5 file format. Since the implementation

of HDF5 parallel I/O is built on top of MPI-IO [26], FLASH

I/O performance reflects the use of different file domain

partitioning methods. There are 24 collective write calls, one

for each of the 24 variables. In each collective write, every

MPI process writes a contiguous chunk of data, appended

to the data written by the previous ranked MPI process.

Therefore, a write request from one process does not overlap or

interleave with the request from another. In ROMIO, this non-

interleaved access pattern actually triggers the independent

I/O subroutines, instead of collective subroutines, even if MPI

collective writes are explicitly called. This behavior can be

overridden by enabling the romio_cb_write hint. We use

this hint so the four file domain partitioning methods can

take effect in our experiments. In our experiments, we used a

32 × 32 × 32 block size that produces about 20 MB of data

per process in each collective write operation.

The performance results are shown in Figure 10. The

write bandwidth curve on Lustre looks similar to the ROMIO

collective write test. The even and aligned methods perform

poorly and are much slower than the two cyclic methods. The

static-cyclic method starts to slow down in the cases of 512

and 1024 process due to the interleaved file stripe access at

the I/O servers. The group-cyclic method performs similar to

the static-cyclic method for the cases of using 256 processes

and less, but keeps scaling up beyond 256 processes. This

difference is also reflected in the chart of I/O phase percentage,

where the static-cyclic method increases significantly at 512

and 1024 cases. On GPFS, the aligned method has the best

write bandwidth followed by the even method. The bandwidth

curve of even method is closer to the aligned method than the

static-cyclic method because we uses array size of 32×32×32

which produces many evenly partitioned file domains aligned

to the file stripe boundaries. In order to artificially generate a

slightly unbalanced I/O load, FLASH I/O benchmark assigns

process rank i with 80 + (i mod 3) data blocks and a process’s

write amount is either 20, 20.25, or 20.5 MB. With these

amounts, the even partitioning method can create many file

domains that are aligned with the 512 KB lock boundaries.

The I/O phase percentage results also show the align method

having the lowest percentages and the static-cyclic method the

highest.

D. S3D I/O Benchmark

The S3D I/O benchmark is the I/O kernel of a parallel

turbulent combustion application, named S3D, developed at

Sandia National Laboratories [27]. S3D uses a direct numerical

simulation solver to solve fully compressible Navier-Stokes,

total energy, species and mass continuity equations coupled

with detailed chemistry. The governing equations are solved on

a conventional three-dimensional structured Cartesian mesh.

A checkpoint is performed at regular intervals, and its data

consists primarily of the solved variables in 8-byte three-

dimensional arrays, corresponding to the values at the three-

dimensional Cartesian mesh points. During the analysis phase

the checkpoint data can be used to obtain several more

derived physical quantities of interest; therefore, a majority

of the checkpoint data is retained for later analysis. At each

checkpoint, four global arrays, representing the variables of

mass, velocity, pressure, and temperature, respectively, are

written to files in their canonical order.

There are four collective writes in each checkpoint, one

for a variable. Mass and velocity are four-dimensional arrays

while pressure and temperature are three-dimensional arrays.

All four arrays share the same size for the lowest three spatial

dimensions X, Y, and Z, and they are all partitioned among

MPI processes along X-Y-Z dimensions in the same block-

block-block fashion. For the mass and velocity arrays, the

length of the fourth dimension is 11 and 3, respectively. The

fourth dimension, the most significant one, is not partitioned.

Figure 11 shows the data partitioning pattern on a 3D array

and the mapping of a 4D sub-array to the global array in

file. In our evaluation, we keep the size of partitioned X-Y-Z

P
41

41
P

mapping

process P

4D subarray in

X

Y

Z

local−to−global

m: length of the 4th dimension

0
P

1
P

2
P

3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14 15

P

39

43

47
63

59

55

23

27

31

16
32

48 49
33

17 18
34

50 51
35

19

41

P
41

(a) (b)

n = 0

n = 1

n = m−1

n = 0

n = 1

n = m−1

n: index of the 4th dimension

P

Fig. 11. S3D I/O data partitioning pattern. (a) For 3D arrays, the sub-array of each process is mapped to the global array in a fashion of block partitioning in
all X-Y-Z dimensions.(b) For 4D arrays, the lowest X-Y-Z dimensions are partitioned the same as the 3D arrays while the fourth dimension is not partitioned.
This example uses 64 processes and highlights the mapping of process P41’s sub-array to the global array.

dimensions constant, 50 × 50 × 50 in each process. These

numbers were in fact used in real production runs. Each

run produces about 15.26 MB of write data per process per

checkpoint. As we increase the number of MPI processes, the

aggregate I/O amount proportionally increases as well. We

report the performance numbers by measuring ten checkpoints.

The performance results are given in Figure 12. The write

bandwidth curve on Lustre is similar to the ROMIO collective

write test and Flash I/O. For the static-cyclic method, the

similar performance dips occur in the cases of 512 and 1024

processes. The group-cyclic method scales well beyond 512

processes. The I/O phase percentage also favors the cyclic

methods over the even and aligned method. On GPFS, the

aligned partitioning method performs the best, like all other

benchmarks. With the array size used in the experiment, the

even partitioning method does not generate any file domain

that aligns to the lock boundaries and hence performs no closer

to the aligned method. The I/O phase percentage charts are

also similar to the previous I/O benchmarks. From all the I/O

benchmark results presented in this paper, the impacts of the

four partitioning methods to collective I/O performance are

very consistent on both Lustre and GPFS.

V. CONCLUSIONS

Through reorganizing file access regions among the I/O

requesting processes, the two-phase I/O strategy can signif-

icantly improve the parallel I/O performance. However, it

is rare to see a collective I/O performance near the system

peak data bandwidth. The major obstacle lies on the file

GPFS

80%

100%

GPFS

I/
O

 p
h

a
s
e
 p

e
rc

e
n

ta
g

e

Number of processes

60%

Number of processes

100%

80%

60%

40%

 0

20%

40%

20%

 0

Lustre

Lustre

 200

W
ri

te
 b

a
n

d
w

id
th

 i
n

 M
B

/s

Number of processes

512 8 16 32 64 128 256 512

 300

 400

 500

 600

 700

 800

 900

256128

even partitioning

6432

aligned with lock boundaries

16

Number of processes

static−cyclic

 10000

 8000

 6000

 4000

group−cyclic

8 16 32 64 128 256 51232

 2000

 0

102451216 25612864

 0

 100

 1024

Fig. 12. Performance results for S3D I/O benchmark.

locking protocols used by the file systems and the parallel I/O

libraries do not dynamically adjust their I/O methods for these

protocols. The naive even partitioning method used by ROMIO

in its two-phase I/O implementation produces well-balanced

and large contiguous I/O requests, but may not best fit to the

underlying file system locking protocols. In fact, a collective

I/O’s performance depends on many factors, including the

application access patterns, process collaboration strategies

used in the MPI-IO library, and file system configurations.

From our experiments, the way file domains are partitioned

directly determines the I/O parallelism the underlying parallel

file system’s locking protocol can support. Among the four

partitioning methods discussed in this paper, there is no single

method that can outperform others on all file systems. A

portable MPI-IO implementation must dynamically adapt a

method that works best on the target file system.

The lessons learned from this work can be helpful for the

MPI-IO implementation as well as application users to set

the file hints. On file systems that implement server-based

locking protocols, such as the Lustre, the group-cyclic file

domain partitioning method is the best choice for collective

write operations. Choosing the same number of aggregators

as the number of I/O servers can avoid the interleaved file

stripe access for static-cyclic method, as presented in the BTIO

benchmark results. However, when the number of application

processes become much larger than the servers, communica-

tion contention can easily formed at the aggregators during

the data redistribution phase. Our future work will study the

performance impact by varying the number of aggregators for

large-scale runs. For token-based locking protocols, such as

the one used by GPFS, the method that aligns the partitioning

to the lock boundaries provides the best collective write

performance. As for collective read operations, either even or

aligned partitioning method is best to use. As new file systems

with novel locking protocols are continuing to be developed in

the future, it is important that a parallel I/O library dynamically

adapts I/O strategies based on the file system configuration that

can bring out the best performance.

ACKNOWLEDGMENTS

This work was supported in part by DOE SCIDAC-2:

Scientific Data Management Center for Enabling Technolo-

gies (CET) grant DE-FC02-07ER25808, DOE SCiDAC award

number DE-FC02-01ER25485, NSF HECURA CCF-0621443,

NSF SDCI OCI-0724599, and NSF ST-HEC CCF-0444405.

We acknowledge the use of the IBM IA-64 Linux Cluster at the

National Center for Supercomputing Applications under Ter-

aGrid Projects TG-CCR060017T, TG-CCR080019T, and TG-

ASC080050N. This research used resources of the National

Center for Computational Sciences at Oak Ridge National

Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC05-

00OR22725.

REFERENCES

[1] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Performance of
XT3,” in the Cray User Group Conference, May 2007.

[2] Message Passing Interface Forum, MPI-2: Extensions to the Message
Passing Interface, Jul. 1997, http://www.mpi-forum.org/docs/docs.html.

[3] J. del Rosario, R. Brodawekar, and A. Choudhary, “Improved Parallel
I/O via a Two-Phase Run-time Access Strategy,” in the Workshop on
I/O in Parallel Computer Systems at IPPS ’93, Apr. 1993, pp. 56–70.

[4] D. Kotz, “Disk-directed I/O for MIMD Multiprocessors,” ACM Trans-
actions on Computer Systems, vol. 15, no. 1, pp. 41–74, Feb. 1997.

[5] R. Thakur, W. Gropp, and E. Lusk, Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation, Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Oct. 1997.

[6] J. Squyres, A. Lumsdaine, W. George, J. Hagedorn, and J. Devaney,
“The interoperable message passing interface (IMPI) extensions to
LAM/MPI,” in Proceedings, MPI Developers Conference (MPIDC),
March 2000.

[7] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces,” in the 6th Symposium on
the Frontiers of Massively Parallel Computation, Oct. 1996.

[8] ——, “Data Sieving and Collective I/O in ROMIO,” in the 7th Sympo-
sium on the Frontiers of Massively Parallel Computation, Feb. 1999.

[9] B. Nitzberg and V. Lo, “Collective Buffering: Improving Parallel I/O
Performance,” in the Sixth IEEE International Symposium on High
Performance Distributed Computing, August 1997, pp. 148–157.

[10] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen, “Imple-
menting MPI-IO Atomic Mode Without File System Support,” in the
5th IEEE/ACM International Symposium on Cluster Computing and the
Grid, May 2005.

[11] W. Liao, A. Ching, K. Coloma, A. Choudhary, and L. Ward, “An
Implementation and Evaluation of Client-Side File Caching for MPI-IO,”
in the International Parallel and Distributed Processing Symposium,
Mar. 2007.

[12] IEEE/ANSI Std. 1003.1, Portable Operating System Interface (POSIX)-
Part 1: System Application Program Interface (API) [C Language],
1996.

[13] J. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges, “MPI-
IO/GPFS, an Optimized Implementation of MPI-IO on top of GPFS,”
in Supercomputing, Nov. 2001.

[14] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in the Conference on File and Storage
Technologies (FAST’02), Jan. 2002, pp. 231–244.

[15] Lustre: A Scalable, High-Performance File System, Whitepaper, Cluster
File Systems, Inc., 2003.

[16] J. Prost, R. Treumann, R. Hedges, A. Koniges, and A. White, “Towards
a High-Performance Implementation of MPI-IO on top of GPFS,” in the
Sixth International Euro-Par Conference on Parallel Processing, Aug.
2000.

[17] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-
directed Collective I/O in Panda,” in Supercomputing, Nov. 1995.

[18] K. Coloma, A. Choudhary, W. Liao, W. Lee, E. Russell, and N. Pundit,
“Scalable High-level Caching for Parallel I/O,” in the International
Parallel and Distributed Processing Symposium, Apr. 2004.

[19] K. Coloma, A. Ching, A. Choudhary, W. Liao, R. Ross, R. Thakur, and
L. Ward, “A new flexible MPI collective I/O implementation,” in the
IEEE Conference on Cluster Computing, Sep. 2006.

[20] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO Output
Performance with Active Buffering Plus Threads,” in the International
Parallel and Distributed Processing Symposium, Apr. 2003.

[21] K. Coloma, A. Choudhary, W. Liao, W. Lee, and S. Tideman, “DAChe:
Direct Access Cache System for Parallel I/O,” in the 20th International
Supercomputer Conference, Jun. 2005.

[22] H. Yu, R. Sahoo, C. Howson, G. Almasi, J. Castanos, M. Gupta, J. Mor-
eira, J. Parker, T. Engelsiepen, R. Ross, R. Thakur, R. Latham, and W. D.
Gropp, “High Performance File I/O for the BlueGene/L Supercomputer,”
in the 12th International Symposium on High-Performance Computer
Architecture (HPCA-12), Feb. 2006.

[23] P. Wong and R. der Wijngaart, “NAS Parallel Benchmarks I/O Version
2.4,” NASA Ames Research Center, Moffet Field, CA, Tech. Rep. NAS-
03-002, Jan. 2003.

[24] M. Zingale, “FLASH I/O Benchmark Routine – Parallel HDF 5,” Mar.
2001, http://flash.uchicago.edu/∼zingale/ flash benchmark io.

[25] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, P. MacNeice, R. Rosner, and H. Tufo, “FLASH: An Adaptive
Mesh Hydrodynamics Code for Modelling Astrophysical Thermonuclear
Flashes,” Astrophysical Journal Suppliment, pp. 131–273, 2000.

[26] HDF Group, Hierarchical Data Format, Version 5, The National Center
for Supercomputing Applications, http://hdf.ncsa.uiuc.edu/HDF5.

[27] R. Sankaran, E. Hawkes, J. Chen, T. Lu, and C. Law, “Direct Numer-
ical Simulations of Turbulent Lean Premixed Combustion,” Journal of
Physics: conference series, vol. 46, pp. 38–42, 2006.

