
Dynamically Adapting the Degree of Parallelism

with Re
exive Programs

Niels Reimer (reimer@ira.uka.de) ?

Stefan U. H�an�gen (haenssgen@ira.uka.de)
Walter F. Tichy (tichy@ira.uka.de)

IPD, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany

Abstract. In this paper we present a new method for achieving a higher

cost{e�ciency on parallel computers. We insert routines into a program

which detect the amount of computational work without using problem{

speci�c parameters and adapt the number of used CPUs at runtime under

given speedup/e�ciency constraints. Several user{tunable strategies for

selecting the number of processors are presented and compared. The

modularity of this approach and its application{independence permit a

general use on parallel computers with a scalable degree of parallelism.

1 Introduction

Programs on parallel computers usually use all available processors. This is a
waste of resources if the load is not evenly distributed or the amount of work is
too small to justify a further partitioning. Our goal is to reduce the costs1 by
adapting the number of used processors dynamically according to the current
load. In order to do so, the program observes its parallel routines and controls
the degree of parallelism individually at runtime. This leads to an implicit load
balancing because the load is automatically distributed evenly with each call of
the parallel routines. In this paper we therefore do not deal with load balancing
algorithms which are described e.g. in [1]. The search for related work in the
area of re
exive programs or adapting the amount of parallel resources showed
no exploitable references.

In our work we improved the cost{e�ciency of a parallelised molecular dy-
namics (MD) simulation program, but any application with frequent calls of
parallel subroutines can bene�t from this method. We de�ne the cost{e�ciency
as the sequential-to-parallel cost ratio.

2 Molecular Dynamics as an Irregular Problem

The importance of MD in the area of biological, chemical and medical research
is increasing. Simulations with larger molecules require a computational perfor-
mance which necessiates the use of parallel computers. We �rst introduce the
principles of MD brie
y and show that it is an example of an irregular problem.

? This research was performed at the EMBL (European Molecular Biology Laboratory)

Heidelberg in co-operation with the University of Karlsruhe.
1 The cost is the sum of all used CPU seconds over all used processors.



MD simulations calculate the interactions of particles (molecules/atoms) in
order to derive geometrical and structural properties of molecules. For simulation
purpose, the timescale is split into regular steps. At each timestep, the interac-
tions of the particles are calculated and used to determine the position of each
particle in the next timestep. To be physically accurate, ideally the interaction
of each pair of particles has to be considered. Since the forces decay at least with
the square of the particles' distance, one can speed up calculation by ignoring
the interactions to particles beyond a certain cuto� radius from a particle. How-
ever, the relevant particle pairs then have to be managed in addition to the force
calculations. Most MD{programs perform the following cycle of steps:

1. Generate pairlist with all relevant pairs of particles.
2. Calculate forces according to the pairlists and the particle data.
3. Update particle data by applying the forces to the particles.

Parallelisation approaches of MD{programs usually associate particle data to
processors. The movement of the particles then leads to unpredictable irregular
communication patterns among the processors, hence parallel MD is an irregular
problem. The corresponding pairlist routine shows an increase of work load with
the square of the number of particles. The work load of the force calculation rou-
tines increases only linearily with the number of particles because the maximum
number of particles inside a cuto� radius sphere is limited. Further information
about MD can be found in [3].

To allow the use of more specialised force calculation routines, the MD{
program ARGOS [8] distinguishes between two classes of particles:

1. Solvent particles which are all equal (generally water molecules).
2. Solute particles which are normally the atoms of the examined chemical

compounds, e.g., proteins.

As a result, there are three pairlist and three force calculation routines, each
with its individual amount of work. For the pairlist routines this depends on the
number of particles, which is constant within each simulation. The work load
for the force calculation depends on the density of particles, which can vary to
a large extent during simulation. Therefore, the most cost{e�cient number of
processors to use for each routine is di�erent and variable.

Di�erent approaches of the parallelisation of a MD{program are described
in the work of Hanxleden [2]. As part of our work, we parallelised the sequential
MD{program \ARGOS" [7], [8] on a SGI Power Challenge, a shared memory
machine with 16 R8000 processors [6].

3 Dynamically Adapting the Degree of Parallelism

Traditional load balancing methods redistribute the amount of work among all
processors of the parallel computer at certain time intervals or on demand in or-
der to reduce the number of idle processors. This leads to a higher cost{e�ciency
and a shorter runtime, provided that there is su�cient work for each processor.
However, with powerful processors suitable for coarse{grained parallelisation this



is often not the case since larger pieces of work cannot be distributed evenly. It
is then advantageous to adapt the number of used processors to the program's
resource consumption to o�er each processor a suitable amount of work. The
unused processors of this parallel machine (or of a cluster of workstations) are
not wasted since they are available to all other users. The cost function therefore
only takes the CPU{seconds of the used processors into account.

If the parallelised program contains sequential parts and several parallel rou-
tines, each of these routines is likely to require a di�erent number of processors
to reach an appropriate load level. Furthermore, this number can change dur-
ing runtime. All of these problems occur in the parallelised version of ARGOS.
Most computation time is consumed by the pairlist generation and the force
calculation, hence it is su�cient to parallelise only these particular routines.

The idea is to estimate the load produced by each parallel routine and adapt
the number of assigned processors accordingly. Thus, the program observes its
own behaviour, which is why we call it re
exive. The load determination should
be problem{ and machine{independent. The convincing approach is to measure
the time spent inside the parallel part. The requirement of adapting each par-
allel routine individually can be satis�ed using a separate adaptation for each
routine. This also leads to more modular code. Each parallel routine is therefore
encaspulated in a preroutine which sequentially executes the following tasks:

1. Set the number of processors for the parallel routine
2. Start the timing
3. Invoke the parallel routine
4. Stop the timing
5. Calculate data for the setting of the number at the next invocation

The determination of the number of processors at the next invocation is based
upon calculations of the timings, and is done according to a strategy described
later. Figure 1 represents the encapsulation and the structure of a preroutine.

CALL FORWW(...)

SUB FORWW(...)
...

...

...

PROGRAM ARGOS

CALL PFORWW(...)

SUB PFORWW(...)

Start timing
Set requested number of processors

CALL FORWW(...)

SUB FORWW(...)

Stop timing
Calculate speedup & efficiency

...

...

...

PROGRAM ARGOS

Fig. 1. Structure of the program with and without preroutine. The force calculation

routine FORWW is executed in parallel.

With this approach, we gain a dynamic adaptation at runtime and a re
exive
behaviour of the program without using problem{speci�c data. This implies the
possibility to combine this approach with any parallel application.



4 Adaptation Strategies

In this paper we will consider three strategies in detail2. The speedup{driven

incremental search strategy (SISS) works in the following way: The initial set-
ting is one processor to determine the \sequential" execution time of the con-
trolled routine. On return from the parallel routine call, the timing is taken and
speedup and e�ciency are calculated. With every subsequent invocation, the
number of processors is increased by one if the measured e�ciency rate is above
and not too close to a �xed threshold (e.g. the rate is 5% above the threshold
EFFTHR = 50%). If it is inside this region, the number remains �xed to min-
imise the number of threshold violations. If it is below the threshold, the number
is decreased by one. The next timing results in a new e�ciency rate and so on.
After a certain number of invocations, the strategy calibrates itself by repeating
the one-processor run to keep the \sequential" execution time up-to-date for the
next calculations. Once the optimum is reached, the number of processors oscil-
lates or remains temporarily �xed, which guarantees that the average e�ciency
is close to the threshold. An oscillation itself causes no additional costs since the
number has to be set anyway at each invocation of the parallel routine.

An incremental search runs the risk of �nding only a local mimimum. This
problem was not encountered in the parallel version of ARGOS, but may occur
with other applications.

To avoid this, a global search strategy can be used which splits the adaptation
process into three phases: 1) a global search over all possible processor numbers
is performed, 2) the best setting with the highest speedup is chosen under the
restriction that the e�ciency has to be above the threshold value. This feature
gives the strategy its name: speedup{driven global search strategy (SGSS). 3) this
setting is kept �xed for a certain number of invocations. After this, the strategy
starts again with the �rst phase (calibration) to gather the data.

A variation of this strategy is derived by changing the optimisation goal. This
last strategy chooses the setting with the highest e�ciency under the constraint
that it must guarantee a speedup of at least a certain threshold value. This
strategy is therefore called e�ciency{driven global search strategy (EGSS).

The indicated threshold values of the strategies are user-adjustable para-
meters. Modularity also allows the use of di�erent parameters and strategies for
each parallel routine to accomodate special requirements, e.g., routines with a
stable work load can a�ord longer durations of the third phase.

Global searches for the optimum processor number are not prohibitive since
the Power Challenge only has 16 processors. That means the �rst 16 invocations
of the parallel routine are used to collect the timing data for each setting. On
parallel computers with signi�cantly more processors other scanning approaches
will be necessary.

5 Results

Simulations of scenarios in which the pairlist lengths change, especially all de-
naturation simulations, challenge the adaptation algorithms with a dynamically

2 For a closer study of more strategies we refer the reader to [5].



changing work load. Figure 2 shows the evolution of the pairlist lengths obtained
from a denaturation simulation of a large protein (myoglobin) in water.

To reduce the comparison of the strategies to the highlights, we here present
only the results for the force calculation of the solvent{solvent interactions be-
cause their work load changes most dramatically. The adaptation of routines
with a more stable work load are equally accurate for all strategies. Figures
3 and 4 show the numbers of processors used for the force calculation of the
solvent{solvent interactions using the SISS and the SGSS.

Fig. 2.

Evolution of the three

pairlist lengths during

the progress of a de-

naturation simulation

of myoglobin in water. 0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

pa
irl

ist
le

ng
th

 [3
12

8 
en

tri
es

]

simulation step

solute-solute-pairlist
solute-solvent-pairlist

solvent-solvent-pairlist

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

pr
oc

es
so

rs

time [simulation steps]

Fig. 3. Assigned processors for the force

calculation of the solvent{solvent interac-

tions using SISS

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

pr
oc

es
so

rs

time [simulation steps]

Fig. 4. Assigned processors for the force

calculation of the solvent{solvent interac-

tions using SGSS

The requested numbers of processors follow ideally the same trend as the
pairlist lengths. The comparision of the curves in �gure 3 and 4 shows that the
results of the incremental search correspond to those of the global search, which
demonstrates that local minima have no e�ect here.

Table 1 shows the runtimes and the costs obtained from the denaturation
simulation to compare the di�erent strategies with the commonly used alterna-
tive (16 P) which is to use always the maximum available number of processors
(here 16).

These numbers demonstrate the potential of self{adapting re
exive programs
to reduce the costs while maintaining a reasonable speedup.



Table 1. Runtimes and costs

of the di�erent strategies and

the 16{processor alternative

SISS SGSS EGSS 16 P

Runtime [sec] 3831 3436 4220 2886

Cost [CPUsec] 20817 23038 18626 40508

6 Conclusion and Future Work

Re
exive programs that dynamically adapt their degree of parallelism show that
a problem{independent self{control mechanism can be used to achieve a higher
cost{e�ciency. The mechanism presented considers runtimes and thus auto-
matically takes both problem size variations and machine{speci�c in
uences into
account. This is crucial because traditional load balancing algorithms disregard
these aspects. Furthermore, our approach is not restricted to MD{programs but
can be used with any parallelised application that allows timings of the parallel
executed parts.

Still, there are many open questions related to this work. What advantages
and disadvantages would the use of problem{speci�c data imply? How can a
compiler for parallel machines automatically bene�t from this method? Will
(heterogenous) workstation clusters of a PVM environment [4] behave with a
similar \linear" and smooth scaling like the SGI Power Challenge, or will this
require other strategies? These questions are a matter of further research.

7 Acknowledgements

We thank Dr. T. P. Straatsma for use of the ARGOS program and Prof. Dr.
W. F. Tichy for support at the University of Karlsruhe. This work was per-
formed in collaboration with the group of Dr. R. C. Wade at the European
Molecular Biology Laboratory (EMBL) at Heidelberg and supported in part
by the EU ASLI Supercomputing Resource for Molecular Biology (Contract
ERBCHGECT940062).

References

1. I. Foster, Designing and Building Parallel Programs, Addison{Wesley, 1995, ISBN:

0-201-57594-9, http://www.hensa.ac.uk/parallel/books/addison{wesley/index.html

2. R. v. Hanxleden, T. W. Clark, J. A. McCammon, L. R. Scott, Parallelization Strate-

gies for a Molecular Dynamics Program, Intel Technology Focus Conf. Proc., 1992

3. J. A. McCammon und S. C. Harvey, Dynamics of proteins and nucleic acids, Cam-

bridge University Press 1987, ISBN: 0-521-35654-0

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. S. Sunderam, A

Users' Guide and Tutorial for Network Parallel Computing, MIT Press, November

1994, ISBN: 0-262-57108-0, http://www.hensa.ac.uk/parallel/books/mit/pvm

5. N. Reimer, Dynamische Einstellung des Parallelit�atsgrades mit re
exiven Program-

men, reimer@ira.uka.de, University of Karlsruhe, January 1996

6. Silicon Graphics Inc., Power Challenge Technical Report, SGI 2011 Northern Shore-

line Boulevard, Mountain View, CA 94039-7311, 1994

7. T. P. Straatsma, ARGOS Reference Manual, tp straatsma@pnl.gov, 1994

8. T. P. Straatsma, J. A. McCammon, ARGOS, a vectorized general molecular

dynamics program, Journal of Computational Chemistry II(8): 943-951, 1990


