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Dynamically Adjusting Migration Rates for Multi-Population 

 Genetic Algorithms 
 

 

 

Abstract 
 

 In this paper, the issue of adapting migration 

parameters for MGAs is investigated. We examine, in 

particular, the effect of adapting the migration rates on 

the performance and solution quality of MGAs. 

Thereby, we propose an adaptive scheme to adjust the 

appropriate migration rates for MGAs. If the 

individuals from a neighboring sub-population can 

greatly improve the solution quality of a current 

population, then the migration from the neighbor has a 

positive effect. In this case, the migration rate from 

the neighbor should be increased; otherwise, it should 

be decreased. According to the principle, an adaptive 

multi-population genetic algorithm which can adjust 

the migration rates is proposed. Experiments on the 

0/1 knapsack problem are conducted to show the 

effectiveness of our approach. The results of our work 

have illustrated the effectiveness of self-adaptation for 

MGAs and paved the way for this unexplored area. 

 

Keywords: Soft computing, genetic algorithm, multi-

population, parameter adaptation, migration rate. 

 

1 Introduction 
 

 Genetic Algorithms (GAs) are robust search and 

optimization techniques that were developed based on 

the ideas and techniques from genetic and 

evolutionary theory. Historically, genetic algorithms 

are characterized as an evolutionary scheme 

performed on a single population of individuals. 

 Multi-population genetic algorithms (MGAs) [7] 

is an extension of traditional single–population 

genetic algorithms (SGAs) by dividing a population 

into several sub-populations within which the 

evolution proceeds and individuals are allowed to 

migrate from one sub-population to another. This 

model is analogous to that used in parallel island GAs 

[2], without emphasizing the parallelism issue. Indeed, 

the MGA is more identical to the natural genetic 

evolution. For example, the human species consist of 

groups distant from each other while individuals 

within a group would migrate to another group. A 

typical MGA can be described as Figure 1. First, each 

sub-population evolves independently till some 

specific generations to reach the theoretical 

equilibrium, resulting in many local optimal solutions 

in sub-populations. Each sub-population then migrates 

with its neighborhood(s). This punctuates the 

equilibrium and forces each sub-population evolving 

again to escape the local optimum and exploiting 

toward the global optimum. 

 

 
Figure 1: A typical MGA with three sub-

populations 

 

 Until recently, researchers have found that 

MGAs are more effective both in algorithmic cost and 

solution quality [6][10][13][14], such as: 

1. It would shorten the number of generations 

needed to find the optimal or near optimal 

solution. 

2. It usually can find more than one optimal 

solution. 

3. It is more resistance to premature convergence. 

 Despite of these advantages, the behavior and 

performance of MGAs are still heavily affected by a 

judicious choice of parameters, such as connection 

topology (the topology that defined the connection 

between the subpopulations), migration policy, 
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migration interval (a parameter that controls how 

often the migration occurs), migration rate (a 

parameter that controls how many individuals 

migrate), and population size (the number of 

subpopulations), etc. To our knowledge, most of the 

previous work focused on providing guidelines to 

choose those parameters empirically or rationally 

[3][4][13], and no work was devoted to the effect of 

adapting these parameters. 

 In this paper, the issue of adapting migration 

parameters for MGAs is investigated. We in particular 

examine the effect of adapting migration rates on 

performance and solution quality of MGAs. Thereby, 

we propose an adaptive scheme to adjust appropriate 

migration rates for MGAs. Experiments on the well-

known 0/1 knapsack problem showed that our 

approach was superior to MGAs with static migration 

intervals and migration rates. 

 The remaining parts of this paper are organized 

as follows. Related previous works are reviewed in 

Section 2. The proposed migration-rate adjusting  

algorithm is described in Section 3. The 0/1 knapsack 

problem used to illustrate the proposed algorithm is 

also presented there. Experimental results for showing 

the performance of the proposed algorithm are 

provided in Section 4. Conclusion and future works 

are given in Section 5. 

 

2 Previous Works 
 

 Grosso [8] was probably the first one that gives a 

systematic study of multi-population genetic 

algorithms. The MGA model he considered consisted 

of five subpopulations and each exchanged 

individuals with all the others with a fixed migration 

rate. With controlled experiments, he observed that 

the migration rate had great effect on the performance 

of MGAs. MGAs with migration rate below a critical 

point would have a similar effect to that with no 

migration at all.  

 Another study conducted by Pettey et al. [15] 

used a similar model but with different migration 

strategy. The migration occurs after each generational 

evolution, for which a copy of the best individual in 

each subpopulation is sent to all its neighbors. 

 In a parallel implementation of MGAs on a 4-D 

hypercube proposed by Tanese [17], migration 

occurred at fixed intervals between processors along 

one dimension of the hypercube. The migrants were 

chosen probabilistically from the best individuals in 

each subpopulation, and replaced the worst 

individuals in the receiving subpopulations. From 

experiments of different migration intervals, she 

observed that migrating too frequently or too 

infrequently degraded the performance of the 

algorithm. Another work of Tanese [18] showed that 

MGAs with migration performed significantly better 

than those without migration. Recently, a study 

conducted by Belding [1] using Royal Road function 

exhibited a similar conclusion. 

 In experiments with the parallel MGA, Cohoon 

et al. [6] noticed that there was relatively little change 

between migrations, but new solutions were found 

shortly after individuals were exchanged. 

 In the majority of multi-population GAs, 

migration is synchronous, which means that it occurs 

at predetermined constant intervals. Grosso [8] was 

also the first one to consider an asynchronous 

migration scheme, where migration is enabled until 

the population was close to converge. 

 Braun [2] used the same idea and presented an 

algorithm where migration occurred after the 

populations converged completely. The same 

migration strategy was used later by Munetomo et al. 

[14], and so by Cant’u-Paz and Goldberg [5]. 

The traditional multi-population genetic 

algorithm fixes both the migration intervals and 

migration rates. It is stated as follows. 

 

The Multi-population Genetic Algorithm with Fixed 

Migration Intervals and Migration Rates: 

Initialize the parameters; 

Generate N sub-population P1, P2, …, PN randomly; 

generation←1; 

while generation≦max_gen do 

 for each sub-population Pi do 

Use a fitness function to evaluate each individual in Pi; 

 Perform crossover in Pi; 

 Perform mutation in Pi; 

 Perform replacement in Pi; 

endfor 

generation←generation+1; 

if (generation % migration-interval ==0) 

 Perform migration at the fixed migration rate; 

endwhile 

 

3 The Proposed Migration-Rate 

Adjusting  Approach 
 

 Traditional multi-population genetic algorithms 

use only a single migration interval and a migration 

rate to exchange individuals among sub-populations 

and to prevent premature. Different migration 

intervals and migration rates can, however, produce 

different fitness values, thus affecting the performance 

of the applied multi-population genetic algorithm. 

Designing a new multi-population genetic algorithm 

to automatically apply appropriate migration intervals 

and migration rates is then necessary.  

 The rationale behind the proposed algorithm is 

that if the individuals from a neighboring sub-

population can greatly improve the solution quality of 

a current population, then the migration from the 

neighbor has a positive effect. In this case, the 

migration rate from the neighbor should be increased; 

otherwise, it should be decreased. According to the 

principle, an adaptive multi-population genetic 



algorithm which can adjust the migration rates is 

proposed as follows. 

 

The Migration-Rate Adjusting Multi-population 

Genetic Algorithm: 

Initialize the parameters; 

Generate N sub-population P1, P2, …, PN randomly; 

generation←1; 

while generation≦max_gen do 

 for each sub-population Pi do 

 Use a fitness function to evaluate each 

individual in Pi; 

 Perform crossover in Pi; 

 Perform mutation in Pi; 

 Perform replacement in Pi; 

 endfor 

 generation←generation+1; 

 if (generation % migration-interval ==0) 

  Calculate the fitness increase new_FIi of 

the best individual in each Pi ; 

 if (new_FIi > old_FIi) 

  increase the migration rate; 

 if (new_FIi < old_FIi) 

  decrease the migration rate; 

  Perform migration at the current migration 

rate; 

endwhile 

 

Note that in the above algorithm, the variable 

old_FI represents the fitness increase in the last 

migration interval. It is the difference of two fitness 

values in two neighboring migration intervals. Also 

different rules can be used to change the migration 

rate. The change may depend on the proportion of the 

fitness difference between two migration intervals or 

on a constant ratio. 

The 0/1 knapsack problem is used in this paper to 

illustrate how the proposed algorithm can overcome 

the traditional one. It belongs to the class of knapsack-

type problems and is well known to be NP-hard [11]. 

The problem is stated as follows. Given a set of 

objects, ai, for 1 ≤ i ≤ n, together with their profits Pi, 

weights Wi, and a capacity C, the 0/1 knapsack 

problem will try to find a binary vector x = x1, x2, …, 

xn, such that: 
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 is maximal. 

Following the suggestion made in [11], the data 

were generated with the following parameter settings: 

v = 10, n = 250, Wi and Pi are random(1..v), and C = 

2v, for which the optimal solution contained very few 

items. Here, v is the maximum possible weight or 

profit. 

To facilitate the study, we consider the most 

adopted model of MGAs as shown in Figure 1 [2][9]. 

There are γ subpopulations, all of which are connected 

with as a ring structure. Individuals in MGA are 

migrated after every migrate interval of generations. 

Besides, the best-worst migration policy is used 

[1][8][11]. That is, the best ρ (migration rate) of 

individuals in one subpopulation are selected to 

migrate to its neighbor subpopulations, and replace 

the worst individuals. 

To be consistent with the crossover and mutation 

operators considered, the binary encoding scheme is 

used. Each bit represents the inclusion or exclusion of 

an object. It is, however, possible to generate 

infeasible solutions with this representation. That is, 

the total weights of the selected objects may exceed 

the knapsack capacity. In the literature, two different 

ways of handling this constraint violation [12] have 

been proposed. One way is to use a penalty function 

to penalize the fitness value of the infeasible candidate 

to diminish its chance of survival. Another approach 

is to use a repair mechanism to correct the 

representation of the infeasible candidate. In [12], the 

repair method was more effective than the penalty 

approach. Hence, the repair approach is adopted in 

our implementation. 

The repair scheme adopted here is a greedy 

approach. All the objects in a knapsack represented by 

an overfilled bit string are sorted in decreasing order 

of their profit-weight ratios. The last object is then 

selected for elimination (the corresponding bit of “1” 

was changed to “0”). This procedure is executed until 

the total weight of the remaining objects is less than 

the total capacity. 

 

4 Experimental Results 
 

 Experiments on the above 0/1 knapsack problem 

are made for showing the performance of the 

proposed algorithm for adjusting migration rates 

based on fitness values. The parameters used in the 

proposed approach are set as follows. 

 

♦ Number of populations: 16; 

♦ Sub-population size: 30; 

♦ Initial population: generated by random; 

♦ Connection topology: ring; 

♦ Crossover rate: 0.65; 

♦ Mutation rate: 0.05; 

♦ Selection method: tournament selection; 

♦ Replacement method: keeping better individuals of 

old and new populations; 

♦ Migration policy: selecting the best individuals to 

replace the worst ones of the neighbor sub-

populations; 

♦ Termination condition: 2000 generations;  

♦ Number of experiments: 15 runs (get the average). 

 

The migration rates are dynamically adjusted 

according to the improvement degrees from the 

neighbors. The initial migration rate is set at 0.4. 

Experimental results with dynamic migration and 



without migration are first compared. The fitness 

values are measured along different generations for 

migrations intervals fixed respectively at 1, 10, 20, 40 

and 80. The experimental results for the best fitness 

values are shown in Figure 2. 
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Figure 2: The best fitness values along with 

different generations for the above algorithm 

 

 It can be easily seen form Figure 2 that the 

experimental results with dynamic-rate migration are 

better than those without migration no matter what 

migration intervals are set at. The average fitness 

values along with different generations are shown in 

Figure 3.  
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Figure 3: The average fitness values along with 

different generations for the above algorithm 

 

 It can be seen that the results with dynamic-rate 

migration are also better than those without migration. 

Besides, when the migration interval is fixed at one 

(mi = one), the algorithm generates the best effect.  

 Next, experiments are made for comparing the 

performance with and without dynamic migration-rate 

adjusting. When the migration interval is fixed at one, 

the results for different fixed migration rates (0.1, 0.2, 

0.4, 0.8, and one individual) and for dynamic 

migration rates are shown in Figure 4.  
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Figure 4: The best fitness values for different fixed 

migration rates and for dynamic migration rates 

when the migration interval is fixed at one 

 

 It can be easily seen from Figure 4 that the 

approach with dynamic migration-rate adjusting gets a 

better fitness value than those at fixed migration rates. 

The same experiments are then made for different 

intervals. When the intervals are set at 10, 20, 40 and 

80, the results are respectively shown in Figures 5 to 8. 
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Figure 5: The best fitness values for different fixed 

migration rates and for dynamic migration rates 

when the migration interval is fixed at 10 
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Figure 6: The best fitness values for different fixed 

migration rates and for dynamic migration rates 

when the migration interval is at 20. 
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Figure 7: The best fitness values for different fixed 

migration rates and for dynamic migration rates 

when the migration interval is fixed at 40 

 

 It can be concluded from these figures that the 

proposed algorithm has a good effect for all the 

different interval settings at 1, 10, 20, 40 and 80. The 

experimental results for the average fitness values are 

similar to the above ones.  

 

5 Conclusions 
 

 In this paper, we have studied the issue of 

adapting migration rates for MGAs, to improve 

performance and solution quality. An adaptive scheme 

has been devised, which adjusts migration rates. A 

preliminary study on the 0/1 knapsack problem has 

showed that the proposed adaptive approach can 

compete with a static approach with the best-tuned 

migration rate and migration interval. 
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Figure 8: The best fitness values for different fixed 

migration rates and for dynamic migration rates 

when the migration interval is fixed at 80 

 

As future works, we will conduct more 

experiments on other benchmarks, and devise 

methods to pursue an appropriate convergence 

threshold. We also will consider incorporating other 

representative parameters of MGAs, such as 

connection topology and migration policy, into our 

adaptive model. 
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