
 Open access Journal Article DOI:10.20965/JACIII.2007.P0410

Dynamically Adjusting Migration Rates for Multi-Population Genetic Algorithms
— Source link

Tzung-Pei Hong, Wen-Yang Lin, Shu-Min Liu, Jiann-Horng Lin

Institutions: National University of Kaohsiung, I-Shou University

Published on: 20 Apr 2007 - Journal of Advanced Computational Intelligence and Intelligent Informatics (Fuji
Technology Press Ltd.)

Topics: Population

Related papers:

 Parameter Setting in Parallel Genetic Algorithms

 Analysing the migration effects in nomadic genetic algorithm

 Natural genetic algorithm with controlled population evolution

 Adaptive sizing of populations and number of islands in distributed genetic algorithms

 Performance Study of a Multi-Deme Parallel Genetic Algorithm with Adaptive Mutation

Share this paper:

View more about this paper here: https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-
24cj2rgexs

https://typeset.io/
https://www.doi.org/10.20965/JACIII.2007.P0410
https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs
https://typeset.io/authors/tzung-pei-hong-2si2epr7nb
https://typeset.io/authors/wen-yang-lin-22ynlg2lya
https://typeset.io/authors/shu-min-liu-3j5sa00kdn
https://typeset.io/authors/jiann-horng-lin-2pm9k3zl0t
https://typeset.io/institutions/national-university-of-kaohsiung-33uezhtk
https://typeset.io/institutions/i-shou-university-1y42k8sz
https://typeset.io/journals/journal-of-advanced-computational-intelligence-and-2phowbyo
https://typeset.io/topics/population-3rqw3kx3
https://typeset.io/papers/parameter-setting-in-parallel-genetic-algorithms-5f1z4fhmdp
https://typeset.io/papers/analysing-the-migration-effects-in-nomadic-genetic-algorithm-3hb5o12u2d
https://typeset.io/papers/natural-genetic-algorithm-with-controlled-population-1bu0kmwc1u
https://typeset.io/papers/adaptive-sizing-of-populations-and-number-of-islands-in-3tnlnqpv70
https://typeset.io/papers/performance-study-of-a-multi-deme-parallel-genetic-algorithm-5a6gu5n0iu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs
https://twitter.com/intent/tweet?text=Dynamically%20Adjusting%20Migration%20Rates%20for%20Multi-Population%20Genetic%20Algorithms&url=https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs
https://typeset.io/papers/dynamically-adjusting-migration-rates-for-multi-population-24cj2rgexs

Dynamically Adjusting Migration Rates for Multi-Population

 Genetic Algorithms

Abstract

 In this paper, the issue of adapting migration

parameters for MGAs is investigated. We examine, in

particular, the effect of adapting the migration rates on

the performance and solution quality of MGAs.

Thereby, we propose an adaptive scheme to adjust the

appropriate migration rates for MGAs. If the

individuals from a neighboring sub-population can

greatly improve the solution quality of a current

population, then the migration from the neighbor has a

positive effect. In this case, the migration rate from

the neighbor should be increased; otherwise, it should

be decreased. According to the principle, an adaptive

multi-population genetic algorithm which can adjust

the migration rates is proposed. Experiments on the

0/1 knapsack problem are conducted to show the

effectiveness of our approach. The results of our work

have illustrated the effectiveness of self-adaptation for

MGAs and paved the way for this unexplored area.

Keywords: Soft computing, genetic algorithm, multi-

population, parameter adaptation, migration rate.

1 Introduction

 Genetic Algorithms (GAs) are robust search and

optimization techniques that were developed based on

the ideas and techniques from genetic and

evolutionary theory. Historically, genetic algorithms

are characterized as an evolutionary scheme

performed on a single population of individuals.

 Multi-population genetic algorithms (MGAs) [7]

is an extension of traditional single–population

genetic algorithms (SGAs) by dividing a population

into several sub-populations within which the

evolution proceeds and individuals are allowed to

migrate from one sub-population to another. This

model is analogous to that used in parallel island GAs

[2], without emphasizing the parallelism issue. Indeed,

the MGA is more identical to the natural genetic

evolution. For example, the human species consist of

groups distant from each other while individuals

within a group would migrate to another group. A

typical MGA can be described as Figure 1. First, each

sub-population evolves independently till some

specific generations to reach the theoretical

equilibrium, resulting in many local optimal solutions

in sub-populations. Each sub-population then migrates

with its neighborhood(s). This punctuates the

equilibrium and forces each sub-population evolving

again to escape the local optimum and exploiting

toward the global optimum.

Figure 1: A typical MGA with three sub-

populations

 Until recently, researchers have found that

MGAs are more effective both in algorithmic cost and

solution quality [6][10][13][14], such as:

1. It would shorten the number of generations

needed to find the optimal or near optimal

solution.

2. It usually can find more than one optimal

solution.

3. It is more resistance to premature convergence.

 Despite of these advantages, the behavior and

performance of MGAs are still heavily affected by a

judicious choice of parameters, such as connection

topology (the topology that defined the connection

between the subpopulations), migration policy,

Tzung-Pei Hong, Wen-Yang Lin

Dept. of Computer Sci. and Info. Engineering

National University of Kaohsiung

Kaohsiung 811, Taiwan

tphong@nuk.edu.tw, wylin@nuk.edu.tw

Shu-Min Liu, Jian-Hong Lin

Dept. of Information Management

I-Shou University

Kaohsiung 840, Taiwan

Shumin.Liu@msa.hinet.net, jhlin@isu.edu.tw

Migration

M
ig

ratio
n

Migration

Sub-population

R
ep

lacem
en

t

Selection

Mutation

Parent Populations

Offspring Populations

Sub-population

Crossover

migration interval (a parameter that controls how

often the migration occurs), migration rate (a

parameter that controls how many individuals

migrate), and population size (the number of

subpopulations), etc. To our knowledge, most of the

previous work focused on providing guidelines to

choose those parameters empirically or rationally

[3][4][13], and no work was devoted to the effect of

adapting these parameters.

 In this paper, the issue of adapting migration

parameters for MGAs is investigated. We in particular

examine the effect of adapting migration rates on

performance and solution quality of MGAs. Thereby,

we propose an adaptive scheme to adjust appropriate

migration rates for MGAs. Experiments on the well-

known 0/1 knapsack problem showed that our

approach was superior to MGAs with static migration

intervals and migration rates.

 The remaining parts of this paper are organized

as follows. Related previous works are reviewed in

Section 2. The proposed migration-rate adjusting

algorithm is described in Section 3. The 0/1 knapsack

problem used to illustrate the proposed algorithm is

also presented there. Experimental results for showing

the performance of the proposed algorithm are

provided in Section 4. Conclusion and future works

are given in Section 5.

2 Previous Works

 Grosso [8] was probably the first one that gives a

systematic study of multi-population genetic

algorithms. The MGA model he considered consisted

of five subpopulations and each exchanged

individuals with all the others with a fixed migration

rate. With controlled experiments, he observed that

the migration rate had great effect on the performance

of MGAs. MGAs with migration rate below a critical

point would have a similar effect to that with no

migration at all.

 Another study conducted by Pettey et al. [15]

used a similar model but with different migration

strategy. The migration occurs after each generational

evolution, for which a copy of the best individual in

each subpopulation is sent to all its neighbors.

 In a parallel implementation of MGAs on a 4-D

hypercube proposed by Tanese [17], migration

occurred at fixed intervals between processors along

one dimension of the hypercube. The migrants were

chosen probabilistically from the best individuals in

each subpopulation, and replaced the worst

individuals in the receiving subpopulations. From

experiments of different migration intervals, she

observed that migrating too frequently or too

infrequently degraded the performance of the

algorithm. Another work of Tanese [18] showed that

MGAs with migration performed significantly better

than those without migration. Recently, a study

conducted by Belding [1] using Royal Road function

exhibited a similar conclusion.

 In experiments with the parallel MGA, Cohoon

et al. [6] noticed that there was relatively little change

between migrations, but new solutions were found

shortly after individuals were exchanged.

 In the majority of multi-population GAs,

migration is synchronous, which means that it occurs

at predetermined constant intervals. Grosso [8] was

also the first one to consider an asynchronous

migration scheme, where migration is enabled until

the population was close to converge.

 Braun [2] used the same idea and presented an

algorithm where migration occurred after the

populations converged completely. The same

migration strategy was used later by Munetomo et al.

[14], and so by Cant’u-Paz and Goldberg [5].

The traditional multi-population genetic

algorithm fixes both the migration intervals and

migration rates. It is stated as follows.

The Multi-population Genetic Algorithm with Fixed

Migration Intervals and Migration Rates:

Initialize the parameters;

Generate N sub-population P1, P2, …, PN randomly;

generation←1;

while generation≦max_gen do

 for each sub-population Pi do

Use a fitness function to evaluate each individual in Pi;

 Perform crossover in Pi;

 Perform mutation in Pi;

 Perform replacement in Pi;

endfor

generation←generation+1;

if (generation % migration-interval ==0)

 Perform migration at the fixed migration rate;

endwhile

3 The Proposed Migration-Rate

Adjusting Approach

 Traditional multi-population genetic algorithms

use only a single migration interval and a migration

rate to exchange individuals among sub-populations

and to prevent premature. Different migration

intervals and migration rates can, however, produce

different fitness values, thus affecting the performance

of the applied multi-population genetic algorithm.

Designing a new multi-population genetic algorithm

to automatically apply appropriate migration intervals

and migration rates is then necessary.

 The rationale behind the proposed algorithm is

that if the individuals from a neighboring sub-

population can greatly improve the solution quality of

a current population, then the migration from the

neighbor has a positive effect. In this case, the

migration rate from the neighbor should be increased;

otherwise, it should be decreased. According to the

principle, an adaptive multi-population genetic

algorithm which can adjust the migration rates is

proposed as follows.

The Migration-Rate Adjusting Multi-population

Genetic Algorithm:

Initialize the parameters;

Generate N sub-population P1, P2, …, PN randomly;

generation←1;

while generation≦max_gen do

 for each sub-population Pi do

 Use a fitness function to evaluate each

individual in Pi;

 Perform crossover in Pi;

 Perform mutation in Pi;

 Perform replacement in Pi;

 endfor

 generation←generation+1;

 if (generation % migration-interval ==0)

 Calculate the fitness increase new_FIi of

the best individual in each Pi ;

 if (new_FIi > old_FIi)

 increase the migration rate;

 if (new_FIi < old_FIi)

 decrease the migration rate;

 Perform migration at the current migration

rate;

endwhile

Note that in the above algorithm, the variable

old_FI represents the fitness increase in the last

migration interval. It is the difference of two fitness

values in two neighboring migration intervals. Also

different rules can be used to change the migration

rate. The change may depend on the proportion of the

fitness difference between two migration intervals or

on a constant ratio.

The 0/1 knapsack problem is used in this paper to

illustrate how the proposed algorithm can overcome

the traditional one. It belongs to the class of knapsack-

type problems and is well known to be NP-hard [11].

The problem is stated as follows. Given a set of

objects, ai, for 1 ≤ i ≤ n, together with their profits Pi,

weights Wi, and a capacity C, the 0/1 knapsack

problem will try to find a binary vector x = x1, x2, …,

xn, such that:

CWx
n

i

ii ≤⋅∑
=1

, and∑
=

⋅
n

i

ii Px
1

 is maximal.

Following the suggestion made in [11], the data

were generated with the following parameter settings:

v = 10, n = 250, Wi and Pi are random(1..v), and C =

2v, for which the optimal solution contained very few

items. Here, v is the maximum possible weight or

profit.

To facilitate the study, we consider the most

adopted model of MGAs as shown in Figure 1 [2][9].

There are γ subpopulations, all of which are connected

with as a ring structure. Individuals in MGA are

migrated after every migrate interval of generations.

Besides, the best-worst migration policy is used

[1][8][11]. That is, the best ρ (migration rate) of

individuals in one subpopulation are selected to

migrate to its neighbor subpopulations, and replace

the worst individuals.

To be consistent with the crossover and mutation

operators considered, the binary encoding scheme is

used. Each bit represents the inclusion or exclusion of

an object. It is, however, possible to generate

infeasible solutions with this representation. That is,

the total weights of the selected objects may exceed

the knapsack capacity. In the literature, two different

ways of handling this constraint violation [12] have

been proposed. One way is to use a penalty function

to penalize the fitness value of the infeasible candidate

to diminish its chance of survival. Another approach

is to use a repair mechanism to correct the

representation of the infeasible candidate. In [12], the

repair method was more effective than the penalty

approach. Hence, the repair approach is adopted in

our implementation.

The repair scheme adopted here is a greedy

approach. All the objects in a knapsack represented by

an overfilled bit string are sorted in decreasing order

of their profit-weight ratios. The last object is then

selected for elimination (the corresponding bit of “1”

was changed to “0”). This procedure is executed until

the total weight of the remaining objects is less than

the total capacity.

4 Experimental Results

 Experiments on the above 0/1 knapsack problem

are made for showing the performance of the

proposed algorithm for adjusting migration rates

based on fitness values. The parameters used in the

proposed approach are set as follows.

♦ Number of populations: 16;

♦ Sub-population size: 30;

♦ Initial population: generated by random;

♦ Connection topology: ring;

♦ Crossover rate: 0.65;

♦ Mutation rate: 0.05;

♦ Selection method: tournament selection;

♦ Replacement method: keeping better individuals of

old and new populations;

♦ Migration policy: selecting the best individuals to

replace the worst ones of the neighbor sub-

populations;

♦ Termination condition: 2000 generations;

♦ Number of experiments: 15 runs (get the average).

The migration rates are dynamically adjusted

according to the improvement degrees from the

neighbors. The initial migration rate is set at 0.4.

Experimental results with dynamic migration and

without migration are first compared. The fitness

values are measured along different generations for

migrations intervals fixed respectively at 1, 10, 20, 40

and 80. The experimental results for the best fitness

values are shown in Figure 2.

110

115

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t f
itn

es
s

mi=one

mi=10

mi=20

mi=40

mi=80

no-migration

Figure 2: The best fitness values along with

different generations for the above algorithm

 It can be easily seen form Figure 2 that the

experimental results with dynamic-rate migration are

better than those without migration no matter what

migration intervals are set at. The average fitness

values along with different generations are shown in

Figure 3.

80

90

100

110

120

130

140

150

0 500 1000 1500 2000
Generations

A
vg

 f
it
ne

ss

mi=one

mi=10

mi=20

mi=40

mi=80

no-

migration

Figure 3: The average fitness values along with

different generations for the above algorithm

 It can be seen that the results with dynamic-rate

migration are also better than those without migration.

Besides, when the migration interval is fixed at one

(mi = one), the algorithm generates the best effect.

 Next, experiments are made for comparing the

performance with and without dynamic migration-rate

adjusting. When the migration interval is fixed at one,

the results for different fixed migration rates (0.1, 0.2,

0.4, 0.8, and one individual) and for dynamic

migration rates are shown in Figure 4.

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t
fi

tn
es

s

rate=one

rate=0.1

rate=0.2

rate=0.4

rate=0.8

rate=dynamic

Figure 4: The best fitness values for different fixed

migration rates and for dynamic migration rates

when the migration interval is fixed at one

 It can be easily seen from Figure 4 that the

approach with dynamic migration-rate adjusting gets a

better fitness value than those at fixed migration rates.

The same experiments are then made for different

intervals. When the intervals are set at 10, 20, 40 and

80, the results are respectively shown in Figures 5 to 8.

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t f
it

n
es

s

rate=one

rate=0.1

rate=0.2

rate=0.4

rate=0.8

rate=dynamic

Figure 5: The best fitness values for different fixed

migration rates and for dynamic migration rates

when the migration interval is fixed at 10

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t f
itn

es
s

rate=one

rate=0.1

rate=0.2

rate=0.4

rate=0.8

rate=dynamic

Figure 6: The best fitness values for different fixed

migration rates and for dynamic migration rates

when the migration interval is at 20.

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t f
itn

es
s

rate=one

rate=0.1

rate=0.2

rate=0.4

rate=0.8

rate=dynamic

Figure 7: The best fitness values for different fixed

migration rates and for dynamic migration rates

when the migration interval is fixed at 40

 It can be concluded from these figures that the

proposed algorithm has a good effect for all the

different interval settings at 1, 10, 20, 40 and 80. The

experimental results for the average fitness values are

similar to the above ones.

5 Conclusions

 In this paper, we have studied the issue of

adapting migration rates for MGAs, to improve

performance and solution quality. An adaptive scheme

has been devised, which adjusts migration rates. A

preliminary study on the 0/1 knapsack problem has

showed that the proposed adaptive approach can

compete with a static approach with the best-tuned

migration rate and migration interval.

120

125

130

135

140

145

150

0 500 1000 1500 2000 Generations

B
es

t
fi

tn
es

s

rate=one

rate=0.1

rate=0.2

rate=0.4

rate=0.8

rate=dynamic

Figure 8: The best fitness values for different fixed

migration rates and for dynamic migration rates

when the migration interval is fixed at 80

As future works, we will conduct more

experiments on other benchmarks, and devise

methods to pursue an appropriate convergence

threshold. We also will consider incorporating other

representative parameters of MGAs, such as

connection topology and migration policy, into our

adaptive model.

Acknowledgements

This research was supported by the National

Science Council of the Republic of China under

contract NSC94-2213-E-390-005.

References

[1] T.C. Belding, “The distributed genetic algorithm

revisited,” in Proceedings of the Sixth

International Conference on Genetic Algorithms,

pp. 114-121, 1995.

[2] H.C. Braun, “On solving travelling salesman

problems by genetic algorithms,” in

Proceedings of the First Workshop on Parallel

Problem Solving from Nature, pp. 129-133,

1991.

[3] E. Cant'u-Paz, “A survey of parallel genetic

algorithms,” Calculateurs Paralleles, Reseaux

et Systems Repartis, Vol. 10, No. 2, pp. 141-171,

1998.

[4] E. Cant'u-Paz, “Migration policies and takeover

time in parallel genetic algorithms,” in

Proceedings of Genetic and Evolutionary

Computation Conference, 1999.

[5] E. Cant'u-Paz and D.E. Goldberg, “Efficient

parallel genetic algorithms: Theory and

practice,” Computer Methods in Applied

Mechanics and Engineering.

[6] J.P. Cohoon, S.U. Hegde, W.N. Martin, and D.S.

Richard, “Punctuated equilibria: A parallel

genetic algorithm,” in Proceedings of the

Second International Conference on Genetic

Algorithms, pp. 148-154, 1987.

[7] J.P. Cohoon, W.N. Martin, and D.S. Richards,

“Punctuated equilibria: A parallel genetic

algorithm,” in Proceedings of the Second

International Conference on Genetic Algorithms,

pp. 148-154, 1987.

[8] J.J. Grefenstette, “Parallel adaptive algorithms

for function optimization,” Technical Report No.

CS-81-19, Vanderbilt University, Computer

Science Department, Nashville, TN, 1981.

[9] P.B. Grosso, Computer Simulations of Genetic

Adaptation: Parallel Subcomponent Interaction

in a Multilocus Model, Doctoral Dissertation,

The University of Michigan, 1985.

[10] S.C. Lin, W.F. Punch III, and E.D. Goodman,

“Coarse-grain parallel genetic algorithms:

categorization and new approach,” in

Proceedings of the Fifth International

Conference on Genetic Algorithms, pp. 28-37,

1994.

[11] S. Martello and P. Toth, Knapsack Problems,

Jonh Wiley, UK, 1990.

[12] Z. Michalewicz, Genetic Algorithms + Data

Structures = Evolution Programs, Springer-

Verlag, 1994.

[13] H. Muhlenbein, M. Schomisch, and J. Born,

“The parallel genetic algorithm as function

optimizer,” in Proceedings of the Fourth

International Conference on Genetic Algorithms,

1991.

[14] M. Munetomo, Y. Takai, and Y. Sato, “An

efficient migration scheme for subpopulation-

based asynchronously parallel genetic

algorithms,” in Proceedings of the Fifth

International Conference on Genetic Algorithms,

1993.

[15] C.B. Pettey, M.R. Leuze, and J.J. Grefenstette,

“A parallel genetic algorithm,” in Proceedings

of the Second International Conference on

Genetic Algorithms, pp. 155-161, 1987.

[16] D. Schlierkamp-Voosen and H. Muhlenbein,

“Adaptation of population sizes by competing

subpopulations,” in Proceedings of IEEE

International Conference on Evolutionary

Computation, pp. 330-335, 1996.

[17] R. Tanese, “Parallel genetic algorithm for a

hypercube,” in Proceedings of the Second

International Conference on Genetic Algorithms,

pp. 434-439, 1987.

[18] R. Tanese, “Distributed genetic algorithms,” in

Proceedings of the Third International

Conference on Genetic Algorithms, pp. 177-183,

1989.

