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In this work we present a dynamically biased statistical model to describe the evolution of the title
reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The
method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305
(2007)]. A recent global potential energy surface is used here to calculate the capture probabilities,
instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced
by considering a scrambling matrix which depends on energy and determine the probability of the
identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that
the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom,
what shortens the lifetime of H+

5 complexes and, as a consequence, the exchange mechanism is
produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-
classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants
is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the
ZPE is explained by the need of correcting the pure classical level number of the H+

5 complex, as
done in classical simulations of unimolecular processes and to get equivalent quantum and classical
rate constants using Rice–Ramsperger–Kassel–Marcus theory. This matrix allows to obtain a ratio
of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by
Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures,
however, the present simulations predict too high ratios because the biased scrambling matrix is not
statistical enough. This demonstrates the importance of applying quantum methods to simulate this
reaction at the low temperatures of astrophysical interest. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4747548]

I. INTRODUCTION

H+
3 is the most abundant molecular ion in space and is

considered to be the universal protonator.1–4 Models to esti-
mate the concentration of this cation, and its isotopomers, are
used to follow the dynamics of ionospheres of outer planets
as a function of solar fluence5–7 and in isotopic exchange pro-
cesses in low pressure plasmas of H2/D2 mixtures.8, 9 H+

3 is
formed in the H2 + H+

2 → H+
3 + H reaction, and its deuter-

ated variants via the subsequent HD + H+
3 → H2D+ + H2

proton-deuteron exchange reaction, and isotopic variants.
These last reactions, widely studied experimentally,10–17 are
considered to be responsible for the high relative abundance
of deuterated species, ≈104 times higher than the D/H ra-
tio of the galaxy,18–21 attributed to zero-point energy differ-
ences important at the low temperatures of the interstellar
medium.14, 22 It has been found that the deuterated fraction
can be used as a tracer of massive star formation.21 Of par-

a)Author to whom correspondence should be addressed. Electronic mail:
octavio.roncero@csic.es.

ticular interest is the spin-statistics of these species, which
determines selection rules for the ortho/para conversion of
H+

3 .12, 16, 23–27

The most detailed theoretical studies performed until now
are based on the statistical approach, including nuclear spin
symmetry constraints.16, 17, 28 The applicability of these meth-
ods relies on the formation of long-lived H+

5 complexes, in
which a complete randomization of energy among all degrees
of freedom is produced. In such situation 3 different channels
can be distinguished:

H+
3 + H̃2 → H+

3 + H̃2 identity

→ H2 + (HH̃2)+ hop (1)

→ HH̃ + (H̃H2)+ exchange,

which statistical weights are 1/10, 3/10, and 6/10, respec-
tively. This statistical behavior is expected to be valid only
at relatively low collision energy, because the well of the H+

5
complex is rather shallow, of ≈3044 cm−1.29, 30 In fact, sev-
eral statistical models were built giving different weights to
the exchange mechanism,16, 17, 28 assuming the existence or

0021-9606/2012/137(9)/094303/12/$30.00 © 2012 American Institute of Physics137, 094303-1
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not of a scrambling process, which would allow the exchange
of any of the hydrogen atoms within the complex. It is there-
fore important to perform dynamical calculations on this re-
action to provide information about the relative importance of
each of the three possible mechanisms of Eq. (1).

Dynamical calculations require global potential energy
surfaces (PESs). In the last years several PES’s, of increasing
accuracy, have appeared in the literature.29–35 The exchange
reaction barrier is rather low, below the zero-point energy, so
that all identical nuclei can permute, subject to the symmetry
constraints imposed by nuclear spin angular momenta,23, 24, 26

as experimentally confirmed by measurements in plasmas at
300–500 K.12, 13 All this makes extremely difficult to per-
form complete quantum calculations including the 12 degrees
of freedom (9 vibrational and 3 rotational), considering the
whole permutation group of symmetry. For this aim, proper
coordinates should be designed, as the democratic hyper-
spherical coordinates developed recently by Kuppermann.36

The use of these coordinates requires the evaluation of the
hyperspherical harmonics, a work still in progress.37, 38

One of the first simulations of the title reaction was the
quasi-classical study performed by Moyano and Collins,34

who found discrepancies with the available experimental re-
sults, which were attributed to possible quantum effects and to
the accuracy of the PES. Recently seven-degree-of-freedom
quantum scattering calculations of the H2 + H2D+ reaction
have been reported,39 for state-selected initial states, which
do not take into account the permutation symmetry. This
reduced dimensionality model uses reactants Jacobi coordi-
nates, which does not distinguish among the different rear-
rangement channels.

The aim of this work is to combine statistical methods,
which account for the nuclear spin selection rules, and dy-
namical methods, based on quasi-classical trajectories (QCT)
in this case, to properly account for the hop/exchange ra-
tios. For that purpose we shall follow the treatment of Park
and Light in Ref. 28, introducing the dynamical results in
the so-called scrambling probability, SM, as a dynamical
bias, possibility already mentioned in Ref. 28. Moreover,
until now most statistical models have only used asymp-
totic expansions of the potential in which H+

3 is treated as
a point charge interacting with a H2 molecule, including its
induced electric dipole and quadrupole. Here, we shall use
a global PES recently proposed which describes very satis-
factorily the long-range interactions, going beyond the point
charge model for H+

3 using a triatomics-in-molecules (TRIM)
treatment.29

The organization of the paper is as follows. In Sec. II A
the statistical method of Park and Light28 is outlined to
introduce the notation. Section II B describes the proce-
dure followed here to calculate the capture probabilities.
Section II C shows the details of QCT calculations and in
Sec. II D how these results are used to obtain the scrambling
probability, SM. Section II E describes the zero-point energy
(ZPE) effect on the dynamics by only considering a fraction
of the ZPE of the reactants. Finally, Sec. II F describes the
rate constants, making emphasis in the ortho/para rates and
hop/exchange ratio, and some conclusions are extracted in
Sec. III.

II. THEORETICAL METHODOLOGY

A. Statistical model

In this work we closely follow the statistical treatment
of Park and Light,28 in the version of the separate proton-
scrambling mechanism. We simply outline the method to ex-
plain the differences introduced here to bias the scrambling
probability by dynamical calculations.

The state-to-state canonical reaction rate coefficient is
given by28

Ksr,M ′s ′r ′ (T ) = h2

[jd ][jt ][I2][I3]

(

1

2πμkBT

)3/2

×
∫

dE e−(E−Esr )/kBT Nsr,M ′s ′r ′ (E),

(2)

with [J] = 2J + 1 and where s ≡ (I2, I3) and r ≡ ( jd, jt, ωt)
denote the nuclear spin and rotational state of H2 and H+

3 , re-
spectively, in each rearrangement channel M. M is 1 for the
initial state (or identity channel, and is omitted for reactants
for simplicity), 2 for the hop mechanism, and 3 for the ex-
change mechanism. kB is the Boltzmann constant, and Esr is
the sum of the energy of the initial states of H2 and H+

3 reac-
tants. The H+

3 energy levels and quantum numbers used in this
work are listed in Table I. The triatomic bound states were cal-
culated with the PES of Ref. 29 in hyperspherical coordinates
to properly assign the symmetry using an iterative Lanczos
method, as described elsewhere.40, 41

The state-to-state cumulative reaction probabilities
(CRPs), Nsr,M ′s ′r ′ (E), are given by

Nsr,M ′s ′r ′(E) =
∑

JI

[J ][I ]P JI
sr,M ′s ′r ′(E), (3)

where J, I are quantum numbers associated to the total or-
bital angular momentum and total nuclear spin, respectively.
In this work we shall use a body-fixed description, which is
essentially equivalent to the space-fixed treatment of Park and
Light.28 In the centrifugal sudden (CS) approximation used,
the helicity quantum number � is conserved and equal to the

TABLE I. Rotational levels of H+
3 calculated with hyperspherical coordi-

nates using the PES of Ref. 29. All the levels correspond to the ground
(0, 00) vibrational state (with energy 4359.52 cm−1 for the non-physical state
of jt = 0, taken as zero of energy), but different rotational states jt, ωt, and
irreducible representation, Ŵ, of the permutation-inversion group, isomorphic
with the D3h group. The nuclear spin, I3, is also indicated for ortho (I3 = 3/2)
and para (I3 = 1/2) states.

jt ωt Ŵ I3 Energy (cm−1)

1 1 E′′ 1/2 64.04
1 0 A′

2 3/2 86.86
2 2 E′ 1/2 169.10
2 1 E′′ 1/2 237.07
3 3 A′′

2 3/2 314.97
3 2 E′ 1/2 427.50
3 1 E′′ 1/2 494.17
3 0 A′

2 3/2 516.26
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sum of the helicities of the fragments in the total body-fixed
frame, ν and �t for H2 and H+

3 fragments, respectively.
The state-to-state reaction probabilities, P JI�

sr,M ′s ′r ′ (E), are
the sum of the square of the collision S-matrix over the projec-
tions ν and �t, such that � = ν + �t is conserved. It should be
noted, that in this CS approach, � becomes a good quantum
number. Following the separate proton-scrambling statistical
approach of Park and Light,28 these probabilities P JI�

sr,M ′s ′r ′ (E)
are given by

P JI�
sr,M ′s ′r ′ (E) =

∑

ν�t

∑

ν ′�′
t

{

[

1 − W J�
srν�t

(E)
]

δsrν�t ,s ′r ′ν ′�′
t
δM ′1

+ gIs γ M ′
sI s ′W

J�
srν�t

(E) W J�
s ′r ′ν ′�′

t
(E)

/

∑

M ′′s ′′r ′′ν ′′�′′
t

γ M ′′
sI s ′′W

J�
s ′′r ′′ν ′′�′′

t
(E)

}

, (4)

where W J�
s ′r ′ν ′�′

t
(E) are the capture probabilities defined below.

gIs is an element of the nuclear spin statistical weight (NSSW)
matrix28

g =

⎧

⎪

⎨

⎪

⎩

2 0 2 2

0 4 4 4

0 0 0 6

⎫

⎪

⎬

⎪

⎭

, (5)

indicating how many functions of total spin I can be formed
with spin fragments functions s = (I2, I3), and ordered as
s = (0, 1/2), (0, 3/2), (1, 1/2), (1, 3/2), and I = 1/2, 3/2, 5/2.

In Eq. (4), the spin branching ratio matrices, γ M ′
sI s ′ , for

each mechanism M′ are given by

γ M ′
sI s ′ = (2I + 1)SM ′ŴM ′

sI s ′
/

eses ′ , (6)

with es = 1 or 2 for I3 = 3/2 or 1/2, respectively. This factor
is introduced to consider that I3 spin functions belong to the
E representation of the S3 permutation group, and to form a
total function of A2 symmetry has to be combined with r rovi-
brational functions of E symmetry, so that the direct product
gives E × E = A1 + A2 + E. Among these last functions only
those of A2 symmetry exist, and this fact is accounted for by
the factor es.

SM ′ in Eq. (6) is the scrambling probability,28 which cor-
responds to the number of channels for each mechanism, i.e.,
1/10, 3/10, and 6/10 for identity (M′ = 1), hop (M′ = 2) and
exchange (M′ = 3) mechanisms, respectively. These values
correspond to the high temperature statistical limit for reasons
which will be discussed below. The dynamical constraints are
introduced by varying this matrix as also described below.

The spin modification matrix ŴM ′
sI s ′

28 in Eq. (6) is given
by

ŴM ′
sI s ′ =

∑

i2i
′
2

|〈I, Iz, I3, i2, I2|OM ′ |I, Iz, I
′
3, i

′
2, I

′
3〉|2, (7)

with OM ′ = E, pad pbe or pcd for M′ = 1, 2, or 3, respectively,
where pαβ is the permutation operator. Those elements are
tabulated in Table II of Ref. 28.
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FIG. 1. Asymptotic H+
3 + H2 potential energy surface (in cm−1) as a function

of the center-of-mass separation, R, and the angle θ between R and r, the H2
internuclear vector. The lower panel corresponds to the asymptotic potential
of Ref. 28 which describes H+

3 as a point charge. The three upper panels
correspond to three different orientations of the H+

3 subunit, described by
the Euler angles (α, β, γ ) described in the text, using the global potential of
Ref. 29. In this plot H2 and H3 are frozen in their asymptotic equilibrium
geometries.

B. Capture probability

In Ref. 28, the interaction potential was approximated by
the long-range interaction between a point charge, represent-
ing H+

3 , and the induced electric dipole and quadrupole of H2,
and it is shown in the bottom panel of Fig. 1. Such poten-
tial interaction goes to −∞ for short distances and does not
take into account charge distribution and shape of H+

3 . In this
work we consider the full potential energy surface developed
in Ref. 29, which describes correctly the asymptotic behavior
for long distances and also the potential well, as it is shown
in Fig. 1. In what follows, this PES will be used to calculate
the capture probabilities, freezing the H2 and H+

3 at their equi-
librium distances, since only the ground vibrational levels of
the two monomers can be populated at the energies of interest
here.

In order to calculate the potential matrix elements, it is
convenient to use a body-fixed frame, defined such as the
z-axis is parallel to R, the vector joining the H2 and H+

3
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center-of-masses, and the H2 molecule internuclear vector, r,
is in the xz body-fixed frame. The body-fixed basis set angular
functions considered are defined as

Y
JmJ

�r≡jd ,jt ,ωt
=

√

2J + 1

8π2
DJ∗

mJ �(φR, θR, φr )

×
√

2jt + 1

8π2
D

jt∗
�tωt

(α, β, γ ) Pjdν(θ ) (8)

with � = �t + ν, and Pjdν being normalized associated Leg-
endre functions. (φR, θR, φr) are the Euler angles connecting
the body-fixed and space-fixed frames. H+

3 frozen at its tri-
angular equilibrium geometry is described by the symmetric
top eigen-functions,42 D

jt∗
�tωt

(α, β, γ ). The (α, β, γ ) Euler an-
gles describe the orientation of the principal axes system of
H+

3 (with z′ perpendicular to the plane of the molecule) and
the body-fixed frame described above (with z parallel to R).
Finally, θ is the angle between r and R. The potential de-
pends directly on α, β, γ , θ angles, so that its matrix elements,
〈YJmJ

�r |V |YJmJ

�r ′ 〉, are calculated numerically by representing
these functions in grids. Polar angles, such as β and θ are de-
scribed by Gauss-Legendre quadrature points while azimuthal
angles, α and γ , by equidistant points. This is accomplished
here by using 40 quadrature points for each angle.

Similarly to what was done in Ref. 28, here we only
consider diagonal potential matrix elements in the body-fixed
frame, i.e., � = �′ and r = r′, and the Coriolis couplings
among different � values are neglected. Thus � becomes a
good quantum number and is used in the place of the parity
 in the sums involved for the CRP of Eq. (3). For each col-
lection of quantum numbers (J, �, r), or channel, an effective
potential can be defined as

V
(J,�,r)
eff (R)

=
〈

Y
JmJ

�r |V |YJmJ

�r

〉

+ J (J + 1) + jd (jd + 1) + jt (jt + 1) − 2�2 + 2ν�t

2μR2

+Ejd
+ Ejtωt

, (9)

where Ejd
and Ejtωt

are the energies of the isolated diatomic
and triatomic fragments, respectively. The well depth of the
effective potential depends on the initial states of H+

3 and H2.
For J >0, the addition of the rotational barrier diminishes the
depth of the effective well describing the H+

5 complex, and
for moderately high J, ≈20, the well nearly disappears. This
effect is not present in the point charge asymptotic model po-
tential used by Park and Light,28 in which the potential tends
to −∞ as R → 0. Also, in that model the effective potential
only depends on the orientation of the H2 molecule, and not
on that of H+

3 and its rotational level.
The capture probabilities are calculated as in the simplest

model of Ref. 28

W J�
srν�t

(E) =
{

0 E < Vmax

1 E > Vmax

, (10)

i.e., the system is trapped for energies above the rotational
barrier, Vmax , provided that the effective potential presents a
well.
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FIG. 2. Cumulative reaction probabilities sum, Nsr,s′ (E) = ∑

M ′r ′
Nsr,M ′s′r ′ (E) (divided by (2jd + 1) × 1000) for the 2 first states of H2 and
H3 (para and ortho for the ground and first excited). The initial state and final
nuclear spin are marked as (I2, I3) → (I ′

2, I
′
3) in each panel. Three different

potentials are considered: the isotropic and anisotropic asymptotic potentials
used by Park and Light28 in which H+

3 is considered as a point charge, and
the full PES of Ref. 29.

In Fig. 2 we present the CRPs obtained for some ini-
tial states (summed over final rotational states and rearrange-
ment channels) using three models of potential interaction:
the asymptotic model, in which H+

3 is a point charge, in the
isotropic and anisotropic models used by Park and Light,28

and the full potential of Ref. 29. As the anisotropy of the PES
increases the CRP gets lower, simply because more angular
configurations become inaccessible, disrupting the approach
of the two reagents. These effects get magnified as the rota-
tional excitation of either H2 and H+

3 increases, and are very
sensitive to the stereodynamics, since the preferred direction
of attack corresponds to the H2 center-of-mass in the plane
of H+

3 . In general, for the non-diagonal terms, the full PES
model always yields to lower probabilities simply because the
capture probability of the initial states get lower, as a conse-
quence of the larger anisotropy. The diagonal (I2, I3) → (I2,
I3) terms contain the elastic (which should always be larger
for the full PES model), inelastic and reactive probabilities,
and for this reason they do not show a clear trend.

C. Quasi-classical trajectory calculations

The reaction dynamics of the title reaction is studied
using quasi-classical trajectories, using an Adams-Bashforth-
Moulton predictor-corrector integrator of variable step in
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Cartesian coordinates. The initial conditions are determined
using a generalization of the Monte Carlo sampling method
introduced by Karplus et al.43 for atom-diatom reactions, as
explained below.

The vibrational energy is obtained as that of the ground
state of the fragment for jd or jt equal to zero, while the rota-
tional energy is obtained by subtracting the vibrational con-
tribution to the exact eigenvalue obtained for the desired ro-
tational state. For both fragments, H2 and H+

3 , the internal
coordinates are obtained from classical turning points ran-
domly selected. For H2 the two classical turning points of
the ground vibrational level are obtained following a stan-
dard Newton-Raphson procedure. For H+

3 , this is done in two
steps: first, the two internal hyperspherical angles are selected
randomly using isotropic distributions and, second, the two
classical turning points are searched on the monodimensional
potential as a function of the hyperradius, as in the diatomic
case. Once the internal coordinates are obtained, the orien-
tation of the two fragments is obtained by a random selec-
tion over the corresponding Euler angles, assuming isotropic
angular probability distributions. Finally, H+

3 center-of-mass
is set at the origin of coordinates, while H2 center-of-mass
is set at a distance of R = 14 Å . The impact parameter
is randomly selected in the interval [0, bmax], according to
a quadratic distribution, so that Rx = b cos φ, Ry = b sin φ,
Rz =

√
R2 − b2 + δvrτ . Here φ is a random number in an

isotropic distribution between 0 and 2π . vr is the relative ve-
locity between the two reactants, τ is the sum of the vibra-
tional period of the two fragments and δ a random number
between 0 and 1. This last factor shifts the initial distance be-
tween the two reactants by a random factor and is introduced
to warranty that the relative vibrational phase of the two reac-
tants at the moment of the collision is random.

The initial velocities correspond to the sum of rotational
and translational ones. The translational energy is divided be-
tween the two center-of-mass in opposite direction so that the
total linear momentum is zero. The initial rotational energy
of the diatomic fragment is completely determined by the ro-
tational quantum number jd.43 The jd vector is set to be in
the plane perpendicular to the H2 internuclear vector, r, and
determined by one random number isotropically distributed
between 0 and 2π . For H+

3 , the z-component of jt, ωt, is fixed,
and the other two components of the angular velocity vector
�ω are optimized to fit the rotational energy

Erot = EJ − EJ=0 = 1

2
�ω I �ω. (11)

In this expression, the inertia tensor I is obtained from the in-
ternal coordinates previously obtained in the triatomic body-
fixed frame. The rovibrational eigenvalues, EJ, are obtained
numerically for the (0, 00) vibrational state using hyperspher-
ical coordinates.40, 41 With this procedure, the fitted initial ro-
tational energy has an error lower than 10−3 cm−1, ωt is exact,
but the triatomic angular momentum jt is only approximate
and, in general, not integer.

The impact parameter runs from 13 Å for the lowest
energy considered, 8 cm−1, to 6 Å for the highest one of
800 cm−1. Finally, the trajectories are stopped when the ve-
locity between the two fragments is positive and their dis-

tance larger than 16 Å. The collision time is defined as the
average of the time required in each trajectory to reach thus
distance.

The potential energy used is the full dimensional PES
of Ref. 29. This potential is described using a triatomic-in-
molecules formalism, which allows to describe correctly the
long range dependence of the H+

3 ion with the induced dipole
and quadrupole of H2, as shown in Fig. 1. To improve the ac-
curacy of the TRIM model at short distances, two analytical
five-body terms are added. The derivatives of this potential are
calculated in internal coordinates using a mixed numerical/
analytical method: the TRIM derivatives are obtained numer-
ically, while the five-body terms are analytical. The energy
thus obtained along the integrated trajectories is conserved
with an error lower than 10−2cm−1. These trajectories cor-
respond to complex dynamics with the formation of the long-
lived H+

5 . Trajectories with larger errors were neglected. The
conservation of total angular momentum was not analyzed,
and back propagation was not done because of the high com-
putational effort required. The average propagation times are
between 10 and 20 min of CPU per trajectory. Due to the large
computational cost the calculations have been performed in
GRID computing, using the IBERGRID facilities.

The initial ZPE is rather high, ≈6538 cm−1,44 compared
to the initial collision energies considered, <1000 cm−1. The
initial ZPE of the reactants is set in the initial conditions.
Along the collision dynamics the ZPE can be distributed
among all the degrees of freedom due to the classical char-
acter of the dynamical calculations. This makes that the final
internal energy is not properly quantified, and energies much
lower than the allowed ZPE are obtained. One may think that
one possible way to solve this problem is by Gaussian binning
methods.45, 46 This procedure has been applied recently to the
study of the triatomic D+ + H2 and H+ + D2 reactions pro-
viding a very good agreement with experiments.47 However,
in the present five-atom case the ZPE is very high. This im-
plies a very wide energy range of internal energy of the two
products. Most of the trajectories would end having internal
energies very different from the real ones, having a negligi-
ble contribution. This problem would then require to increase
by many orders of magnitude the number of trajectories re-
quired to get converged results. This makes impractical the
use of such method to correct the ZPE of products in H+

5 due
to the long propagation times. Here another simple method
to solve the ZPE problem will be used as described below
in Sec. II E.

In this work we will only focus on the final distribu-
tion of products between the different rearrangement chan-
nels. The ratio between the three different channels shown in
Eq. (1) are obtained with QCT calculations. Of particular rel-
evance is the factor α(T) = Khop/Kexchange between the hop and
exchange mechanism.13, 17 Here, we first evaluate this factor
as a function of energy as α(E) = Phop/Pexchange, where PM

are the QCT probabilities. These probabilities are calculated
including all trajectories with an impact parameter lower than
bmax for a fixed collisional energy. This bmax corresponds to
the largest value of the impact parameter for which hop or
exchange probability are non-zero. We have found that these
quantities converge rapidly with the number of trajectories.
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FIG. 3. Probabilities for ending in the three rearrangement channels (iden-
tity, hop, and exchange) determined with QCT calculations, for initial
H+

3 (jt = 1, ωt = 1) and H2( jd = 0) reactants. The results for other triatomic
( jt = 2, 3) and diatomic ( jd = 1) states provide essentially the same results.

For this purpose in this work we use 12 000 trajectories cal-
culated for each collisional energy and each initial state of
the fragments. The collisional energies calculated are 8, 80,
160,. . . , 800, 1200, and 3200 cm−1, for jd = 0 and 1, and for
the 8 rotational states of H+

3 listed in Table I, corresponding
to jt = 1, 2, and 3.

The probabilities for ending in each of the three rear-
rangement channels are shown in Fig. 3 for the case of the
ground rotational states of the reactants. For all the rest of
the cases examined the probabilities obtained are very similar.
Typically, at low energies, E = 8 cm−1, the identity and hop
channels are both nearly 40%, and the remaining 20% cor-
responds to the exchange mechanism. As energy increases,
the hop and exchange probabilities decrease, while that of the
identity channel increases up to a value of 75%. The same be-
havior is observed as the initial excitation of H+

3 increases,
even when the rotational energy increases from 64 up to
515 cm−1. The change between jd = 0 and 1 of H2 is slightly
more important, but still pretty small. The rotational and
translational energies are small fractions of the ZPE of the
system (≈6538 cm−1). In the interaction region, the large ZPE
energy can be distributed rather freely among the different de-
grees of freedom. The variation of the probabilities with colli-
sion energy in Fig. 3 should thus correspond to the dynamics
in the entrance channel, just before the ZPE energy may flow
among the different degrees of freedom.

To interpret these results the identity/hop/exchange prob-
abilities and the collision time are displayed in the left
panels of Fig. 4 as a function of the impact parameter, b, for
H+

3 (jt = 1, ωt = 1) + H2( jd = 0) at three different collision
energies. The collision time for b < 13 Å does not depend on
the impact parameter and shows the expected increase with
the decreasing of the translational energy. However, for high
impact parameters, b > 13 Å, the two lower energies show a
rather significant increase on the collision time. At 800 cm−1

the trajectories are not deviated by the potential and no rear-
rangement is produced. At the same time, for the higher b-
values the identity probability increases very fast, while the
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FIG. 4. Hop and exchange probabilities (bottom panels), described by full
triangle and empty square symbols, respectively, and collision time (top
panel) versus the impact parameters for H+

3 (jt = 1, ωt = 1) + H2( jd = 0)
collisions at translational energies of 8, 80, and 800 cm−1 (described by red,
blue, and black lines, respectively). Left/right panels show the QCT results
considering initial all/25% of the true zero-point energy.

hop and exchange ones decrease. It is important to note, how-
ever, that the hop/exchange ratio remains nearly the same as a
function of b below 13 Å, while for higher b’s the hop prob-
ability decreases faster than the exchange one. This behavior
produces an increase of the hop/exchange ratio, α, as a func-
tion of the collision energy, as displayed in Fig. 5. This is
simply because the impact parameter decreases with increas-
ing collision energy, up to a plateau which is near 6 Å at
E ≈ 700 cm−1.

These results are explained as follows: for low b there
are direct collisions between the two reactants, and it is at the
first impact among them when the energy is exchanged. At
this moment a proton hop is produced or not, and the energy
is transferred to some specific modes. This energy can flow
among the different modes, but it is not efficient enough to
produce a second proton hop necessary to yield to exchange
mechanism. This explains why this last exchange mechanism
always occurs with lower probability.

At higher impact parameters the system is rotationally
excited, so that, after the first collision, the resulting frag-
ments still keep some time orbiting around each other. This
explains why the collision time increases significantly for
b > 10 a.u. In addition, probably because the appearance of
rotational barriers, the identity channel increases, becoming
the dominant one. In contrast, the hop and exchange mech-
anisms probability and the hop/exchange ratio, α, decrease
because, after the first proton hop, the system keeps orbiting
making a second proton hop more favorable, giving rise to the
exchange process in Eq. (1). As energy decreases the maxi-
mum impact parameter increases, yielding an increase of the
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FIG. 5. Hop/exchange ratio, α(E), obtained with different methods. The
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to calculate the statistical results. In the top-right panel the experimental re-
sults of Refs. 13 and 17, measured at 135, 350, 400, and 450 K, plotted at an
energy of 3

2 kBT .

hop/exchange ratio α, as shown in the left-bottom panel of
Fig. 5.

D. Scrambling matrix and hop/exchange ratio

The statistical model described above, for the three in-
teraction potential used so far, yield essentially to a constant
value of α(E) = Phop/Pexchange and equal to 1/2. This factor
appears when the degeneracy factor for each rearrangement
channel, given by the scrambling matrix, SM ′ , is included
in the pure statistical limit described above (1/10, 3/10, and
6/10 for the hop and exchange processes, respectively). When
SM ′ is independent of energy, as in this statistical limit, the
α(E) = P hop/P exchange ratio is also constant.

The α(E) ratio may depend on energy if SM ′ also does, as
suggested by Park and Light.28 It can be considered that SM ′ is
equal to the reaction probabilities on the different rearrange-
ment channels obtained in the QCT calculations and shown
in Fig. 3. These probabilities are very similar for all the ini-
tial states of the two fragments studied. Thus, to simplify we
shall use one common set of results for all of them, in this
case those corresponding to the ground levels of reactants. In
the statistical limit SM ′ is the degeneracy of the different rear-

rangement channels. Using the QCT probabilities is a way to
introduce a bias due to the dynamics. In particular, the varia-
tion of SM ′ could be attributed to an increasing contribution of
a direct mechanism in the reaction, in which the two reactants
collide, producing some times a proton hop, with a probabil-
ity governed also by the dynamics. In this interpretation, the
probability of the exchange mechanism can be used to extract
the percentage of statistical mechanism versus a direct one.

In order to analyze the effect of using this dynamically
biased SM ′ (E), it is interesting to eliminate first the nuclear
spin statistic effect, to be consistent with the QCT calcula-
tions. This was done by eliminating the sums over the nuclear
spin and the matrices gIs and γ M ′

sI s ′ in Eqs. (3) and (4). The re-
sults obtained for the α(E) ratio are nearly identical for all the
initial states considered and very similar to the QCT results,
in the bottom-left panel of Fig. 5.

When the nuclear spin statistic is included, the α ratio,
in the top-left panel of Fig. 5, keeps essentially the same as
for the QCT method. There are some cases, as for jd = 0, jt
= 1, ωt = 0, for which α gets significantly lower. This situa-
tion happens when the lower vibrational states corresponding
to the hop mechanism are missing by spin statistic while the
exchange channel presents open states. In such situations, the
hop probability is zero so α = 0 as well, even when the ex-
change probability is different from zero. Thus, when the first
levels of the hop channel become open, the α ratio increases
but keeps significantly lower than the rest of the cases.

The α ratios obtained are significantly lower than the ex-
perimental values of Crabtree et al.17 of 0.5 ± 0.1 at 135 K
and 1.6 ± 0.1 at 350 K, and those of Cordonnier et al.,13 be-
ing 2.4 ± 0.6 at 400 K. The fact that the experimental value
at 135 K is 0.5 may be taken as an indication that the pro-
cess at this lower temperature is statistical. When the tem-
perature increases this ratio α increases, as it is also the case
in the QCT calculations shown here, so that it may be ex-
plained accordingly. At low energies, large impact parameters
are accessible, corresponding to high orbital angular momen-
tum, giving rise to long-lived resonances. The fragmentation
of these long-lived complexes yields a significantly larger ex-
change probability, according to statistical models. At higher
energies, the impact parameter decreases and the two reagents
collide more directly, producing a proton hop. The energy re-
distribution needed for a second hop (to yield an exchange
process) is not transferred efficiently probably because the H+

5
complex does not live long enough.

E. Zero-point energy effects

In spite of reproducing the rise of α(E) with increasing
collision energy, its simulated value is by far too high as com-
pared to the experimental one. This may be explained as an
artifact due to the quasi-classical approximation because of
the high ZPE of the fragments, of 6538 cm−1. The H+

5 com-
plex has a ZPE of 7167 cm−144 with respect to the minimum
of the well, 2415 cm−1 below the energy of the ground state
of the reactants (see Fig. 6). The ZPE is nearly constant in the
entrance channel until the reactants get close enough, where
this energy flows to the soft modes of the H+

5 complex, and
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811.30, 499.76, and 208.09 cm−1. Two different energy regimes are consid-
ered in the bottom and middle panels, and the ZPE-corrected level density
with the γ factor closer to the quantum results is shown.

the classical nature of the propagation is no longer able to de-
scribe the ZPE of H+

5 . This situation leads the system to dis-
pose of an excess of energy which manifests by an unphysical
fast dissociation of the complex.

There are many approaches to correct the improper treat-
ment of zero-point energy in classical mechanics.48–50 One
method used in bimolecular reactions are based on reduced
dimensionality models, keeping the active modes and correct-
ing the ZPE of the remaining ones in the effective potential.51

This approach has the inconvenient in H+
5 that all the atoms

are identical and freezing any mode would introduce artifacts
in the probabilities of the different reaction channels. Other
methods are classified as “active” or “passive.” In the first
type, individual trajectories are modified to satisfy the ZPE
requirements, as, for example, by preventing the vibrational
energy in any mode from falling below its zero-point value.52

A quite widely used “passive” method consists in reducing the
ZPE so that the quantum and classical level numbers coincide
as much as possible.48, 50, 53, 54 This method has been normally
applied to unimolecular reactions48, 53, 54 and can be justified
using Rice–Ramsperger–Kassel–Marcus (RRKM) theory by
considering that the RRKM unimolecular rate constant is ex-
pressed as

K(E) = N (E)

hρ(E)
, (12)

where N(E) is the level number at the transition state and ρ(E)
is the density of states of products. This expression is valid for
quantum and classical mechanics, and in order to obtain the
same rate constants, both N(E) and ρ(E) have to be approx-
imately the same for the two theories. This makes necessary
to correct the classical quantities, as already demonstrated,50

by correcting the ZPE, in analogy to what is done in classical
trajectory studies.

The level number N(E) has been calculated for the H+
5 at

the minimum of the well using the normal mode frequencies
in the quantum and classical approaches. The quantum one is
calculated simply counting the number of levels accessible at
each energy. The classical one has been calculated with the
usual expression50, 54

N (E) = En

n!
∏n

i=1 ¯ωi

, (13)

where n = 9 is the number of normal modes of the system.
The corrected N(E) has been calculated as a function of the
ZPE reduction, γ , as50, 54

N (E, γ ) = N (E − [1 − γ ]EZPE). (14)

The γ reduction of the EZPE is larger in the low energy region
of interest in this work, with γ ≈ 70%–80%, and for larger
energies it gets a value of γ ≈ 90%, as shown in Fig. 6.

In this work we are interested in bimolecular reactions,
divided in two steps, the formation and the dissociation of the
H+

5 complex. If all the initial ZPE is used in standard QCT
calculations the dissociation of the complex is by far too fast
at low collision energies as described above, because the clas-
sical level number of H+

5 is too high. As in unimolecular re-
action, the ZPE has to be reduced. Since the critical processes
are the formation and destruction of H+

5 , we consider here
that the reactants ZPE should be reduced to the value of the
modified H+

5 complex (65% of 7167 cm−1) minus the asymp-
totic PES (D0 = 3044 cm−1), as illustrated in the top energy
diagram of Fig. 6. This quantity would correspond to
≈1615 cm−1, about ≈25% of the reactants ZPE (6538 cm−1),
and would warranty that when the two reactants approach
each other at very low collision energy they “find” the cor-
rected density of states of the H+

5 complex, providing an im-
provement of the formation/destruction dynamics. Follow-
ing the arguments described above the correction factor γ
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increases when increasing energy. However, in this work we
focus on rather low energies and we consider only one reduc-
tion value, 25% EZPE.

The association in ion-molecule collisions has been stud-
ied previously using QCT methods.55–57 While increasing
translational energy seems to always reduce the association
probability, the effect of ZPE presents more complicated sit-
uations. In many cases the inclusion of ZPE in QCT yields to
an increase of association probabilities, depending on which
modes are included.56, 57 In contrast, the association of H
atoms on diamond surface seems to decrease when increasing
ZPE of the lattice.58 This non-clear landscape makes think
that the role of the ZPE on the association probability is a
complicated energy transfer event, depending on the PES, the
masses, well depth, ZPEs, etc.

Since the association probability plays the role of increas-
ing the statistical behavior in H2 + H+

3 collisions, it is of great
interest here to examine the role of ZPE. Here we only con-
sider a reduction of only 25% of the ZPE (1634 cm−1), as dis-
cussed above. The collision time and the hop/exchange proba-
bilities versus impact parameters are shown in the right panels
of Fig. 4 for different collision energies. The collision times
with only 25% of the ZPE are considerably longer than with
the full ZPE. In the entrance channel, the process is adiabatic
and the collision energy remains constant until the two reac-
tants are close enough to exchange energy. Therefore, the in-
crease of the collision time is essentially due to the formation
of complexes with longer lifetimes. Thus, in the present case,
the increase of the ZPE inhibits the formation of the com-
plex or association. When the collision energy increases, long
impact parameters yield significant shorter collision times,
demonstrating that the association probability also decreases
with increasing collision energy.

With regards to hop probability (full triangles) it is not af-
fected by the ZPE of reactants: the results obtained with 25%
of the ZPE are essentially the same as those obtained with the
full ZPE. However, the exchange probability (empty squares)
increases significantly, except for the higher collision energy
shown, being essentially the same for all impact parameters,
except for the longer ones. Consequently, the identity chan-
nel decreases when the exchange increases. This demonstrate,
that the ZPE introduced in QCT avoids the formation of the
complex, since in classical mechanics it flows towards other
modes favouring a fast dissociation.

The α ratio obtained with 25% of the ZPE decreases sig-
nificantly, as shown in the right-bottom panel of Fig. 5, simply
because the collision time increases when the available energy
decreases. As in the case with 100% of the ZPE, the
identity/hop/exchange probabilities obtained are used as SM ′ .
This is first tested without spin statistic (lower-right panel)
and finally with the spin nuclear statistic and the full PES, as
shown in the top-right panel. The behavior is similar to that
obtained with the normal QCT probabilities but significantly
shifted towards lower values. In this case, when they are com-
pared with the available experimental data13, 17 the agreement
is remarkably good, specially for such simple model. The ex-
perimental value at 135 K of Crabtree et al.17 is much lower
than the one obtained here, and very close to the statistical
limit. In order to improve the present results, quantum cal-
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FIG. 7. Reaction rate coefficients obtained by summing of final rotational
states, r′ and all the 3 mechanisms, using the normal statistical and the two
dynamically biased models and the full PES of Ref. 29. Also, the results
obtained with the anisotropic asymptotic potential and the pure statistical
model, corresponding to that of Ref. 28, are shown.

culations at energies close to the threshold should be done to
check to what extent the situation is statistical. The resonances
at threshold can be reached by infrared absorption, and the
spectrum recorded by detecting the H+

3 fragments.59–61 Re-
cently, several quantum approximate and/or reduced dimen-
sionality simulations of the predissociation spectrum have
been performed44, 61, 62 providing some physical assignment.
The agreement between experiment and theory is still quite
poor, what demonstrate the need of designing new quantum
methods to include all degrees of freedom and the permuta-
tion symmetry in this problem.

F. Rate constants

The CRPs have been calculated with the different scram-
bling matrices, the high temperature statistical limit, the QCT,
and ZPE-corrected QCT. These CRPs are integrated in en-
ergy, according to Eq. (2), to get the state-to-state rate con-
stants, which are shown in Fig. 7 for the first rotational states
of the fragments. The integration in energy in Eq. (2) has been
done numerically in the interval 0 < E < 2500 cm−1. We
compare 4 different statistical results. The first ones, corre-
sponding to those reported by Park and Light,28 are obtained
with the asymptotic anisotropic PES and the statistical scram-
bling matrix SM ′ . The results are essentially the same as those
reported previously28 except in some diagonal terms in which
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FIG. 8. Same as in Fig. 7 but after average over the initial rotational, r, and
spin, s, states of the reactants with a Boltzmann distribution.

there is a small discrepancy attributed to the different meth-
ods used here to calculate the capture probability. The sec-
ond, denoted by statistical, uses the full PES and also the sta-
tistical scrambling matrix. These last results are in most of
the cases significantly lower than those of Park and Light28

and the difference can only be attributed to the effect of the
anisotropic charge distribution of H+

3 , as commented above
for the CRP. The other two cases correspond to the use of the
full PES with the two biased scrambling matrices, one ob-
tained from normal QCT calculations and the second with the
ZPE-corrected QCT calculations. These two last cases are in
general significantly closer to those obtained with the second
statistical SM ′ matrix in which the full PES was used. This
shows that the main reason for the difference corresponds to
the use of the full PES, while the statistical matrix introduces
smaller changes between the two statistical models for these
quantities.

In all the cases the trends are rather similar, showing
an initial raise or decrease for low temperatures, followed
by a plateau for T > 200 K. This behavior is typical in
ion-molecule collision and explained by simple Langevin
models.11, 63 This effect is even more obvious when the av-
erage over the initial states of the fragments is performed, as
shown in Fig. 8, in which the rotationally thermalized rate
constants are essentially constant for T >100 K. In this case,
we also observe the influence of incorporating the anisotropy
of the charge distribution of H+

3 , being more important than
considering a more refined scrambling matrix.

This is not the case when considering the α(T)
hop/exchange ratio which is very much dependent on the
SM ′ scrambling matrix, as it is shown in Fig. 9. SM ′

= 1:3:6 correspond to the number of channels for the iden-
tity:hop:exchange mechanisms, independently of temperature
and nuclear spin-statistic. When this last effect is accounted
for in the statistical model, at low energies some levels dis-
appear, changing the ratio between these mechanisms. That is
why, at low temperatures the α(T) ratio shows a minimum at
≈20 K. At higher energies, however, these effects disappear
because the number of allowed levels for each nuclear spin
combination becomes approximately the same, making α(T)
= 1/2. Thus, the 1:3:6 ratio becomes the statistical ratio in the
high temperature limit.

On the contrary, when using QCT dynamically biased
scrambling matrices, this ratio changes a lot. It is important to
note that the experimental values available13, 17 change from
the statistical value of 1/2 at T = 125 K up to a value of ≈2

0

1
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4

0 200 400

α
(T

)

Temperature / Kelvin    

statistical
biased
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expt.

FIG. 9. Thermally averaged α(T) = Khop/Kexchange ratio obtained with dif-
ferent versions of the statistical method, as described in the text. The experi-
mental results at 400 K are due to Cordonnier et al.,13 and the rest to Crabtree
et al.17 The value at 450 K was described there as preliminary.

for T > 300 K. According to the present results, this last value
may be explained by an important contribution of direct col-
lisions, producing the hop of a proton, in which the H+

5 does
not live long enough to form a significant amount of exchange
reactions.

It is particularly interesting to note that the ZPE-biased
scrambling matrix yields results in rather good agreement for
the higher temperature measurements, and overall good be-
havior with the temperature. On the contrary, the QCT bi-
ased results are significantly higher. It clearly demonstrates
that the reduction of the ZPE has an enormous influence at
low temperatures. This was interpreted above by the failure
of the QCT approach in considering the ZPE energy along
the reaction, and demonstrates that for these low energies it
is necessary to incorporate quantum effects, essentially the
ZPE. In spite of the simplicity of the model used to account
for the ZPE effect, the reasonable agreement with the exper-
imental results available13, 17 already demonstrate its validity.
Of course, this description is quite crude and needs to be fur-
ther validated by quantum methods.

According to the analysis of the classical trajectories
made above, at low collision long lived complexes are formed,
corresponding to resonances near the dissociation threshold
in a quantum description. It is therefore necessary to sim-
ulate such processes using quantum methods to treat the
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collision including relatively high total angular momenta.
This situation complicates the use of iterative procedures,
such as the multi-configurational time dependent Hartree
method.64 These resonances close to the dissociation thresh-
old are accessible by infrared excitation from the H+

5 , and
there are several experimental results on this system and its
isotopic variants.59–61, 65 If the hypothesis discussed above is
true, there may be some differences in the broadening of
the resonances near the dissociation threshold as a function
of the total angular momentum excitation, and this could be
probably measured by changing the experimental rotational
temperature of the experiments. Also, there have been sev-
eral theoretical simulations on this infrared predissociation
spectra,44, 61, 62 but they use either approximate methods or re-
duced dimensionality models which need to be improved to
account for the narrow resonances at high J with enough accu-
racy to extract information relevant for the transition between
statistical and direct regimes in the collisions discussed in this
work.

III. CONCLUSIONS

This work presents a combined statistical/classical trajec-
tory study of the H+

3 + H2 collisions, which supposes an ex-
tension of a previous statistical method by Park and Light.28

Two new ingredients are considered in the present treatment;
first, we use the full multidimensional PES to account for the
anisotropy of the H+

3 fragment and the H+
5 well depth, and

second, we use QCT calculations to generate a scrambling
matrix which depends on the collision energy, as already pro-
posed by Park and Light.28 This new matrix accounts for the
transition between full scrambling statistical mechanism, at
low energies (below 50 cm−1) and direct hop mechanisms
at higher energies, allowing a reasonable description of the
α(T) = Khop/Kexchange ratio determined experimentally.13, 17

The rate constants obtained in the 0 < T < 500 K interval
are slightly lower than the previously obtained ones,28 simply
because the anisotropy and the shallow well of the full PES
reduce the probability of forming the H+

5 complex.
It is found that the ZPE plays a key role in the

dynamics.11 The use of the ZPE of the fragments in QCT
calculations leads to wrong results because this energy re-
distributes, reducing the lifetime of the H+

5 complexes. This
makes that the full scrambling is not longer probable enough
to obtain a good α(T) = Khop/Kexchange. Reducing the ZPE
of the reactants yields to a considerably improved scram-
bling matrix, and the α ratios obtained are in better agree-
ment with experimental results. This reduction of the ZPE is
explained by the need of correcting the pure classical level
number of the H+

5 complex, as done in classical simulations of
unimolecular processes and to get equivalent quantum and
classical rate constants using RRKM theory. At the time being
and due to the complexity of the H+

5 system, this reduction of
the ZPE cannot be further validated either with the exact the-
ory nor on another smaller system. Future studies have to be
done in that direction.

The analysis of the QCT calculations indicates that tra-
jectories responsible for the longer lived dynamics and the
higher exchange proportion are those occurring at large im-

pact parameters at very low collision energy, below 50 cm−1.
This indicates that to improve the dynamical description made
here it is necessary to use quantum methods describing rel-
atively high total angular momenta and low kinetic energy.
Such studies are now-a-days a challenge and some approx-
imations are in progress. It is well known that in hydrogen
plasmas at room temperature the title reaction, and isotopo-
logues, do not play a significant role in the proportion of the
deuterated H+

3 .8, 9 However, at the lower temperatures of the
interstellar medium, ≈10 K, these collisions are thought to be
one of the most important ones in explaining the anomalous
high proportion of deuterated triatomic hydrogen ions,7 giv-
ing rise to the deuteration of other molecular species in space.
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