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Adam-Gibbs theory of supercooled liquids

Sc (T ): configurational entropy
density per unit volume

σCRR(ξ) = ξdSc (T )

τ(T ) ∼ e
ξd A

kB T

Relaxation is dominated by the smallest and fastest regions

Minimum size dictated by:
σCRR(ξ) = ξdSc (T ) ≥ log no ⇒ (ξ∗)d ∼ log no

Sc (T )

τ(T ) ∼ e
(ξ∗)d A

kB T ∼ e
C

TSc Adam-Gibbs relation
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Random First Order Transition (RFOT) theory

Domain of radius r ; boundary acts
as “pinning field”
β∆Fboundary (r) = βΥrθ

If the state of the bubble can
change: “entropy gain”
β∆Fbulk (r) = −Sc (T )rd

Typical size ξ of the domains given by β∆F (ξ) = 0⇒ ξ =
(
βΥ
Sc

) 1
d−θ

“Mosaic state” made of domains of typical radius ξ, each one relaxing
almost independently.

Thermodynamic free energy barrier for nucleation inside a domain:
β∆F (r?) = maxr β∆F (r) ∝ ξdSc (T ) ≡ σCRR (T ) , r? ∝ ξ ,

Relaxation time τ ∼ eAξθψ ∼ eCS
− θψ

d−θ
c ∼ eσ

ψ
CRR

Note: Adam-Gibbs θψ
d−θ = 1
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Summary

σCRR = ξdSc is a central quantity in both theories

Recent advance:

ξ can now be accessed experimentally!

To be tested (around Tg ):

1 Adam-Gibbs: σCRR is constant in temperature

2 RFOT: σCRR(T ) ∼ ξ(T )θ increases in temperature

3 RFOT: relation between σCRR(T ) and τ(T )?
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Measure of Ncorr

Ncorr ,4(T ) = maxt
kB

∆Cp
[T d〈C(t)〉

dT ]2 = kB

∆Cp(T )
β(T )2

e2

(
d log τα
d log T

)2

Berthier et al., Science (2005)
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We tested the method following Dalle-Ferrier et al., Phys.Rev.E (2007)



Motivations Methods Results Conclusions

Configurational entropy of a correlation volume

Definition

σCRR (T ) = Sc (T )
kB

Ncorr ,4(T ) = Sc (T )
∆Cp(T )

β(T )2

e2

(
d log τα
d log T

)2

= logN (T )

N (T ) = number of states in the correlation volume

Advantages

1 Independent of normalizations (beads, etc.)

2 We want to test if σCRR (Tg ) = cost. for different materials

3 According to RFOT σCRR (T ) is the thermodynamic barrier; relation
with τα(T ) ?
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Temperature dependence of σCRR
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log(τα/τ0) = (σ/σo)ψ + z ln(σ/σo) + ln A

A = 0.65, σo = 2.86, z = 1.075, and ψ = 0.5 (but ψ = 0.3÷ 1.5 is ok)

Inconsistent with Adam-Gibbs theory, σCRR (T ) = const.
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Correlation at Tg

log(τα(T )/τ0) = f [σCRR (T )]
⇓

σCRR (Tg ) = const.
⇓

Sc (Tg ) ∝ 1/Ncorr ,4(Tg )
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Consistency check: Using m ∼ ∆Cp(Tg )/Sc (Tg ) ⇒ β2m = const.
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RFOT exponents

RFOT predicts σCRR ∝ N
θ/d
corr ,4 ⇒ θ = 2÷ 2.2
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Together with ψ ∼ 0.5 ⇒ θψ
d−θ ∼ 1 Adam-Gibbs relation!
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Related works

Karmakar, Dasgupta, Sastry - arXiv:0805.3104

Numerical determination of exponent θ, consistent results

Biroli et al. - Nature Physics 4, 771 (2008)

Fluctuating surface tension with exponent θ = 2; can give a
pre-asymptotic effective exponent θeff & 2

Bhattacharyya et al. - PNAS 105, 10677 (2008)

Schematic MCT + RFOT gives σψCRR ∼ log τ with similar values of ψ
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Conclusions

Main assumptions

1 Dynamical correlation length ⇔ Adam-Gibbs CRR

2 Ncorr ,4 ∝ “number of correlated molecules”

3 Sc estimated by the difference between liquid and crystal entropies

Main results

1 σCRR increases on lowering T , inconsistent with AG theory

2 Data seem to indicate that log[τα(T )/τ0] = f [σCRR (T )]

3 This implies σCRR (Tg ) = const. which is checked

4 Consistent with m ∼ ∆Cp(Tg )/Sc (Tg ) and β2m = const.

5 RFOT exponent θ ∼ 2÷ 2.2 (smooth interface)

6 ψ ∼ 0.5 best fit, consistent with Adam-Gibbs relation

See the paper for details...

Puzzle

What is the physical interpretation of ψ < 1 ?
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How to measure ξ (sketchy)

1 χ4(t) ≡ ρ
∫

d3r 〈c(0; t)c(r; t)〉 with 〈c(0; t)c(r; t)〉 ∝ e−
r
ξ(t)

⇒ χ4(t) ∝ ξ(t)d (Assumption!)

2 χ4(t) ≥ kB

∆Cp
[T d〈C(t)〉

dT ]2 ; Berthier et al., Science (2005)

3 Assume 〈C(t)〉 = exp

»
−

“
t

τα(T )

”β(T )
–

⇒ Ncorr,4(T ) = maxtχ4(t) = kB
∆Cp (T )

β(T )2

e2

“
d log τα
d log T

”2
∝ ξ(T )d

(+ two negligible corrections: β′(T ) and shift of the peak)
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