Motivations	Methods	Results	Conclusions

Dynamically correlated regions and configurational entropy in supercooled liquids

Simone Capaccioli, Giancarlo Ruocco and Francesco Zamponi* J. Phys. Chem. B 112, 10652 (2008)

> *Laboratoire de Physique Théorique, École Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05

> > November 25, 2008

Motivations	Methods	Results	Conclusions
000	00	0000	
Outline			

- Adam-Gibbs theory
- Random First Order Transition theory
- Summary

2 Methods

- Measure of N_{corr}
- Configurational entropy of a correlation volume

- Temperature dependence of $\sigma_{\it CRR}$
- Correlation at T_g
- RFOT exponents
- Related works

Motivations	Methods 00	Results 0000	Conclusions
Outline			

- Adam-Gibbs theory
- Random First Order Transition theory
- Summary

2 Methods

- Measure of N_{corr}
- Configurational entropy of a correlation volume

- Temperature dependence of $\sigma_{\it CRR}$
- Correlation at T_g
- RFOT exponents
- Related works

Adam-Gibbs theory of supercooled liquids

 $S_c(T)$: configurational entropy density per unit volume

• $\sigma_{CRR}(\xi) = \xi^d S_c(T)$ • $\tau(T) \sim e^{\xi^d \frac{A}{k_B T}}$

Relaxation is dominated by the smallest and fastest regions

 $\begin{array}{l} \text{Minimum size dictated by:} \\ \sigma_{CRR}(\xi) = \xi^d S_c(T) \geq \log n_o \qquad \Rightarrow \qquad (\xi^*)^d \sim \frac{\log n_o}{S_c(T)} \\ \tau(T) \sim e^{(\xi^*)^d \frac{A}{k_B T}} \sim e^{\frac{C}{TS_c}} \quad \text{Adam-Gibbs relation} \end{array}$

Adam-Gibbs theory of supercooled liquids

 $S_c(T)$: configurational entropy density per unit volume

• $\sigma_{CRR}(\xi) = \xi^d S_c(T)$ • $\tau(T) \sim e^{\xi^d \frac{A}{k_B T}}$

Relaxation is dominated by the smallest and fastest regions

Minimum size dictated by: $\sigma_{CRR}(\xi) = \xi^d S_c(T) \ge \log n_o \implies (\xi^*)^d \sim \frac{\log n_o}{S_c(T)}$ $\tau(T) \sim e^{(\xi^*)^d \frac{A}{k_B T}} \sim e^{\frac{C}{TS_c}} \quad Adam\text{-}Gibbs \ relation$

Domain of radius r; boundary acts as "pinning field" $\beta \Delta F_{boundary}(r) = \beta \Upsilon r^{\theta}$

If the state of the bubble can change: "entropy gain" $\beta \Delta F_{bulk}(r) = -S_c(T)r^d$

Typical size ξ of the domains given by $\beta \Delta F(\xi) = 0 \Rightarrow \xi = \left(\frac{\beta \Upsilon}{S_c}\right)^{d-\theta}$ "Mosaic state" made of domains of typical radius ξ , each one relaxing almost independently.

Thermodynamic free energy barrier for nucleation inside a domain: $\beta \Delta F(r^*) = \max_r \beta \Delta F(r) \propto \xi^d S_c(T) \equiv \sigma_{CRR}(T) , \quad r^* \propto \xi ,$ Relaxation time $\tau \sim e^{A\xi^{\theta\psi}} \sim e^{CS_c^{-\frac{\theta\psi}{d-\theta}}} \sim e^{\sigma_{CRR}^{\psi}}$

Note: Adam-Gibbs $\frac{\theta\psi}{d-\theta} = 1$

Domain of radius r; boundary acts as "pinning field" $\beta \Delta F_{boundary}(r) = \beta \Upsilon r^{\theta}$

If the state of the bubble can change: "entropy gain" $\beta \Delta F_{bulk}(r) = -S_c(T)r^d$

Typical size ξ of the domains given by $\beta \Delta F(\xi) = 0 \Rightarrow \xi = \left(\frac{\beta \Upsilon}{S_c}\right)^{\frac{1}{d-\theta}}$ "Mosaic state" made of domains of typical radius ξ , each one relaxing almost independently.

Thermodynamic free energy barrier for nucleation inside a domain: $\beta \Delta F(r^*) = \max_r \beta \Delta F(r) \propto \xi^d S_c(T) \equiv \sigma_{CRR}(T) , \quad r^* \propto \xi ,$ Relaxation time $\tau \sim e^{A\xi^{\theta\psi}} \sim e^{CS_c^{-\frac{\theta\psi}{d-\theta}}} \sim e^{\sigma_{CRR}^{\psi}}$

Note: Adam-Gibbs $\frac{\theta\psi}{d-\theta} = 1$

Domain of radius r; boundary acts as "pinning field" $\beta \Delta F_{boundary}(r) = \beta \Upsilon r^{\theta}$

If the state of the bubble can change: "entropy gain" $\beta \Delta F_{bulk}(r) = -S_c(T)r^d$

Typical size ξ of the domains given by $\beta \Delta F(\xi) = 0 \Rightarrow \xi = \left(\frac{\beta \Upsilon}{S_c}\right)^{\frac{1}{d-\theta}}$ "Mosaic state" made of domains of typical radius ξ , each one relaxing almost independently.

Thermodynamic free energy barrier for nucleation inside a domain: $\beta \Delta F(r^*) = \max_r \beta \Delta F(r) \propto \xi^d S_c(T) \equiv \sigma_{CRR}(T) , \quad r^* \propto \xi ,$ Relaxation time $\tau \sim e^{A\xi^{\theta\psi}} \sim e^{CS_c^{-\frac{\theta\psi}{d-\theta}}} \sim e^{\sigma_{CRR}^{\psi}}$

Note: Adam-Gibbs $\frac{\theta\psi}{d-\theta} = 1$

Motivations	Methods	Results	Conclusions
○○●	00	0000	
Summary			

 $\sigma_{CRR} = \xi^d S_c$ is a central quantity in both theories

Recent advance:

 ξ can now be accessed experimentally!

To be tested (around T_g):

- O Adam-Gibbs: σ_{CRR} is constant in temperature
- 2 RFOT: $\sigma_{CRR}(T) \sim \xi(T)^{\theta}$ increases in temperature
- 3 RFOT: relation between $\sigma_{CRR}(T)$ and $\tau(T)$?

Motivations	Methods	Results	Conclusions
○○●	00	0000	
Summary			

 $\sigma_{CRR} = \xi^d S_c$ is a central quantity in both theories

Recent advance:

 ξ can now be accessed experimentally!

To be tested (around T_g):

- **1** Adam-Gibbs: σ_{CRR} is constant in temperature
- **2** RFOT: $\sigma_{CRR}(T) \sim \xi(T)^{\theta}$ increases in temperature
- Solution RFOT: relation between $\sigma_{CRR}(T)$ and $\tau(T)$?

Motivations	Methods	Results	Conclusions
000	००	0000	
Outline			

Motivations

- Adam-Gibbs theory
- Random First Order Transition theory
- Summary

2 Methods

- Measure of N_{corr}
- Configurational entropy of a correlation volume

- Temperature dependence of $\sigma_{\it CRR}$
- Correlation at T_g
- RFOT exponents
- Related works

Motivations	Methods	Results	Conclusions
000	00	0000	
	M		
ivieasure of <i>i</i>	Vcorr		

$$N_{corr,4}(T) = max_t \frac{k_B}{\Delta C_p} [T \frac{d\langle C(t) \rangle}{dT}]^2 = \frac{k_B}{\Delta C_p(T)} \frac{\beta(T)^2}{e^2} \left(\frac{d\log \tau_{\alpha}}{d\log T}\right)^2$$

Berthier et al., Science (2005)

We tested the method following Dalle-Ferrier et al., Phys.Rev.E (2007)

Motivations	Methods	Results	Conclusions
000	○●	0000	
Configurational	entropy	of a correlation volume	

Definition

$$\sigma_{CRR}(T) = \frac{S_c(T)}{k_B} N_{corr,4}(T) = \frac{S_c(T)}{\Delta C_p(T)} \frac{\beta(T)^2}{e^2} \left(\frac{d \log \tau_{\alpha}}{d \log T}\right)^2 = \log \mathcal{N}(T)$$

 $\mathcal{N}(\mathcal{T}) =$ number of states in the correlation volume

Advantages

- Independent of normalizations (beads, etc.)
- ② We want to test if $\sigma_{CRR}(T_g) = \text{cost.}$ for different materials
- 3 According to RFOT σ_{CRR}(T) is the thermodynamic barrier; relation with τ_α(T) ?

Motivations	Methods	Results	Conclusions
000	○●	0000	
Configurational	entropy	of a correlation volume	

Definition

$$\sigma_{CRR}(T) = \frac{S_c(T)}{k_B} N_{corr,4}(T) = \frac{S_c(T)}{\Delta C_p(T)} \frac{\beta(T)^2}{e^2} \left(\frac{d \log \tau_{\alpha}}{d \log T}\right)^2 = \log \mathcal{N}(T)$$

 $\mathcal{N}(\mathcal{T}) =$ number of states in the correlation volume

Advantages

- Independent of normalizations (beads, etc.)
- 2 We want to test if $\sigma_{CRR}(T_g) = \text{cost.}$ for different materials
- 3 According to RFOT $\sigma_{CRR}(T)$ is the thermodynamic barrier; relation with $\tau_{\alpha}(T)$?

Motivations	Methods	Results	Conclusions
000	00	0000	
Outline			

Motivations

- Adam-Gibbs theory
- Random First Order Transition theory
- Summary

2 Methods

- Measure of N_{corr}
- Configurational entropy of a correlation volume

- Temperature dependence of $\sigma_{\it CRR}$
- Correlation at T_g
- RFOT exponents
- Related works

Motivations	Methods	Results	Conclusions
000	oo	●○○○	
Temperature deper	ndence of σ_{CRR}		

 $\log(\tau_{\alpha}/\tau_{0}) = (\sigma/\sigma_{o})^{\psi} + z \ln(\sigma/\sigma_{o}) + \ln A$

 $A = 0.65, \ \sigma_o = 2.86, \ z = 1.075, \ \text{and} \ \psi = 0.5$ (but $\psi = 0.3 \div 1.5 \ \text{is ok}$)

Inconsistent with Adam-Gibbs theory, $\sigma_{CRR}(T) = const.$

Motivations	Methods	Results	Conclusions
000	00	○●○○	
Correlation at T_g			

$$\begin{split} \sigma_{CRR}(T) &= \frac{S_c(T)}{\Delta C_p(T)} \frac{\beta(T)^2}{e^2} \left(\frac{d \log \tau_{\alpha}}{d \log T} \right)^2 \\ \text{Consistency check: Using } m &\sim \Delta C_p(T_g) / S_c(T_g) \quad \Rightarrow \quad \beta^2 m = \text{const} \end{split}$$

Motivations	Methods	Results	Conclusions
000	00	○○●○	
RFOT exponents			

RFOT predicts $\sigma_{CRR} \propto N_{corr,4}^{\theta/d} \Rightarrow \theta = 2 \div 2.2$

Together with $\psi \sim 0.5 \Rightarrow \frac{\theta \psi}{d-\theta} \sim 1$ Adam-Gibbs relation!

Motivations	Methods	Results	Conclusions
000	00	○○○●	
Related works			

Karmakar, Dasgupta, Sastry - arXiv:0805.3104

Numerical determination of exponent θ , consistent results

Biroli et al. - Nature Physics 4, 771 (2008)

Fluctuating surface tension with exponent $\theta=$ 2; can give a pre-asymptotic effective exponent $\theta_{eff}\gtrsim 2$

Bhattacharyya et al. - PNAS 105, 10677 (2008)

Schematic MCT + RFOT gives $\sigma^{\psi}_{\it CRR} \sim \log \tau$ with similar values of ψ

	00	0000	
Conclusions			

Main assumptions

- 2 $N_{corr,4} \propto$ "number of correlated molecules"
- \bigcirc S_c estimated by the difference between liquid and crystal entropies

Main results

- **(**) σ_{CRR} increases on lowering T, inconsistent with AG theory
- 2 Data seem to indicate that $\log[\tau_{\alpha}(T)/\tau_{0}] = f[\sigma_{CRR}(T)]$
- This implies $\sigma_{CRR}(T_g) = \text{const.}$ which is checked
- Consistent with $m \sim \Delta C_p(T_g)/S_c(T_g)$ and $\beta^2 m = \text{const.}$
- **§** RFOT exponent $\theta \sim 2 \div 2.2$ (smooth interface)
- $\textbf{0} \ \psi \sim \textbf{0.5 best fit, consistent with Adam-Gibbs relation}$

See the paper for details...

Puzzle

What is the physical interpretation of $\psi < 1$?

Motivations	Methods	Results	Conclusions
000	00	0000	
How to measure ξ	(sketchy)		

1
$$\chi_4(t) \equiv \rho \int d^3 \mathbf{r} \langle c(\mathbf{0}; t) c(\mathbf{r}; t) \rangle$$
 with $\langle c(\mathbf{0}; t) c(\mathbf{r}; t) \rangle \propto e^{-\frac{r}{\xi(t)}}$
 $\Rightarrow \chi_4(t) \propto \xi(t)^d$ (Assumption!)

2
$$\chi_4(t) \geq rac{k_B}{\Delta C_p} [T rac{d \langle C(t)
angle}{dT}]^2$$
 ; Berthier et al., Science (2005)

$$\textbf{S} \text{ Assume } \langle C(t) \rangle = \exp\left[-\left(\frac{t}{\tau_{\alpha}(T)}\right)^{\beta(T)}\right] \\ \Rightarrow N_{corr,4}(T) = max_t\chi_4(t) = \frac{k_B}{\Delta C_p(T)} \frac{\beta(T)^2}{e^2} \left(\frac{d\log \tau_{\alpha}}{d\log T}\right)^2 \propto \xi(T)^d \\ (+ \text{ two negligible corrections: } \beta'(T) \text{ and shift of the peak})$$