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ABSTRACT 
Explicitly stated program invariants can help programmers 
by identifying program properties that must be preserved 
when modifying code. In practice, however, these invari- 
ants are usually implicit. An alternative to expecting pro- 

grammers to fully annotate code with invariants is to au- 
tomatically infer invariants from the program itself. This 
research focuses on dynamic techniques for discovering in- 
variants from execution traces. 

This paper reports two results. First, it describes techniques 
for dynamically discovering invariants, along with an instru- 
menter and an inference engine that embody these tech- 
niques. Second, it reports on the application of the engine 
to two sets of target programs. In programs from Gries’s 
work on program derivation, we rediscovered predefined in- 
variants. In a C program lacking explicit invariants, we dis- 
covered invariants that assisted a software evolution task. 
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recognition 

1 INTRODUCTION 

Invariants play a central role in program development. Rep- 
resentative uses include refining a specification into a cor- 
rect program, static verification of invariants such as type 
declarations, and runtime checking of invariants encoded as 
assert statements. 

Invariants play an equally critical role in software evolution. 
In particular, invariants can protect a programmer from 
making changes that inadvertently violate assumptions upon 
which the program’s correct behavior depends. The near ab- 
sence of explicit invariants in existing programs makes it all 
too easy for programmers to introduce errors while making 
changes. 

An alternative to expecting programmers to annotate code 
with invariants is to automatically infer invariants. In this 
research, we focus on the dynamic discovery of invariants: 

we execute a program on a collection of inputs and extract 
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variable values from which we then infer invariants. As with 
other dynamic approaches such as testing and profiling, the 
accuracy of the inferred invariants depends on the quality 
and completeness of the test cases; additional test cases 
might provide new data from which more accurate invari- 

ants can be inferred. This approach is complementary to 
static approaches, which examine the program text but do 
not run the program. 

This paper presents two related results stemming from our 

initial experiences with this approach. Our first result is 
a set of techniques, and an implementation, for discovering 
invariants from execution traces (Section 3). 

Our second result is the application of our inference engine 
to two sets of target programs. The first set of programs, 
taken from The Science of Programming [GriBl], was derived 
from formal preconditions, postconditions, and loop invari- 
ants. Given runs of the program over randomly-generated 
inputs, our techniques discover those same program proper- 
ties, plus some additional ones (Section 2). The second set of 
programs - C programs, originally from Siemens [HFG094], 
and modified by Rothermel and Harrold [RH98] -is not an- 
notated with invariants, nor is there any indication that in- 
variants were used in their construction. Section 4 shows 
how numeric invariants dynamically inferred from one of 
these programs assisted in understanding and changing it. 

Section 5 presents performance measurements and discusses 
techniques for mitigating combinatorial blowups and oth- 
erwise improving runtime performance. Section 6 surveys 
related work, and Section 7 concludes. 

2 REDISCOVERY OF INVARIANTS 

To introduce our approach and illustrate the output of our 
tool, we present the invariants detected in a simple pro- 
gram taken from The Science of Program,ming [Gri81], a 
book that espouses deriving programs from specifications. 
Unlike typical programs, for which it may be difficult to de- 
termine the desired output of invariant detection, many of 
the book’s programs include preconditions, postconditions, 
and loop invariants that embody important properties of 
the computation. Our invariant detector successfully reports 
all the formally-specified preconditions, postconditions, and 
loop invariants in chapters 14 and 15 of the book (chapter 
14 is the first in which such programs appear). 

As a simple example, consider a program that sums the el- 
ements of an array (Figure 1). We transliterated this pro- 
gram to a dialect of Lisp enhanced with Gries-style control 
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i,s := 0,o; 
doi#n+ 

i, 9 := i + 1, s + b[i] 

od 

Precondition: n 2: 0 
Postcondition: s = (c j : 0 5 j < II : bL]) 
Loop invariant: 0 2 i 5 n and s = (cj : 0 5 j < i : bb]) 

Figure 1: Gries program 15.1.1 [Gri81, p. 1801 and its formal 

specification. The program sums the values in array b (of length 
n) into result variable s. The statement i, s := 0,O is a parallel 

(simultaneous) assignment of the values on the right-hand side of 
the := to the variables on the left-hand side. The do-od form 

repeatedly evaluates the condition on the left-hand side of the + 

and, if it is true, evaluates the body on the right-hand side; the 
form terminates when the condition evaluates to false. 

constructs. Our instrumenter (Section 3) added code that 

writes variable values into a data trace file; this code was 
automatically inserted at the beginning of the program, at 

the loop head, and at the end of the program. We ran this 
program on 100 randomly generated arrays of length 7 to 13, 
in which each element was a random number in the range 
-100 to 100, inclusive. Figure 2 shows the output of our 
invariant detector given the data trace file. 

The precondition (BEGIN) inferences record the relationship 

between N and the length of array B (which is crucial to 
the correctness of the program but omitted from the formal 
invariants), the range of values for N appearing in the test 
cases, and that the test case array elements were always at 
least -100. 

The postcondition (END) inferences include the basic invari- 
ant of Gries, S = sum(B); Section 3 describes inference over 
functions such as sum. In addition, the engine discovered 

that N and B remain unchanged. 

The inferred loop (LOOP) invariants include those of 
Gries (since i is an integer, i E [0..13] is shorthand for 
i 2 0 and i 5 13), along with several others. For instance, 

these additional invariants bound the maximum value of the 
array elements, in addition to the minimum value noted in 
the precondition invariants. Inference of these bounds is con- 
trolled by our statistical rules for det,ermining invariants and 
by the vagaries of the actual input data; more samples tend 

to give more confidence in the bounds. Section 3 discusses 
these and other phenomena related to the extra invariants, 
including negative invariants. 

3 INVARIANT DETECTION ENGINE 

We detect invariants from program executions by instru- 
menting the source program to trace the variables of interest, 
running the instrumented program over a set of test cases, 
and inferring invariants over both the instrumented variables 
and derived variables that are not manifest in the original 
program. 

Instrumentation 

The goal of instrumentation is to capture the values of vari- 
ables so that patterns can be detected among those values. 
The two primary decisions are selecting the program points 
at which to insert instrumentation and selecting the vari- 

15.1.1:::BEGIN 100 samples 

N = size(B) 

N in [7..131 

B 

All elements >= -100 

15.1.1:::END 100 samples 
N=I= N-orig = size(B) 

B = B-orig 

S = sum(B) 

N in [7..131 

B 

All elements >= -100 

15.1.1:::L00P 1107 samples 

N = size(B) 

S = sum(B CO. . I-l] > 

N in [7..131 

B 

All elements in C-100.. 1001 

I in CO..131 

sum(B) in C-556. .5391 

B CO] nonzero in C-99. :961 

BC-11 in [-88..991 

BCO. .I-11 

All elements in C-100.. 1001 

I <= N 

Negative invariants : 
N != BE-11 
BCO] != B[-11 

(7 values) 
(7 values) 
(100 values) 
(200 values) 

(7 values) 

(100 values) 
(96 values) 
(7 values) 
(100 values) 
(200 values) 

(7 values) 
(96 values) 
(7 values) 
(100 values) 
(200 values) 
(14 values) 

(96 values) 
(79 values) 
(80 values) 
(985 values) 

(200 values) 
(77 values) 

(99 values) 
(100 values) 

Figure 2: Invariants inferred for Gries program 15.1.1 over 100 

randomly generatedinput arrays. Invariants are shown for the be- 

ginning (precondition) and end (postcondition) of the program, 

as well as the loop head (the loop invariant). BC-11 is shorthand 

for BCsize(B)-II, the last element of array B, and var-origrepre- 

sents VU’S value at the start of execution. Invariants for elements 
of an array are listed indented under the array; in this example, 
no array has multiple elementwise invariants. 

ables to examine at those points. 

Our prototype instruments procedure entry and exit points 

and loop heads. At these points, it writes to a file the values 
of all variables in scope, including global varia.bles, proce- 
dure arguments, local variables, and the procedure’s return 

value. Instrumenting is much faster than compilation. For 
the relatively small, compute-bound programs we have ex- 
amined so far, the instrumented code can be slowed down 
by more than an order of magnitude because the programs 
become I/O-bound. We have not yet optimized trace file 
size or writing time; another approach would be to perform 
invariant checking online rather than writing variable values 
to a file. 

For every instrumented program point, the trace file contains 
a list of sets of values, one value per instrumented variable. 
For instance, if procedure p has two formal parameters, is 
in the scope of three global variables, and is called twelve 
times, then when computing a precondition for :p the invari- 
ant engine would be presented a list of twelve elements, each 
element being a set of five variable values (one for each visible 
variable). A separate boolean variable tracks initialization 
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state for each original program variable. 

We have implemented instrumenters for programs written in 
Lisp and C/C++ (the C/C++ instrumenter currently does 
not instrument loop heads). Instrumentation is conceptually 
simple, but requires care in practice. It can be difficult to de- 

termine the size of (the valid data of) an array passed to a C 
procedure, or even whether a pointer refers to a single vari- 
able or to an element of an array. We hand-annotated the C 
programs with the lengths of arrays or with the information 

that the arrays are null-terminated (as strings are). The C 
instrumenter uses this information to avoid walking off the 
ends of arrays. A static or dynamic analysis may be able to 
determine many of these types for C programs, and many 

other languages make this information manifest at compile 
time or run time. It also outputs values both as pointer ad- 
dresses and as contents (single elements or entire arrays), to 
permit both pointer comparisons and comparisons over the 
underlying values. 

Test suite 
Invariant discovery requires use of a test suite, which is also 
necessary for tasks like testing, debugging, and profiling. A 
single test suite may not be ideal for all tasks. Some test 

suites are crafted to be as small as possible while still achiev- 
ing complete code coverage. Invariant detection requires re- 
peated execution of each instrumentation point, because no 
statistically valid inferences can be made about the distribu- 
tion of values based on just a few samples. We have obtained 
good results so far by using pre-existing test suites; for an 
example, see Section 4. 

Inferring invariants 

The invariant detector, when provided with the output of an 
instrumented program, lists the invariants detected at each 
instrumented program point. These invariants may involve 
a single variable (a constraint that holds over its values) or 

multiple variables (a relationship among the values of the 
variables). Our system checks for the following invariants, 
among others (z, y, and z are variables, and a, lo, and c are 
computed constants): 

any variable: constant value or small number of values 
numeric variable: range (a < x 5 b), modulus 
(x 3 a (mod b)), nonmodulus (x $ a (mod b)) 

multiple numbers: linear relationship (such as 
x = ay + bz + c), functions (including all those in the 
standard library, such as x = abs(y) or x = max(y,z)), 

comparisons (x < y, x 2 y, x = y), invariants over z + y 
and x - y 
sequence: sortedness, invariants over all elements (e.g., 
every element < 100) 
multiple sequences: subsequence relationship, lexico- 
graphic comparison 
sequence and scalar: membership 

We produced this list incrementally, starting with invariants 
that seemed basic and natural, then adding invariants we 
found helpful in analyzing the Gries programs (Section 2) 
and which we believed would be generally useful. The list 
does not include all the invariants that we think program- 
mers will find useful. For instance, we do not yet follow 
arbitrary-length paths through recursive data structures. 
However, we successfully detected many invariants that oc- 

cur in the Siemens suite (Section 4). 

For each variable or tuple of variables, each potential invari- 
ant is tested. As soon as an invariant is determined not to 
hold, it is not checked for the remainder of the values taken 
on by the variable(s). Thus, the cost of computing invariants 

tends to be proportional to the number of invariants discov- 
ered (see also Section 5). The invariants listed above are 
inexpensive to test and do not require full-fledged theorem- 
proving. For example, the linear relationship x = ay + bz + c 
with unknown coefficients a, b, and c and variables x, y, and 
z has three degrees of freedom. Consequently, three tuples 
of values for x, y, and z are sufficient to infer the possible 
coefficients. As another example of inexpensive checking, a 
common modulus (variable b in x E a (mod b)) is the great- 
est common divisor of the differences among list elements. 

Negative invariants 
Negative invariants are relationships that might be expected 
to occur but were never observed in the input. We compute 
the probability that such a property would not appear in a 
random input; if this probability is sufficiently small, then 
the property is reported as possibly non-coincidental. For 
example, if the reported values for variable 2 fit in a range 

of size I that includes 0, the probability that a single instance 
of x is not 0 is 1 - ;. (We make the simplifying assump- 
tion of a uniform distribution of values; essentially, we are 
testing this assumption. Much of our tool can be viewed 

as statistical tests of hypothesized distributions for variable 
values.) Given TJ reported values, the probability that x is 
never 0 is (1 - $)V; if this is less than a user-defined con- 
fidence level, then the negative invariant x # 0 is reported; 

x # y and (non)modulus tests are analogous. 

Ranges for numeric variables (such as c E [32..126] or 
x > 0) are also not reported unless they appear to be non- 
coincidental. In particular, a limit is reported if the several 

values near the range’s extrema all appear about as often as 
would be expected, or if the extremum appears much more 
often than would be expected (as if greater or lesser values 
have been clipped to that value). 

In Figure 2, negative invariants are reported for the loop 
head, but not for the beginning or end of the procedure, 
where the 100 samples were insufficient to support any in- 
equality inferences.’ Similarly, the elements of array B were 
bounded from above and below at the loop head, but only 
from below (as being at least -100) at procedure entry and 
exit. The random distribution of array elements happened 
to support only one boundedness inference for 100 samples; 
on another run over a similarly small set of test cases, only 

the upper bound, neither bound, or both bounds might be 
inferred. 

For the purposes of this paper-in part, to demonstrate 
spurious negative invariants like those of Figure 2 -we set 
the probability limit to .Ol. For actual use we recommend a 
substantially smaller value: if the system checks millions of 
potential invariants, reporting thousands of false positives is 

‘The values over which inequalities are inferred in the loop head 
are the same as the values at procedure entry and exit. However, the 
loop head is executed more times. We plan to enhance the imple- 
mentation so that loop iterations do not incorrectly add support for 
values unchanged by the loop. 
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15.1.1:::BEGIN 100 samples 
N = size(B) 
N >= 0 

(24 values) 
(24 values) 

15.1.1:::END 100 samples 

B = B-orig 
N = I = N-orig = size(B) 

S = sum(B) 
N >= 0 

(96 values) 

(24 values) 
(95 values) 
(24 values) 

15.1.1:::LOOP 986 samples 

N = size(B) (24 values) 

S = sum(B[O..I-11) (95 values) 

B (96 values) 

All elements in [-6005..76801 (784 values) 
N in CO..351 (24 values) 

I >= 0 (36 values) 

sum(B) in C-15006. .211441 (95 values) 

B[O. .1-l] (887 values) 
All elements in C-6005..7680] (784 values) 

I <= N (363 values) 

Figure 3: Invariants inferred for Gries program 15.1.1 over an 

input set whose array lengths and element values were chosen from 
exponential rather than uniform distributions, as in Figure 2. 

likely to be unacceptable. 

A sufficiently strong static analysis can reveal useful invari- 
ants that are universally true of a function, no matter how it 
is used. A whole-program analysis provides stronger prop- 
erties (that is, properties that logically imply those true of 
the function in isolation) about the function’s execution that 
depend on the context in which it is called. Our system re- 
ports yet stronger invariants that depend on the data sets 
over which the program was run. 

The invariants of Figure 2 include several not noted by Gries. 
These extra invariants are not merely artifacts of our tech- 

nique; rather, they provide valuable information about the 
data set, such as variable ranges. This information can help 
validate a test suite or indicate the contexts in which a func- 
tion or other computation is used. Figure 3 shows the result 
of running our system on a different set of 100 arrays; the 

output is almost precisely the Gries invariants. 

Derived variables 
In addition to manifest variables explicitly passed to the en- 
gine, we need to compute relations over non-manifest quan- 
tities. For instance, if array a and integer Iasti are both 
in scope, then a[lastil may be of interest, even if that ex- 
pression does not appear in the program text. 

Therefore, we add certain “derived variables” (actually ex- 

pressions) to the list of variables given to the engine as input. 
These derived variables include the following: 

l from any array: first and last elements, length 
l from numeric array: sum, min, max 
l from array and scalar: element at that index (a[il), 

subarray up to, and subarray beyond, that index (e.g., 
aC0.. i-11) 

l from function invocation: number of calls so far 

Derived variables are treated just like other variables by the 
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inference engine. 

Derived variables permit the engine to infer invariants that 
are not hard-coded into its list. For instance, if len(A) is 
derived from array A, then the engine can determine that 
i < len(A) without hardcoding a less-than comparison check 

for the caSe of a scalar and the length of an array. In this 
manner, the implementation can report compound relations 
that we did not necessarily anticipate. 

Many possible derived variables are not of general interest. 
For example, we do not want to run a battery o-f tests on zy 
for every 2: and y, much less compute az + b for every vari- 
able 2 and constant a and b. Moreover, each new variable 
introduces costs of checking invariants over it. We also take 

care not to introduce arbitrarily many new variables when 
deriving variables from derived variables, by halting deriva- 
tion after a fixed number of iterations and by mechanisms 
described below. 

Staged derivation and inference 
Both variable derivation and invariant inference can avoid 
unnecessary work by examining previously-computed invari- 
ants. Therefore, derived variables are not introduced until 
invariants have been computed over previously-existing vari- 
ables, and derived variables are introduced in stages rather 
than all at once. For instance, for array A, the derived vari- 
able lencA) is introduced and invariants are computed over 

it before any other variables are derived from A. If it is de- 
termined that j >_ len(A), then there is no sense in creating 
the derived variable A[j]. When a derived variable is only 
sometimes sensible, as when j is only sometimes a valid in- 
dex to A, no further derivations are performed over A[jl. 

Likewise, A[0 . . lenCA)-11 is identical to A, so it need not be 
derived. 

Derived variables are guaranteed to have certain relation- 
ships with other variables; for instance, ALO] is a member of 
A, and I is the length of ACO. . I-11. We do not compute or 
report such tautologies. Additionally, whenever two or more 
variables are determined to be equal, one of them is marked 
as canonical. Non-canonical variables are removed from the 
pool of variables to be derived from or analyzed, reducing 
computation time and output size. 

4 USE OF INVARIANTS 

The techniques described in the previous section are suffi- 
cient for rediscovering the known invariants for the Gries 
programs discussed in Section 2. To help determine whether 
and how derived invariants might help a programmer mod- 
ify a program that contains no explicitly-skated invariants, 
we used invariants produced by our engine in evolving a 
program from the Siemens suite [HFG094, RH98]. After 
describing the scenario we went through in modifying this 
program, we discuss some of the factors that make the use of 

invariants qualitatively different from some more traditional 
styles of gathering information about programs. 

The Task 
The Siemens replace program, 563 lines of undocumented C 

code, takes a regular expression and a replacement. string as 
command-line arguments, then copies an input stream to an 
output stream while replacing any substring matched by the 
regular expression with the replacement string. The regular 



. . . 
else if (CargCil == CLOSURE) && (i > start)) 

c 

lj = lastj; 

if (in-set-2(pat Cl jl> > 
done = true; 

else 
stclose(pat, &j, lastj); 

3 
. . . 

Figure 4: Functionmakepat’s use of constant CLOSURE in Siemens 
program replace. 

expression language of replaceincludes Kleene-* closure but 
omits Kleene-+ closure, so we decided that this would be a 
useful extension. 

Performing the Change 
We statically studied the program’s call structure and high- 
level definitions and found that it is composed of a pattern 
parser, a pattern compiler, and a matching engine. To avoid 
modifying the matching engine and to minimize changes to 
the parser, we decided to compile an input pattern of the 
form (pat)+ into the semantically equivalent (pat)(pat)*. 

The initial changes were straightforward and were based on 
informal, static analyses. In particular, simple text searches 
helped us find how ‘* ’ was handled during parsing. We 
mimicked the constant CLOSURE of value ‘* ’ with the con- 
stant PCLOSURE of value ‘+‘, and we made several simple 

changes, such as adding PCLOSURE to internal sets that repre- 
sent special classes of characters (inset-2 and in-pat-set). 

We then studied the use of CLOSURE in makepat, since we 

knew we would have to handle PCLOSURE analogously. The 

basic code in makepat (Figure 4) determines whether the 
next character in the input is CLOSURE; if so, it calls the “star 

closure” function, stclose (Figure 5) under most conditions 
(and the exceptions should not differ for plus closure). We 
duplicated this code sequence, modifying the copy to check 

for PCLOSURE and to call a new function, plclose. Our initial 
body for plclose was a copy of the body of stclose. 

To determine appropriate modifications for plclose, we 
studied &close. Our initial, static study of the program 
determined that the compiled pattern is stored in a 100- 
element array named pat. We speculated that the uses of 
array pat in stclose’s loop manipulate the pattern that is 
the target of the closure operator, adding characters to the 
compiled pattern using the function addstr. 

We wanted to verify that the loop was indeed entered on 
every call to stclose. The loop’s exit condition says the 
loop would not be entered if *j were equal to lastj, so 
we examined the invariants inferred for them on entry to 
stclose:’ 

*j 1 2 

lastj 1 0 

lastj 5 *j 

The third invariant implies that the loop body may not be 

'For this scenario, our system extracted invariants at the beginning 
and end of all procedures in the program, using as input 100 randomly 
selected test cases from those provided with the Siemens suite, 

void stclose(pat, j, lastj) 
char *pat ; 

int *j; 
int lastj; 

c 
int jt; 
int jp; 
boo1 junk ; 

for (jp = *j - I; jp >= lastj ; jp--1 

c 
jt = jp + CLOSIZE; 

junk = addstr(patCjp1 , pat, &jt, MAXPAT) ; 

3 

*j = *j + CLOSIZE; 
pat [last j] = CLOSURE; 

3 

Figure 5: Function stclose in Siemens program replace. 

executed (if lastj = *j, then jp is initialized to lastj-l), 
which was inconsistent with our initial belief. 

To find the offending values of lastj and *j, we queried the 
trace database for calls to stclose in which lastj = *j, since 

these are the cases when the loop is not entered. (We wrote 
a tool that takes as input a program point and an invariant 
and produces as output the tuples in the execution trace 
database that satisfy -or, optionally, falsify -the invariant 

at that program point.) The query returned several calls in 
which the value of *j is 101 or more, exceeding the size of 
the array pat. We soon determined that, in some instances, 
the compiled pattern is too long, resulting in an unreported 
array bounds error. 

Excluding these exceptional situations, the loop body in 
stclose always executes when the function is called, increas- 
ing our confidence that the loop manipulates the pattern to 
which the closure operator is being applied. To allow us 
to proceed with the Kleene-+ extension without first fix- 
ing this bug, we recomputed the invariants without the test 
cases that caused the improper calls to stclose. 

Studying stclose’s manipulation of array pat (Figure 5) 
more carefully, we observed that the loop index is decre- 
mented, and pat is both read and written by addstr. 
Moreover, the closure character is inserted into the array 
not at the end of the compiled pattern, but at index last j. 
Looking at the invariants for pat, we found pat,,,ig # pat, 

which indicates that pat is always updated. To determine 
what stclose does to pat, we queried the trace database 
for values of pat at the entry and exit of stclose. For 
example: 

Test case: replace ‘lab*” “A” 
values of parameter pat for calls to stclose: 

in value: pat = “cacb” 
out value: pat = “Ca*&’ 

This suggests that the program compiles literals by 
prefixing them with the character c and puts Kleene-* 
expressions into prefix form. (A coauthor who was not 
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void plclose(pat, j, lastj) 
char *pat ; 
int *j; 
int last j ; 

( 
int jt; 
int jp; 
boo1 junk; 

jt = *j; 

addstr(CLOSURE, pat, *j, MAXPAT) ; 
for (jp = lastj; jp < jt; jp++) 

( 
junk = addstr(pat[jpI, pat, j, MAXPAT); 

1 
1 

Figure 6: Function plclose in the extended replace program. 

performing the change independently discovered this fact 

through careful study of the program text.) The negative 
indexing and assignment of * into position lastj moves the 
closed-over pattern rightward in the array to make room 
for the prefix *. For a call to plclose the result for the 

above test case should be cacb*cb, which would match one 

or more instances of character b rather than zero or more. 
This is a simple copy of the previous pattern, rather than 
a rightward shift, so the resulting implementation can be a 
bit simpler. After figuring out what addstr is doing with 
the address of the index passed in (it increments the index 
unless the array bound is exceeded), we converged on the 
version of plclose in Figure 6. 

To check that the modified program does not violate in- 

variants that are still expected to hold, we added test cases 
for Kleene-+ and recomputed the invariants for the modified 
program. As expected, most invariants remained unchanged, 
while some differing invariants verified our program modifi- 
cations. Whereas stclose has the invariant *j = *jorig + 1, 
plclose has the invariant *j 2 *jorig + 2. This difference is 
expected, since the compilation of Kleene-+ replicates the 
entire target pattern, which is two or more characters long 
in its compiled form. 

Invariants for makepat 
We also investigated several invariants discovered for func- 
tion makepat. In determining when stclose is called -to 
learn more about when our new plclose will be called - the 
invariants showed us that parameter start (tested in Fig- 
ure 4) is always 0, and parameter delim, which controls the 
outer loop, is always the null character (character 0). These 
invariants indicated that makepat is used in more specialized 
contexts than we a@icip%ted, saving us considerable effort 
in understanding its role in pattern compilation. 

We had hypothesized that lastj and lj in makepat should 
both always be less than local j (i.e., lastj and lj refer to 
the last generated element of the compiled pattern, whereas 
j refers to the next place to append). Although the invari- 
ants for makepat confirmed this relation over lastj and j, 
no invariant between lj and j was reported. A query on 
the trace database at the exit of makepat returned several 

cases in which j is 1 and lj is 100, which contradicted our 

expectations and prevented us from introducing bugs based 
on a flawed understanding of the code. 

Another inferred invariant was number~of~calls(inset~2) = 

number-of-calls(stclose). Since inset-2 is only called in the 

predicate controlling stclose’sinvocation, the equal number 
of calls indicates that none of the test cases caused inset-2 
to return false. Rather than helping us modify the pro- 
gram, these invariants instead suggest a need to run more 

test cases to expose more of replace’s special-case behavior 
and produce more accurate invariants. 

Discussion 
While the use of dynamically detected invariants was conve- 
nient and effective, everything we learned about. the replace 
program could have been detected via a combination of care- 
ful reading of the code, additional static analyses (includ- 
ing lexical searches), and selected program instrumentation. 
Adding inferred invariants provides several qualitative ben- 
efits that do not accrue from using only these other ap 
proaches. 

First, inferred invariants are a succinct abstraction of a mass 
of data contained in the trace database. The programmer is 
provided with information -in terms of program variables 
at well-defined program points-that captures properties 
that hold across all runs represented in the trace database. 
Although these invariants may not be complete (interesting 
properties may be missed) and some may even be falsified by 
additional executions, they provided substantial insight that 
would be difficult for a programmer to extract manually from 
the database or from the program using traditional means. 

Second, queries against the trace database can help pro- 
grammers delve deeper when unexpected invariants appear 
or when expected invariants do not appear. For example, 
our expectations regarding the preconditions for stclose 
were contradicted by the inferred invariants, and the nec- 
essary information to clarify our intuition was provided by 
supporting data. This not only helped us discover a bug, but 
also helped establish the conditions under which our postu- 
lated invariant holds. This knowledge simplified our task 
because the need for special-case processing inside plclose 
was quickly proven unwarranted. 

Third, queries against the database can also be used to build 

intuition about the source of an invariant. In the scenario, 
for example, these data helped us to determine the format 
of the pat array and the conditions under which the loop in 
stclose is not executed. 

Fourth, inferred invariants provide a suitable basis for the 
programmer’s own, more complex inferences. Because the 

inferred invariants concern observable entities in the pro- 
gram, the programmer can examine the program text or 
perform supporting static analyses to better understand the 
invariants’ implications. For example, we might have liked 

to see an invariant such as, “*j refers to the next place to 
append a character into pat,” but this is at best expensive to 
compute. However, the presence of segeral related invariants 
indicating that *j starts with a 0 value$nd is regularly incre- 
mented by 1 during the compilation of the pattern allowed 
us to ascertain its basic function and quickly determine the 
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higher-level invariant. 

Finally, invariants provide a beneficial degree of serendip- 
ity. Scanning the invariants reveals facts that programmers 
would not have otherwise noticed and almost surely would 
not have thought to check. This ability to draw human at- 

tention to suspicious but otherwise overlooked aspects of the 
code is a powerful advantage of our approach. Programmers 
who know exactly what they are seeking or are attempting 
to verify a specific invariant may not gain as much leverage 
from our techniques. 

No technique can make it possible to evolve systems that 
were previously intractable to change. But our initial, lim- 
ited experience with inferred invariants shows promise in 
simplifying evolution tasks both by conveying additional in- 
formation to the programmer and also by providing the trace 
database as a resource for obtaining other pertinent infor- 
mation. 

5 SCALABILITY 

We ran several simple experiments to determine the costs of 
invariant inference and the stability of the reported invari- 
ants as the test suite increases in size. Based largely on the 
results of these experiments, we also suggest ways to acceler- 
ate inference, improve scalability, and manage the reporting 
of invariants. 

Performance Measurements 
To gain insight on scalability-related issues, we performed 
several measurements of invariant computation over the 
Siemens replace program. Our goal was to identify quanti- 
tative, observable factors that a user can control to manage 
the time and space requirements of the invariant engine. In 
particular, we measured the influence of the number of test 
cases (program runs) and the number of variables in scope at 
an instrumented program point. Because each instrumented 
program point is processed independently, program size af- 
fects invariant detection time only insofar as larger programs 
afford more instrumentation points. 

We ran our experiments on a 450MHz Pentium II. Our pro- 

totype invariant engine is implemented in the interpreted 
language Python [van97]. The engine has not yet been seri- 
ously optimized for time or space, although at one point we 
improved performance by nearly a factor of ten by inlining 

two one-line procedures. In addition to local optimizations 
and algorithmic improvements, use of a compiled language 
such as C could improve performance by another order of 
magnitude or more. 

We instrumented and ran replace on subsets of the 5542 
test cases supplied with the program, including runs over 
500, 1000, 1500, 2000, 2500, and 3000 randomly-chosen test 
inputs, where each set is a subset of the next larger one. 
We also ran over all the test cases, but our prototype im- 

plementation ran out of memory, exceeding 180MB, for one 
program point over 3500 inputs and for another program 
point over 4500 inputs. We could save substantial space by 
using a different data representation or by not storing every 
tuple of values (including every distinct array value) encoun- 
tered by the program, for instance by only retaining certain 
witnesses and counterexampIes, for use by our query tool, to 
properties that we check. 
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Figure 7: Change in invariant detection nmtime versus change 

in number of variables. A least-squares trend line highlights the 

relationship; its R2 value is over .89, indicating good fit. Each 

data point compares inference over two different sets of variables 

at a single instrumentationpoint, for invariant inference over 1000 
programruns. (For 3000 test cases, the graph is similar, also with 

R2 = .89.) If one run has ~1 variables and a runtime of tr, and 

the other has ~2 variables and a runtime of t2, the x axis measures 
% and the y axis measures 2. Doubling the number of variables 

tends to increase runtime by a factor of 2.5, while increasing the 
number of variables fivefold increases runtime by eight times. 

Our system infers invariants over an average of 71 variables 
(6 original, 65 derived; 52 scalars, 19 sequences) per instru- 
mentation point in replace. On average, 1000 test cases pro- 
duce 10,120 samples per instrumentation point, and our sys- 
tem takes 220 seconds to infer the invariants for that point; 
for 3000 test cases there are 33,801 samples and processing 
takes 540 seconds. 

Number of instrumented variables 

The number of variables over which invariants are checked is 

the most important factor affecting invariant detection run- 
time. On average, each of the 20 functions in replace has 5 

parameters (2 of them arrays and the others scalars), and 1 
scalar local variable is in scope at the procedure exit. The 
number of derived variables is difficult to predict a priori 
because it depends on the values of other variables, as de- 
scribed in Section 3. On average, we found that about ten 

variables are derived for each original one; this number is re- 
markably insensitive to the relative numbers of scalars and 
arrays. In all of our statistics, we found that the number of 
scalars or sequences has no more (sometimes less) predictive 
power than the total number of variables. 

Figure 7 plots growth in invariant detection time against 
growth in number of variables. It is difficult to make a 
fair comparison among program points with different sam- 
ple sizes, value distributions, and inferred invariants. There- 
fore, each data point compares inference times for two sets of 
variables at a single instrumentation point. The instrumen- 
tation points are procedure exits; one set of variables is the 
global variables and initial argument values, while the other 
set adds final argument values, local variables, and the re- 
turn value. Our timing-related graphs omit three functions 

whose invariant detection runtimes were under one second, 

because runtime or measurement variations could produce 
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Figure 8: Invariant detection runtime as a function of number 
of test cases (program runs). Each program point is plotted indi- 
vidually, and lines are drawn through some data sets. 

Figure 9: Growth of rnntime with test suite size, plotted against 
number of source variables at a program point. The y axis plots 
slopes of lines in Figure 8. 

inaccurate results. The other absolute runtimes vary from 
4.5 to 2100 seconds, while the number of variables ranges 

from 14 to 230. 

Figure 7 suggests that invariant detection time grows 
quadratically with the number of variables over which in- 
variants are checked. The number of possible binary invari- 
ants (relationships over two variables) is also quadratic in 
the number of variables at a program point. We found that 
binary invariants dominate unary ones in number and cost 
of computation. 

Test suite size 

Test suite size has a somewhat less pronounced effect on in- 
variant detection runtime. Figure 8 plots growth in time 
against growth in number of test cases (program runs) for 
each program point. Most of these relationships are strongly 
linear: nine have R2 above .99, nine others have R2 above .9, 
and five more have R2 above .85. The remaining twelve rela- 
tionships have runtime anomalies of varying severity; usually 
the data points fall on a line, with a single exception. Al- 
though the timings are reproducible, we have not yet isolated 

pairs of values (millions) 

Figure 10: Number of pairs of values is the best predictor of 
nmtime (R2 = .94), but is itself not predictable from (though 
correlated with) number of test inputs and number of variables. 

a cause for these departures from linearity. 

Although runtime is (for the most part) linearly related to 
test suite size, the slopes of these relationships vary consid- 
erably, as can be seen by the divergent lines of Figure 8. 
Figure 9 plots these slopes against the total number of orig- 
inal variables (the variables in scope at the program point). 
When the slopes are plotted against total (original and de- 
rived) variables, or against variables of scalar or sequence 
type, the plot looks very similar: there is no obvious cor- 

relation that predicts the slopes, and thus the growth of 
runtime with test suite size. 

The best independent predictor for runtime is the number of 
pairs of values encountered by the invariant engine; Figure 10 

plots that linear relationship. Unfortunately, the number of 
pairs of values cannot be predicted from the number of test 
cases provided to the instrumented program, which the user 
can directly control. Unsurprisingly, the number of samples 

(number of times a particular program point is executed) is 
linearly related to test suite size (number of program runs). 
The number of distinct values is also well-correlated with the 
number of samples.3 Finally, the number of pairs of values 
is correlated with the number of values, but apparently not 

with the ratio of scalar to sequence variables. 

Invariant stability 
To determine whether the computed invariants tend to sta- 
bilize as test suite size increases, we compared, pairwise, the’ 
invariants detected on replace for different numbers of test 
cases. Figures 11 and 12 chart the number of identical, miss- 
ing, and different invariants detected between two sets of test 
cases, where the smaller is a subset of the larger. Missing 
invariants are invariants that were detected in one of the test 
suites but not in the other. We also separate the differences 
into potentially interesting ones and probably uninteresting 
ones. 

Typical uninteresting invariant differences are the following, 

‘We expected fewer new values to appear in later runs. However, 
repeated array values are rare, and even a test suite of 50 inputs pro- 
duced 600 samples per function on average, perhaps avoiding the high 
distinct-variable-values-per-sample ratio expected with .few inputs. 
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I I Number of test cases I I Number of test cases 

Identical unary 
Missing unary 

Difl 

500 1000 1500 2000 2500 

2101 2254 2293 2314 2310 

96 110 114 112 106 

I feering interesting unary 1 1 
506 

1 1 
338 

1 ( 
295 1 274 1 284 1 

88 58 57 54 52 

uninteresting 1 418 1 280 1 238 220 232 

Identical binarv 1 4881 1 6466 1 6835 6861 6837 
I ------ ~~ I I I I I 

1 Missinn binarv 1 3805 1 2833 1 2 !827 1 2933 1 2831 1 
” 

Differing binary 82 129 135 131 130 

interesting 24 27 21 16 29 

uninteresting 58 102 114 115 101 

Figure 11: Invariant differences versus 3000 test cases. Figure 12: Invariant differences versus 2500 test cases. 

computed at the exit of function putsub when comparing a 
test suite of size 1000 to one of size 3000: 

sl in CO..981 
sl >= 0 

(99 values) 
(96 values) 

i in CO..991 (73 values) 
i in CO..921 (76 values) 

A difference in a bound for a variable is more likely to be 

a peculiarity of the data than a significant difference that 
will change a programmer’s conception of the program’s op- 
eration. The uninteresting category also contains variables 
taking on too few values to infer a more general invariant, 

but for which that set of values differs from one set of runs 
to another. 

We classify all other differences as potentially interesting; for 
example, when comparing a test suite of size 2000 to one of 

size 3000, the following difference is reported at the exit of 
dodash: 

*j >= 2 (105 values) 

*j = 0 (mod 2) (117 values) 

Such differences may be worthy of further study to determine 
their relevance. In some cases, missing invariants may also 
merit closer examination. 

The number of identical unary invariants grows modestly as 
the smaller test suite size increases. Identical binary invari- 
ants show a greater increase, particularly in the jump from 
500 to 1000 test cases. Especially in comparisons with the 
3000 case test set, there are some indications that the num- 
ber of identical invariants is stabilizing, which might indicate 
asymptotically approaching the true set of invariants for a 
program. (We saw this property in the Gries programs in 

Section 2, where we found all the invariants Gries listed.) 

Inversely, the number of differing invariants is reduced as 
the smaller test suite size increases. Both unary and binary 
differing invariants drop off most sharply from 500 to 1000 
test cases; differences with the 3000 case test set then smooth 
out significantly, perhaps stabilizing, while differences with 
the 2500 case test set drop rapidly. Missing invariants follow 
a similar pattern. The dropoff for unary invariants is largely 
due to fewer uninteresting invariants, while the dropoff for 
binary invariants is due to fewer interesting invariants. 

Identical unary 

Missing unary 
Differing unarv 

500 1000 1500 2000 

2129 2419 2553 2612 

125 47 27 14 
442 230 117 73 

interesting 22 1 21 15 13 

uninteresting 87 ) 24 9 6 

For replace and randomly selected test suites, there seems 

to be a knee somewhere between 500 and 1000 test cases: 
that is, the benefit per randomly-selected test case seems 
greatest in that range. Such a result, if empirically validated, 
could reduce the cost of selecting test cases, producing exe- 
cution traces, and computing invariants. 

Figures 11 and 12 paint somewhat different pictures of the 
sensitivity of invariants to the particular test cases over 
which the program is run. Only 2.5% of binary invariants 

detected for the 2000 or 2500 case test suites are not found 
identically in the other, and the number of invariants that 
differ is in the noise, though these are likely to be the most 
important differences. For comparisons against the 2500 test 

case suite, these numbers drop rapidly as the two test suites 
approach the same size. When the larger test suite has size 
3000, more invariants are different or missing, and these 
numbers stabilize quickly. The 3000 case test suite appears 
somewhat anomalous: comparisons with other sizes (includ- 

ing larger test suites, for the functions over which we could 
compute invariants) show more similarity with the numbers 
reported for the 2500 case test suite. Our preliminary in- 
vestigations have not revealed a precise cause for the larger 
differences between the 3000 case test suite and others, nor 
can we accurately predict the sizes of invariant differences; 
further investigation will be required in order to fully under- 
stand these phenomena. 

When we examined invariant differences by hand, we dis- 
covered that many of them result from different values for 
pointers and uninitialized array elements. For example, the 
minimum value found in an array might be -128 in one set 

of runs and -120 in another, even though the array should 
contain only (nonnegative) characters. Other nonsensical 
values, such as the sum of the elements of a string, also ap- 
peared frequently in differing invariants. Important future 
directions of research will include reporting, or directing the 
user to, more relevant invariants and determining which in- 
variant differences are significant and which can be safely 
ignored. 

Improvements to the Approach 

There are potentially large numbers of program points to in- 
strument, variables to examine at each point, and invariants 
to check over those variables. We have identified ways to mit- 
igate this combinatorial blowup in instrumentation output 
size, inference time, and number of results. The techniques 
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generally trade off the time spent on inference against the 
precision of the discovered invaria.nts, possibly under pro- 
grammer control. 

The granularity of instrumentation affects the amount of 
data gathered and thus the time required to process it. In- 
ferring loop invariants or relationships among local vari- 
ables can require instrumentation at loop heads, at func- 
tion calls, or elsewhere, whereas determining properties of 
global variables or other large-scale structures does not re- 

quire so many instrumentation points; perhaps module entry 
and exit points would be sufficient. When only a part of the 
program is of interest, the whole program need not be in- 
strumented; we often computed invariants over just a single 
procedure. The choice of variables instrumented at each pro- 
gram point also affects inference performance. When some 
are not of interest, they can be skipped, and variables that 
cannot have changed since the last instrumentation point 
may not need to be reexamined. Finally, supplying fewer 
test cases results in faster runtimes at the risk of less precise 
output. 

The inference engine can be directly sped up by checking for 
fewer invariants; this is particularly useful when a program- 
mer is focusing on part of the program and is not interested 
in certain kinds of properties (say, transcendental arithmetic 
functions). Derived variables can likewise be throttled to 
save time or increased to provide more extensive coverage. 
More complicated derived variables may be added for com- 
plex expressions that appear in the program text; derived 
variables or invariants may also involve functions defined in 
the program. Type analysis can indicate which variables are 

incomparable, even if they have the same type in the pro- 
gramming language [OJ97]; our prototype does not use even 
the types present in the source code to prevent nonsensical 
comparisons. 

User Interface 
A large data set and large number of derived invariants can 
be overwhelming. We have already developed a tool that 
retrieves the variable-value tuples that satisfy or falsify an 
invariant. There are also several ways to improve the pre- 
sentation of invariants themselves. 

To control the number of displayed invariants, a text edi- 
tor could provide a list of invariants for the variable under 
the cursor. Programmers could also be permitted to filter 
out classes of invariants (e.g., array relationships). Stati- 
cally obvious invariants (such as x = y + 1 immediately after 
x:=y+l) could be filtered. Presenting invariants on demand 
naturally permits computing the invariants on demand, pos- 
sibly avoiding delays for the computation of unneeded in- 
variants. Users should be permitted to declaratively specify 
additional relations and derived variables for analysis. 

Ordering the reported invariants according to category or 
predicted usefulness could also help a programmer find a 
relevant invariant more quickly. Our invariant differencing 
tool can indicate how a program change has affected the 
computed invariants. 

6 RELATED WORK 

Dynamic Inference 
The research most directly related to ours uses inductive 

logic programming (ILP) [Qui90, Coh94] to construct Horn 
clause loop invariants from variable values on particular loop 
executions [BG93]. This variety of ILP requires counterex- 
amples (which are not available in our domain) and back- 
ground knowledge, and the resulting relations typically mis- 

classify portions of the training set. (Our approach charac- 
terizes the training set perfectly; either approach can mis- 
classify additional data.) Other AI approaches like neural 
nets can predict results but have little explicative power. 
Traditionally, machine learning attempts to learn a function 
over n-l variables producing the 72th or to classify examples 
into specified categories, neither of which is directly appli- 
cable to our problem [Mit97]. However, we believe that gen- 
eralizing these techniques, or applying them to subproblems 
of our task, can be fruitful. 

Other dynamic analyses that examine progra:m executions 
are used for software tasks from testing to debugging. Pro- 
gram spectra (specific aspects of program runs, such as event 

traces, code coverage, or outputs) [RBDL97, HRWY98] can 
reveal differences in inputs or program versions. Other re- 
searchers use event traces, which describe the sequence of 
events in a possibly concurrent system, to produce a finite 

state machine generating the trace [BG97, And98, CW98a, 
CW98b]. 

Static Inference 
Static analyses operate on the program text, not on par- 
ticular test runs, and are typically sound but conservative. 
As a result, properties they report are true for any program 
run, and theoretically they can detect all sound invariants if 
run to convergence [CC77]. (Static analyses will miss true 

but uncomputable properties and properties that depend on 
how the program is used, including properties of its inputs; 
dynamic techniques can detect both varieties.) Some pro- 
gram understanding tools have taken this abstract interpre- 

tation/dataflow approach [GC96, JH98]. In practice, static 
analyses are limited by uncertainty about properties beyond 
their capabilities and by the high cost of modeling program 
states. For instance, accurate alias analysis is still beyond 
the state of the art, so many static checkers must give up 
in the face of pointer manipulation. The ease of dynam- 
ically checking some such properties makes static and dy- 
namic techniques complementary. 

Considerable research has addressed checking formal speci-, 
fications [DC94, EGHT94, Det96, Eva96, NCOD97, LN98, 
JvHt98, Pfe92]; this work could be used to verify likely in- 
variants discovered dynamically. Determining what prop- 
erty to check is considered harder than checking it [Weg74, 
BLS96]; our goal is the discovery of such properties from a 
broad class of possible ones. 

Variable types are a variety of formal specification and doc- 
umentation. Type inference extends partial type annota- 
tions to full ones; similarly, Givan [Giv96] extends speci- 
fications on the inputs of a procedure to its output, and 
ADDS [HHN92, GH96] propagates data structure shape 
descriptions through a program. Some formal proof sys- 
tems generate intermediate assertions for help in prov- 

ing a given goal formula by propagating known invari- 
ants forward or backward in the program [Weg74, GW75, 
KM76, DB84, BBM97]. In the case of array bounds check- 
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ing [SI77, Gup90, KW95, NL98, XP98], the desired property 
is obvious. 

The Illustrating Compiler heuristicany detects the abstract 
datatype implemented by a collection of concrete oper- 
ations [HWFSO], while ReForm semi-automatically trans- 
forms, by provably correct steps, a program into a speci- 
fication [War96]. Other related work includes staging and 
binding-time analyses, which determine invariant or semi- 
invariant values for use in partial evaluation [JGS93]. 

7 CONCLUSIONS 
This paper documents the feasibility and effectiveness of dis- 
covering program invariants based on execution traces. Our 
technique automatically detected all the stated invariants in 
a set of formally-specified programs, and the invariants de- 
tected in a real C program proved useful in a software evolu- 
tion task. The techniques we have developed, along with the 
prototype implementation, are adequately fast when applied 
to programs of several hundred lines. 

Acting as our own users was advantageous in the initial 
phases of this research. Working on evolution tasks with 

programs that we did not write gave us insights into the 
strengths and weaknesses of the techniques, the tool, and 
the overall approach. Moreover, we found that the use of dy- 
namically inferred invariants qualitatively affected our pro- 
gramming, encouraging us to think in terms of invariants in 
situations that we might otherwise not have. 

With a variety of performance improvements, including user- 
directed indications of instrumentation points and variables 
of interest, the approach should be applicable to the evo- 

lution of larger systems. More sophisticated invariants will 
also be required; a few of the most critical are invariants 
over pointer-based data structures such as trees, predicated 
invariants (if condition then invariant), and disjunctions (p 

= NULL or *p > i). We will need to assess the enhanced 
technology by having programmers apply it to larger, more 
complicated programming tasks. 

Dynamically inferred invariants can be used in many sit- 
uations that statically-supplied invariants can, and in some 
cases the application of dynamic ones may be more effective. 
For instance, dynamic invariants form a program spectrum, 
changes to which can indicate properties of a changed pro- 
gram or input. They may assist in test case generation and 
can also validate a test suite; invariants in the resulting pro- 
gram runs can indicate insufficient coverage of program val- 
ues, even if every line is executed at least once. A nearly-true 
invariant may indicate a bug or special case that should be 
brought to the programmer’s attention. Discovered invari- 
ants can be inserted into a program as assert statements to 
further test the invariant or to ensure that detected invari- 
ants are not later violated as code evolves. They can also 

double-check existing documentation or assert statements. 
Invariants could augment the low-level execution informa- 
tion used in profile-directed compilation with higher-level 
program properties, permitting better optimization for the 
common case. Detected invariants could also bootstrap or 
direct a (manual or automatic) correctness proof. 
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