
Dynamically Discovering Likely Program Invariants

to Support Program Evolution

Michael D. Ernst+, Jake CockrelIt, William G. Griswoldt, and David Notkint

+Dept. of Computer Science & Engineering
University of Washington

Box 352350, Seattle WA 98195-2350 USA
+l-206-543-1695

{mernst,jake,notkin}@cs.washington.edu

ABSTRACT
Explicitly stated program invariants can help programmers
by identifying program properties that must be preserved
when modifying code. In practice, however, these invari-
ants are usually implicit. An alternative to expecting pro-

grammers to fully annotate code with invariants is to au-
tomatically infer invariants from the program itself. This
research focuses on dynamic techniques for discovering in-
variants from execution traces.

This paper reports two results. First, it describes techniques
for dynamically discovering invariants, along with an instru-
menter and an inference engine that embody these tech-
niques. Second, it reports on the application of the engine
to two sets of target programs. In programs from Gries’s
work on program derivation, we rediscovered predefined in-
variants. In a C program lacking explicit invariants, we dis-
covered invariants that assisted a software evolution task.

Keywords
Program invariants, formal specification, software evolution,
dynamic analysis, execution traces, logical inference, pattern
recognition

1 INTRODUCTION

Invariants play a central role in program development. Rep-
resentative uses include refining a specification into a cor-
rect program, static verification of invariants such as type
declarations, and runtime checking of invariants encoded as
assert statements.

Invariants play an equally critical role in software evolution.
In particular, invariants can protect a programmer from
making changes that inadvertently violate assumptions upon
which the program’s correct behavior depends. The near ab-
sence of explicit invariants in existing programs makes it all
too easy for programmers to introduce errors while making
changes.

An alternative to expecting programmers to annotate code
with invariants is to automatically infer invariants. In this
research, we focus on the dynamic discovery of invariants:

we execute a program on a collection of inputs and extract

Permission to m&e digital or hard topics of all or part orthis work co1
personal or classroom USC is granted without fee provided that COPiCs
are ,,ot In;,& or distributed for profit or commercial advantage and that
copies hear this notice and the full citation 011 the first page. To WJY
other\visc, to republish, to post on servers nr to rcdistrihute to lists.

requires prior specific permission and/or B t’w.

ICSE ‘9’) Los Angcks C’A
Copyright ACM 1999 l-581 13-074-0/99/05...@.00

*Dept. of Computer Science & Engineering
University of California San Diego, 0114

La Jolla, CA 92093-0114 USA
+l-619-534-6898
wggOcs.ucsd.edu

variable values from which we then infer invariants. As with
other dynamic approaches such as testing and profiling, the
accuracy of the inferred invariants depends on the quality
and completeness of the test cases; additional test cases
might provide new data from which more accurate invari-

ants can be inferred. This approach is complementary to
static approaches, which examine the program text but do
not run the program.

This paper presents two related results stemming from our

initial experiences with this approach. Our first result is
a set of techniques, and an implementation, for discovering
invariants from execution traces (Section 3).

Our second result is the application of our inference engine
to two sets of target programs. The first set of programs,
taken from The Science of Programming [GriBl], was derived
from formal preconditions, postconditions, and loop invari-
ants. Given runs of the program over randomly-generated
inputs, our techniques discover those same program proper-
ties, plus some additional ones (Section 2). The second set of
programs - C programs, originally from Siemens [HFG094],
and modified by Rothermel and Harrold [RH98] -is not an-
notated with invariants, nor is there any indication that in-
variants were used in their construction. Section 4 shows
how numeric invariants dynamically inferred from one of
these programs assisted in understanding and changing it.

Section 5 presents performance measurements and discusses
techniques for mitigating combinatorial blowups and oth-
erwise improving runtime performance. Section 6 surveys
related work, and Section 7 concludes.

2 REDISCOVERY OF INVARIANTS

To introduce our approach and illustrate the output of our
tool, we present the invariants detected in a simple pro-
gram taken from The Science of Program,ming [Gri81], a
book that espouses deriving programs from specifications.
Unlike typical programs, for which it may be difficult to de-
termine the desired output of invariant detection, many of
the book’s programs include preconditions, postconditions,
and loop invariants that embody important properties of
the computation. Our invariant detector successfully reports
all the formally-specified preconditions, postconditions, and
loop invariants in chapters 14 and 15 of the book (chapter
14 is the first in which such programs appear).

As a simple example, consider a program that sums the el-
ements of an array (Figure 1). We transliterated this pro-
gram to a dialect of Lisp enhanced with Gries-style control

213

i,s := 0,o;
doi#n+

i, 9 := i + 1, s + b[i]

od

Precondition: n 2: 0
Postcondition: s = (c j : 0 5 j < II : bL])
Loop invariant: 0 2 i 5 n and s = (cj : 0 5 j < i : bb])

Figure 1: Gries program 15.1.1 [Gri81, p. 1801 and its formal

specification. The program sums the values in array b (of length
n) into result variable s. The statement i, s := 0,O is a parallel

(simultaneous) assignment of the values on the right-hand side of
the := to the variables on the left-hand side. The do-od form

repeatedly evaluates the condition on the left-hand side of the +

and, if it is true, evaluates the body on the right-hand side; the
form terminates when the condition evaluates to false.

constructs. Our instrumenter (Section 3) added code that

writes variable values into a data trace file; this code was
automatically inserted at the beginning of the program, at

the loop head, and at the end of the program. We ran this
program on 100 randomly generated arrays of length 7 to 13,
in which each element was a random number in the range
-100 to 100, inclusive. Figure 2 shows the output of our
invariant detector given the data trace file.

The precondition (BEGIN) inferences record the relationship

between N and the length of array B (which is crucial to
the correctness of the program but omitted from the formal
invariants), the range of values for N appearing in the test
cases, and that the test case array elements were always at
least -100.

The postcondition (END) inferences include the basic invari-
ant of Gries, S = sum(B); Section 3 describes inference over
functions such as sum. In addition, the engine discovered

that N and B remain unchanged.

The inferred loop (LOOP) invariants include those of
Gries (since i is an integer, i E [0..13] is shorthand for
i 2 0 and i 5 13), along with several others. For instance,

these additional invariants bound the maximum value of the
array elements, in addition to the minimum value noted in
the precondition invariants. Inference of these bounds is con-
trolled by our statistical rules for det,ermining invariants and
by the vagaries of the actual input data; more samples tend

to give more confidence in the bounds. Section 3 discusses
these and other phenomena related to the extra invariants,
including negative invariants.

3 INVARIANT DETECTION ENGINE

We detect invariants from program executions by instru-
menting the source program to trace the variables of interest,
running the instrumented program over a set of test cases,
and inferring invariants over both the instrumented variables
and derived variables that are not manifest in the original
program.

Instrumentation

The goal of instrumentation is to capture the values of vari-
ables so that patterns can be detected among those values.
The two primary decisions are selecting the program points
at which to insert instrumentation and selecting the vari-

15.1.1:::BEGIN 100 samples

N = size(B)

N in [7..131

B

All elements >= -100

15.1.1:::END 100 samples
N=I= N-orig = size(B)

B = B-orig

S = sum(B)

N in [7..131

B

All elements >= -100

15.1.1:::L00P 1107 samples

N = size(B)

S = sum(B CO. . I-l] >

N in [7..131

B

All elements in C-100.. 1001

I in CO..131

sum(B) in C-556. .5391

B CO] nonzero in C-99. :961

BC-11 in [-88..991

BCO. .I-11

All elements in C-100.. 1001

I <= N

Negative invariants :
N != BE-11
BCO] != B[-11

(7 values)
(7 values)
(100 values)
(200 values)

(7 values)

(100 values)
(96 values)
(7 values)
(100 values)
(200 values)

(7 values)
(96 values)
(7 values)
(100 values)
(200 values)
(14 values)

(96 values)
(79 values)
(80 values)
(985 values)

(200 values)
(77 values)

(99 values)
(100 values)

Figure 2: Invariants inferred for Gries program 15.1.1 over 100

randomly generatedinput arrays. Invariants are shown for the be-

ginning (precondition) and end (postcondition) of the program,

as well as the loop head (the loop invariant). BC-11 is shorthand

for BCsize(B)-II, the last element of array B, and var-origrepre-

sents VU’S value at the start of execution. Invariants for elements
of an array are listed indented under the array; in this example,
no array has multiple elementwise invariants.

ables to examine at those points.

Our prototype instruments procedure entry and exit points

and loop heads. At these points, it writes to a file the values
of all variables in scope, including global varia.bles, proce-
dure arguments, local variables, and the procedure’s return

value. Instrumenting is much faster than compilation. For
the relatively small, compute-bound programs we have ex-
amined so far, the instrumented code can be slowed down
by more than an order of magnitude because the programs
become I/O-bound. We have not yet optimized trace file
size or writing time; another approach would be to perform
invariant checking online rather than writing variable values
to a file.

For every instrumented program point, the trace file contains
a list of sets of values, one value per instrumented variable.
For instance, if procedure p has two formal parameters, is
in the scope of three global variables, and is called twelve
times, then when computing a precondition for :p the invari-
ant engine would be presented a list of twelve elements, each
element being a set of five variable values (one for each visible
variable). A separate boolean variable tracks initialization

214

state for each original program variable.

We have implemented instrumenters for programs written in
Lisp and C/C++ (the C/C++ instrumenter currently does
not instrument loop heads). Instrumentation is conceptually
simple, but requires care in practice. It can be difficult to de-

termine the size of (the valid data of) an array passed to a C
procedure, or even whether a pointer refers to a single vari-
able or to an element of an array. We hand-annotated the C
programs with the lengths of arrays or with the information

that the arrays are null-terminated (as strings are). The C
instrumenter uses this information to avoid walking off the
ends of arrays. A static or dynamic analysis may be able to
determine many of these types for C programs, and many

other languages make this information manifest at compile
time or run time. It also outputs values both as pointer ad-
dresses and as contents (single elements or entire arrays), to
permit both pointer comparisons and comparisons over the
underlying values.

Test suite
Invariant discovery requires use of a test suite, which is also
necessary for tasks like testing, debugging, and profiling. A
single test suite may not be ideal for all tasks. Some test

suites are crafted to be as small as possible while still achiev-
ing complete code coverage. Invariant detection requires re-
peated execution of each instrumentation point, because no
statistically valid inferences can be made about the distribu-
tion of values based on just a few samples. We have obtained
good results so far by using pre-existing test suites; for an
example, see Section 4.

Inferring invariants

The invariant detector, when provided with the output of an
instrumented program, lists the invariants detected at each
instrumented program point. These invariants may involve
a single variable (a constraint that holds over its values) or

multiple variables (a relationship among the values of the
variables). Our system checks for the following invariants,
among others (z, y, and z are variables, and a, lo, and c are
computed constants):

any variable: constant value or small number of values
numeric variable: range (a < x 5 b), modulus
(x 3 a (mod b)), nonmodulus (x $ a (mod b))

multiple numbers: linear relationship (such as
x = ay + bz + c), functions (including all those in the
standard library, such as x = abs(y) or x = max(y,z)),

comparisons (x < y, x 2 y, x = y), invariants over z + y
and x - y
sequence: sortedness, invariants over all elements (e.g.,
every element < 100)
multiple sequences: subsequence relationship, lexico-
graphic comparison
sequence and scalar: membership

We produced this list incrementally, starting with invariants
that seemed basic and natural, then adding invariants we
found helpful in analyzing the Gries programs (Section 2)
and which we believed would be generally useful. The list
does not include all the invariants that we think program-
mers will find useful. For instance, we do not yet follow
arbitrary-length paths through recursive data structures.
However, we successfully detected many invariants that oc-

cur in the Siemens suite (Section 4).

For each variable or tuple of variables, each potential invari-
ant is tested. As soon as an invariant is determined not to
hold, it is not checked for the remainder of the values taken
on by the variable(s). Thus, the cost of computing invariants

tends to be proportional to the number of invariants discov-
ered (see also Section 5). The invariants listed above are
inexpensive to test and do not require full-fledged theorem-
proving. For example, the linear relationship x = ay + bz + c
with unknown coefficients a, b, and c and variables x, y, and
z has three degrees of freedom. Consequently, three tuples
of values for x, y, and z are sufficient to infer the possible
coefficients. As another example of inexpensive checking, a
common modulus (variable b in x E a (mod b)) is the great-
est common divisor of the differences among list elements.

Negative invariants
Negative invariants are relationships that might be expected
to occur but were never observed in the input. We compute
the probability that such a property would not appear in a
random input; if this probability is sufficiently small, then
the property is reported as possibly non-coincidental. For
example, if the reported values for variable 2 fit in a range

of size I that includes 0, the probability that a single instance
of x is not 0 is 1 - ;. (We make the simplifying assump-
tion of a uniform distribution of values; essentially, we are
testing this assumption. Much of our tool can be viewed

as statistical tests of hypothesized distributions for variable
values.) Given TJ reported values, the probability that x is
never 0 is (1 - $)V; if this is less than a user-defined con-
fidence level, then the negative invariant x # 0 is reported;

x # y and (non)modulus tests are analogous.

Ranges for numeric variables (such as c E [32..126] or
x > 0) are also not reported unless they appear to be non-
coincidental. In particular, a limit is reported if the several

values near the range’s extrema all appear about as often as
would be expected, or if the extremum appears much more
often than would be expected (as if greater or lesser values
have been clipped to that value).

In Figure 2, negative invariants are reported for the loop
head, but not for the beginning or end of the procedure,
where the 100 samples were insufficient to support any in-
equality inferences.’ Similarly, the elements of array B were
bounded from above and below at the loop head, but only
from below (as being at least -100) at procedure entry and
exit. The random distribution of array elements happened
to support only one boundedness inference for 100 samples;
on another run over a similarly small set of test cases, only

the upper bound, neither bound, or both bounds might be
inferred.

For the purposes of this paper-in part, to demonstrate
spurious negative invariants like those of Figure 2 -we set
the probability limit to .Ol. For actual use we recommend a
substantially smaller value: if the system checks millions of
potential invariants, reporting thousands of false positives is

‘The values over which inequalities are inferred in the loop head
are the same as the values at procedure entry and exit. However, the
loop head is executed more times. We plan to enhance the imple-
mentation so that loop iterations do not incorrectly add support for
values unchanged by the loop.

215

15.1.1:::BEGIN 100 samples
N = size(B)
N >= 0

(24 values)
(24 values)

15.1.1:::END 100 samples

B = B-orig
N = I = N-orig = size(B)

S = sum(B)
N >= 0

(96 values)

(24 values)
(95 values)
(24 values)

15.1.1:::LOOP 986 samples

N = size(B) (24 values)

S = sum(B[O..I-11) (95 values)

B (96 values)

All elements in [-6005..76801 (784 values)
N in CO..351 (24 values)

I >= 0 (36 values)

sum(B) in C-15006. .211441 (95 values)

B[O. .1-l] (887 values)
All elements in C-6005..7680] (784 values)

I <= N (363 values)

Figure 3: Invariants inferred for Gries program 15.1.1 over an

input set whose array lengths and element values were chosen from
exponential rather than uniform distributions, as in Figure 2.

likely to be unacceptable.

A sufficiently strong static analysis can reveal useful invari-
ants that are universally true of a function, no matter how it
is used. A whole-program analysis provides stronger prop-
erties (that is, properties that logically imply those true of
the function in isolation) about the function’s execution that
depend on the context in which it is called. Our system re-
ports yet stronger invariants that depend on the data sets
over which the program was run.

The invariants of Figure 2 include several not noted by Gries.
These extra invariants are not merely artifacts of our tech-

nique; rather, they provide valuable information about the
data set, such as variable ranges. This information can help
validate a test suite or indicate the contexts in which a func-
tion or other computation is used. Figure 3 shows the result
of running our system on a different set of 100 arrays; the

output is almost precisely the Gries invariants.

Derived variables
In addition to manifest variables explicitly passed to the en-
gine, we need to compute relations over non-manifest quan-
tities. For instance, if array a and integer Iasti are both
in scope, then a[lastil may be of interest, even if that ex-
pression does not appear in the program text.

Therefore, we add certain “derived variables” (actually ex-

pressions) to the list of variables given to the engine as input.
These derived variables include the following:

l from any array: first and last elements, length
l from numeric array: sum, min, max
l from array and scalar: element at that index (a[il),

subarray up to, and subarray beyond, that index (e.g.,
aC0.. i-11)

l from function invocation: number of calls so far

Derived variables are treated just like other variables by the

216

inference engine.

Derived variables permit the engine to infer invariants that
are not hard-coded into its list. For instance, if len(A) is
derived from array A, then the engine can determine that
i < len(A) without hardcoding a less-than comparison check

for the caSe of a scalar and the length of an array. In this
manner, the implementation can report compound relations
that we did not necessarily anticipate.

Many possible derived variables are not of general interest.
For example, we do not want to run a battery o-f tests on zy
for every 2: and y, much less compute az + b for every vari-
able 2 and constant a and b. Moreover, each new variable
introduces costs of checking invariants over it. We also take

care not to introduce arbitrarily many new variables when
deriving variables from derived variables, by halting deriva-
tion after a fixed number of iterations and by mechanisms
described below.

Staged derivation and inference
Both variable derivation and invariant inference can avoid
unnecessary work by examining previously-computed invari-
ants. Therefore, derived variables are not introduced until
invariants have been computed over previously-existing vari-
ables, and derived variables are introduced in stages rather
than all at once. For instance, for array A, the derived vari-
able lencA) is introduced and invariants are computed over

it before any other variables are derived from A. If it is de-
termined that j >_ len(A), then there is no sense in creating
the derived variable A[j]. When a derived variable is only
sometimes sensible, as when j is only sometimes a valid in-
dex to A, no further derivations are performed over A[jl.

Likewise, A[0 . . lenCA)-11 is identical to A, so it need not be
derived.

Derived variables are guaranteed to have certain relation-
ships with other variables; for instance, ALO] is a member of
A, and I is the length of ACO. . I-11. We do not compute or
report such tautologies. Additionally, whenever two or more
variables are determined to be equal, one of them is marked
as canonical. Non-canonical variables are removed from the
pool of variables to be derived from or analyzed, reducing
computation time and output size.

4 USE OF INVARIANTS

The techniques described in the previous section are suffi-
cient for rediscovering the known invariants for the Gries
programs discussed in Section 2. To help determine whether
and how derived invariants might help a programmer mod-
ify a program that contains no explicitly-skated invariants,
we used invariants produced by our engine in evolving a
program from the Siemens suite [HFG094, RH98]. After
describing the scenario we went through in modifying this
program, we discuss some of the factors that make the use of

invariants qualitatively different from some more traditional
styles of gathering information about programs.

The Task
The Siemens replace program, 563 lines of undocumented C

code, takes a regular expression and a replacement. string as
command-line arguments, then copies an input stream to an
output stream while replacing any substring matched by the
regular expression with the replacement string. The regular

. . .
else if (CargCil == CLOSURE) && (i > start))

c

lj = lastj;

if (in-set-2(pat Cl jl> >
done = true;

else
stclose(pat, &j, lastj);

3
. . .

Figure 4: Functionmakepat’s use of constant CLOSURE in Siemens
program replace.

expression language of replaceincludes Kleene-* closure but
omits Kleene-+ closure, so we decided that this would be a
useful extension.

Performing the Change
We statically studied the program’s call structure and high-
level definitions and found that it is composed of a pattern
parser, a pattern compiler, and a matching engine. To avoid
modifying the matching engine and to minimize changes to
the parser, we decided to compile an input pattern of the
form (pat)+ into the semantically equivalent (pat)(pat)*.

The initial changes were straightforward and were based on
informal, static analyses. In particular, simple text searches
helped us find how ‘* ’ was handled during parsing. We
mimicked the constant CLOSURE of value ‘* ’ with the con-
stant PCLOSURE of value ‘+‘, and we made several simple

changes, such as adding PCLOSURE to internal sets that repre-
sent special classes of characters (inset-2 and in-pat-set).

We then studied the use of CLOSURE in makepat, since we

knew we would have to handle PCLOSURE analogously. The

basic code in makepat (Figure 4) determines whether the
next character in the input is CLOSURE; if so, it calls the “star

closure” function, stclose (Figure 5) under most conditions
(and the exceptions should not differ for plus closure). We
duplicated this code sequence, modifying the copy to check

for PCLOSURE and to call a new function, plclose. Our initial
body for plclose was a copy of the body of stclose.

To determine appropriate modifications for plclose, we
studied &close. Our initial, static study of the program
determined that the compiled pattern is stored in a 100-
element array named pat. We speculated that the uses of
array pat in stclose’s loop manipulate the pattern that is
the target of the closure operator, adding characters to the
compiled pattern using the function addstr.

We wanted to verify that the loop was indeed entered on
every call to stclose. The loop’s exit condition says the
loop would not be entered if *j were equal to lastj, so
we examined the invariants inferred for them on entry to
stclose:’

*j 1 2

lastj 1 0

lastj 5 *j

The third invariant implies that the loop body may not be

'For this scenario, our system extracted invariants at the beginning
and end of all procedures in the program, using as input 100 randomly
selected test cases from those provided with the Siemens suite,

void stclose(pat, j, lastj)
char *pat ;

int *j;
int lastj;

c
int jt;
int jp;
boo1 junk ;

for (jp = *j - I; jp >= lastj ; jp--1

c
jt = jp + CLOSIZE;

junk = addstr(patCjp1 , pat, &jt, MAXPAT) ;

3

*j = *j + CLOSIZE;
pat [last j] = CLOSURE;

3

Figure 5: Function stclose in Siemens program replace.

executed (if lastj = *j, then jp is initialized to lastj-l),
which was inconsistent with our initial belief.

To find the offending values of lastj and *j, we queried the
trace database for calls to stclose in which lastj = *j, since

these are the cases when the loop is not entered. (We wrote
a tool that takes as input a program point and an invariant
and produces as output the tuples in the execution trace
database that satisfy -or, optionally, falsify -the invariant

at that program point.) The query returned several calls in
which the value of *j is 101 or more, exceeding the size of
the array pat. We soon determined that, in some instances,
the compiled pattern is too long, resulting in an unreported
array bounds error.

Excluding these exceptional situations, the loop body in
stclose always executes when the function is called, increas-
ing our confidence that the loop manipulates the pattern to
which the closure operator is being applied. To allow us
to proceed with the Kleene-+ extension without first fix-
ing this bug, we recomputed the invariants without the test
cases that caused the improper calls to stclose.

Studying stclose’s manipulation of array pat (Figure 5)
more carefully, we observed that the loop index is decre-
mented, and pat is both read and written by addstr.
Moreover, the closure character is inserted into the array
not at the end of the compiled pattern, but at index last j.
Looking at the invariants for pat, we found pat,,,ig # pat,

which indicates that pat is always updated. To determine
what stclose does to pat, we queried the trace database
for values of pat at the entry and exit of stclose. For
example:

Test case: replace ‘lab*” “A”
values of parameter pat for calls to stclose:

in value: pat = “cacb”
out value: pat = “Ca*&’

This suggests that the program compiles literals by
prefixing them with the character c and puts Kleene-*
expressions into prefix form. (A coauthor who was not

217

void plclose(pat, j, lastj)
char *pat ;
int *j;
int last j ;

(
int jt;
int jp;
boo1 junk;

jt = *j;

addstr(CLOSURE, pat, *j, MAXPAT) ;
for (jp = lastj; jp < jt; jp++)

(
junk = addstr(pat[jpI, pat, j, MAXPAT);

1
1

Figure 6: Function plclose in the extended replace program.

performing the change independently discovered this fact

through careful study of the program text.) The negative
indexing and assignment of * into position lastj moves the
closed-over pattern rightward in the array to make room
for the prefix *. For a call to plclose the result for the

above test case should be cacb*cb, which would match one

or more instances of character b rather than zero or more.
This is a simple copy of the previous pattern, rather than
a rightward shift, so the resulting implementation can be a
bit simpler. After figuring out what addstr is doing with
the address of the index passed in (it increments the index
unless the array bound is exceeded), we converged on the
version of plclose in Figure 6.

To check that the modified program does not violate in-

variants that are still expected to hold, we added test cases
for Kleene-+ and recomputed the invariants for the modified
program. As expected, most invariants remained unchanged,
while some differing invariants verified our program modifi-
cations. Whereas stclose has the invariant *j = *jorig + 1,
plclose has the invariant *j 2 *jorig + 2. This difference is
expected, since the compilation of Kleene-+ replicates the
entire target pattern, which is two or more characters long
in its compiled form.

Invariants for makepat
We also investigated several invariants discovered for func-
tion makepat. In determining when stclose is called -to
learn more about when our new plclose will be called - the
invariants showed us that parameter start (tested in Fig-
ure 4) is always 0, and parameter delim, which controls the
outer loop, is always the null character (character 0). These
invariants indicated that makepat is used in more specialized
contexts than we a@icip%ted, saving us considerable effort
in understanding its role in pattern compilation.

We had hypothesized that lastj and lj in makepat should
both always be less than local j (i.e., lastj and lj refer to
the last generated element of the compiled pattern, whereas
j refers to the next place to append). Although the invari-
ants for makepat confirmed this relation over lastj and j,
no invariant between lj and j was reported. A query on
the trace database at the exit of makepat returned several

cases in which j is 1 and lj is 100, which contradicted our

expectations and prevented us from introducing bugs based
on a flawed understanding of the code.

Another inferred invariant was number~of~calls(inset~2) =

number-of-calls(stclose). Since inset-2 is only called in the

predicate controlling stclose’sinvocation, the equal number
of calls indicates that none of the test cases caused inset-2
to return false. Rather than helping us modify the pro-
gram, these invariants instead suggest a need to run more

test cases to expose more of replace’s special-case behavior
and produce more accurate invariants.

Discussion
While the use of dynamically detected invariants was conve-
nient and effective, everything we learned about. the replace
program could have been detected via a combination of care-
ful reading of the code, additional static analyses (includ-
ing lexical searches), and selected program instrumentation.
Adding inferred invariants provides several qualitative ben-
efits that do not accrue from using only these other ap
proaches.

First, inferred invariants are a succinct abstraction of a mass
of data contained in the trace database. The programmer is
provided with information -in terms of program variables
at well-defined program points-that captures properties
that hold across all runs represented in the trace database.
Although these invariants may not be complete (interesting
properties may be missed) and some may even be falsified by
additional executions, they provided substantial insight that
would be difficult for a programmer to extract manually from
the database or from the program using traditional means.

Second, queries against the trace database can help pro-
grammers delve deeper when unexpected invariants appear
or when expected invariants do not appear. For example,
our expectations regarding the preconditions for stclose
were contradicted by the inferred invariants, and the nec-
essary information to clarify our intuition was provided by
supporting data. This not only helped us discover a bug, but
also helped establish the conditions under which our postu-
lated invariant holds. This knowledge simplified our task
because the need for special-case processing inside plclose
was quickly proven unwarranted.

Third, queries against the database can also be used to build

intuition about the source of an invariant. In the scenario,
for example, these data helped us to determine the format
of the pat array and the conditions under which the loop in
stclose is not executed.

Fourth, inferred invariants provide a suitable basis for the
programmer’s own, more complex inferences. Because the

inferred invariants concern observable entities in the pro-
gram, the programmer can examine the program text or
perform supporting static analyses to better understand the
invariants’ implications. For example, we might have liked

to see an invariant such as, “*j refers to the next place to
append a character into pat,” but this is at best expensive to
compute. However, the presence of segeral related invariants
indicating that *j starts with a 0 value$nd is regularly incre-
mented by 1 during the compilation of the pattern allowed
us to ascertain its basic function and quickly determine the

218

higher-level invariant.

Finally, invariants provide a beneficial degree of serendip-
ity. Scanning the invariants reveals facts that programmers
would not have otherwise noticed and almost surely would
not have thought to check. This ability to draw human at-

tention to suspicious but otherwise overlooked aspects of the
code is a powerful advantage of our approach. Programmers
who know exactly what they are seeking or are attempting
to verify a specific invariant may not gain as much leverage
from our techniques.

No technique can make it possible to evolve systems that
were previously intractable to change. But our initial, lim-
ited experience with inferred invariants shows promise in
simplifying evolution tasks both by conveying additional in-
formation to the programmer and also by providing the trace
database as a resource for obtaining other pertinent infor-
mation.

5 SCALABILITY

We ran several simple experiments to determine the costs of
invariant inference and the stability of the reported invari-
ants as the test suite increases in size. Based largely on the
results of these experiments, we also suggest ways to acceler-
ate inference, improve scalability, and manage the reporting
of invariants.

Performance Measurements
To gain insight on scalability-related issues, we performed
several measurements of invariant computation over the
Siemens replace program. Our goal was to identify quanti-
tative, observable factors that a user can control to manage
the time and space requirements of the invariant engine. In
particular, we measured the influence of the number of test
cases (program runs) and the number of variables in scope at
an instrumented program point. Because each instrumented
program point is processed independently, program size af-
fects invariant detection time only insofar as larger programs
afford more instrumentation points.

We ran our experiments on a 450MHz Pentium II. Our pro-

totype invariant engine is implemented in the interpreted
language Python [van97]. The engine has not yet been seri-
ously optimized for time or space, although at one point we
improved performance by nearly a factor of ten by inlining

two one-line procedures. In addition to local optimizations
and algorithmic improvements, use of a compiled language
such as C could improve performance by another order of
magnitude or more.

We instrumented and ran replace on subsets of the 5542
test cases supplied with the program, including runs over
500, 1000, 1500, 2000, 2500, and 3000 randomly-chosen test
inputs, where each set is a subset of the next larger one.
We also ran over all the test cases, but our prototype im-

plementation ran out of memory, exceeding 180MB, for one
program point over 3500 inputs and for another program
point over 4500 inputs. We could save substantial space by
using a different data representation or by not storing every
tuple of values (including every distinct array value) encoun-
tered by the program, for instance by only retaining certain
witnesses and counterexampIes, for use by our query tool, to
properties that we check.

12

i

0-l 1

0 1 2 3 4 5 6 7 6

ratio change in number of variables

Figure 7: Change in invariant detection nmtime versus change

in number of variables. A least-squares trend line highlights the

relationship; its R2 value is over .89, indicating good fit. Each

data point compares inference over two different sets of variables

at a single instrumentationpoint, for invariant inference over 1000
programruns. (For 3000 test cases, the graph is similar, also with

R2 = .89.) If one run has ~1 variables and a runtime of tr, and

the other has ~2 variables and a runtime of t2, the x axis measures
% and the y axis measures 2. Doubling the number of variables

tends to increase runtime by a factor of 2.5, while increasing the
number of variables fivefold increases runtime by eight times.

Our system infers invariants over an average of 71 variables
(6 original, 65 derived; 52 scalars, 19 sequences) per instru-
mentation point in replace. On average, 1000 test cases pro-
duce 10,120 samples per instrumentation point, and our sys-
tem takes 220 seconds to infer the invariants for that point;
for 3000 test cases there are 33,801 samples and processing
takes 540 seconds.

Number of instrumented variables

The number of variables over which invariants are checked is

the most important factor affecting invariant detection run-
time. On average, each of the 20 functions in replace has 5

parameters (2 of them arrays and the others scalars), and 1
scalar local variable is in scope at the procedure exit. The
number of derived variables is difficult to predict a priori
because it depends on the values of other variables, as de-
scribed in Section 3. On average, we found that about ten

variables are derived for each original one; this number is re-
markably insensitive to the relative numbers of scalars and
arrays. In all of our statistics, we found that the number of
scalars or sequences has no more (sometimes less) predictive
power than the total number of variables.

Figure 7 plots growth in invariant detection time against
growth in number of variables. It is difficult to make a
fair comparison among program points with different sam-
ple sizes, value distributions, and inferred invariants. There-
fore, each data point compares inference times for two sets of
variables at a single instrumentation point. The instrumen-
tation points are procedure exits; one set of variables is the
global variables and initial argument values, while the other
set adds final argument values, local variables, and the re-
turn value. Our timing-related graphs omit three functions

whose invariant detection runtimes were under one second,

because runtime or measurement variations could produce

219

Figure 8: Invariant detection runtime as a function of number
of test cases (program runs). Each program point is plotted indi-
vidually, and lines are drawn through some data sets.

Figure 9: Growth of rnntime with test suite size, plotted against
number of source variables at a program point. The y axis plots
slopes of lines in Figure 8.

inaccurate results. The other absolute runtimes vary from
4.5 to 2100 seconds, while the number of variables ranges

from 14 to 230.

Figure 7 suggests that invariant detection time grows
quadratically with the number of variables over which in-
variants are checked. The number of possible binary invari-
ants (relationships over two variables) is also quadratic in
the number of variables at a program point. We found that
binary invariants dominate unary ones in number and cost
of computation.

Test suite size

Test suite size has a somewhat less pronounced effect on in-
variant detection runtime. Figure 8 plots growth in time
against growth in number of test cases (program runs) for
each program point. Most of these relationships are strongly
linear: nine have R2 above .99, nine others have R2 above .9,
and five more have R2 above .85. The remaining twelve rela-
tionships have runtime anomalies of varying severity; usually
the data points fall on a line, with a single exception. Al-
though the timings are reproducible, we have not yet isolated

pairs of values (millions)

Figure 10: Number of pairs of values is the best predictor of
nmtime (R2 = .94), but is itself not predictable from (though
correlated with) number of test inputs and number of variables.

a cause for these departures from linearity.

Although runtime is (for the most part) linearly related to
test suite size, the slopes of these relationships vary consid-
erably, as can be seen by the divergent lines of Figure 8.
Figure 9 plots these slopes against the total number of orig-
inal variables (the variables in scope at the program point).
When the slopes are plotted against total (original and de-
rived) variables, or against variables of scalar or sequence
type, the plot looks very similar: there is no obvious cor-

relation that predicts the slopes, and thus the growth of
runtime with test suite size.

The best independent predictor for runtime is the number of
pairs of values encountered by the invariant engine; Figure 10

plots that linear relationship. Unfortunately, the number of
pairs of values cannot be predicted from the number of test
cases provided to the instrumented program, which the user
can directly control. Unsurprisingly, the number of samples

(number of times a particular program point is executed) is
linearly related to test suite size (number of program runs).
The number of distinct values is also well-correlated with the
number of samples.3 Finally, the number of pairs of values
is correlated with the number of values, but apparently not

with the ratio of scalar to sequence variables.

Invariant stability
To determine whether the computed invariants tend to sta-
bilize as test suite size increases, we compared, pairwise, the’
invariants detected on replace for different numbers of test
cases. Figures 11 and 12 chart the number of identical, miss-
ing, and different invariants detected between two sets of test
cases, where the smaller is a subset of the larger. Missing
invariants are invariants that were detected in one of the test
suites but not in the other. We also separate the differences
into potentially interesting ones and probably uninteresting
ones.

Typical uninteresting invariant differences are the following,

‘We expected fewer new values to appear in later runs. However,
repeated array values are rare, and even a test suite of 50 inputs pro-
duced 600 samples per function on average, perhaps avoiding the high
distinct-variable-values-per-sample ratio expected with .few inputs.

220

I I Number of test cases I I Number of test cases

Identical unary
Missing unary

Difl

500 1000 1500 2000 2500

2101 2254 2293 2314 2310

96 110 114 112 106

I feering interesting unary 1 1
506

1 1
338

1 (
295 1 274 1 284 1

88 58 57 54 52

uninteresting 1 418 1 280 1 238 220 232

Identical binarv 1 4881 1 6466 1 6835 6861 6837
I ------ ~~ I I I I I

1 Missinn binarv 1 3805 1 2833 1 2 !827 1 2933 1 2831 1
”

Differing binary 82 129 135 131 130

interesting 24 27 21 16 29

uninteresting 58 102 114 115 101

Figure 11: Invariant differences versus 3000 test cases. Figure 12: Invariant differences versus 2500 test cases.

computed at the exit of function putsub when comparing a
test suite of size 1000 to one of size 3000:

sl in CO..981
sl >= 0

(99 values)
(96 values)

i in CO..991 (73 values)
i in CO..921 (76 values)

A difference in a bound for a variable is more likely to be

a peculiarity of the data than a significant difference that
will change a programmer’s conception of the program’s op-
eration. The uninteresting category also contains variables
taking on too few values to infer a more general invariant,

but for which that set of values differs from one set of runs
to another.

We classify all other differences as potentially interesting; for
example, when comparing a test suite of size 2000 to one of

size 3000, the following difference is reported at the exit of
dodash:

*j >= 2 (105 values)

*j = 0 (mod 2) (117 values)

Such differences may be worthy of further study to determine
their relevance. In some cases, missing invariants may also
merit closer examination.

The number of identical unary invariants grows modestly as
the smaller test suite size increases. Identical binary invari-
ants show a greater increase, particularly in the jump from
500 to 1000 test cases. Especially in comparisons with the
3000 case test set, there are some indications that the num-
ber of identical invariants is stabilizing, which might indicate
asymptotically approaching the true set of invariants for a
program. (We saw this property in the Gries programs in

Section 2, where we found all the invariants Gries listed.)

Inversely, the number of differing invariants is reduced as
the smaller test suite size increases. Both unary and binary
differing invariants drop off most sharply from 500 to 1000
test cases; differences with the 3000 case test set then smooth
out significantly, perhaps stabilizing, while differences with
the 2500 case test set drop rapidly. Missing invariants follow
a similar pattern. The dropoff for unary invariants is largely
due to fewer uninteresting invariants, while the dropoff for
binary invariants is due to fewer interesting invariants.

Identical unary

Missing unary
Differing unarv

500 1000 1500 2000

2129 2419 2553 2612

125 47 27 14
442 230 117 73

interesting 22 1 21 15 13

uninteresting 87) 24 9 6

For replace and randomly selected test suites, there seems

to be a knee somewhere between 500 and 1000 test cases:
that is, the benefit per randomly-selected test case seems
greatest in that range. Such a result, if empirically validated,
could reduce the cost of selecting test cases, producing exe-
cution traces, and computing invariants.

Figures 11 and 12 paint somewhat different pictures of the
sensitivity of invariants to the particular test cases over
which the program is run. Only 2.5% of binary invariants

detected for the 2000 or 2500 case test suites are not found
identically in the other, and the number of invariants that
differ is in the noise, though these are likely to be the most
important differences. For comparisons against the 2500 test

case suite, these numbers drop rapidly as the two test suites
approach the same size. When the larger test suite has size
3000, more invariants are different or missing, and these
numbers stabilize quickly. The 3000 case test suite appears
somewhat anomalous: comparisons with other sizes (includ-

ing larger test suites, for the functions over which we could
compute invariants) show more similarity with the numbers
reported for the 2500 case test suite. Our preliminary in-
vestigations have not revealed a precise cause for the larger
differences between the 3000 case test suite and others, nor
can we accurately predict the sizes of invariant differences;
further investigation will be required in order to fully under-
stand these phenomena.

When we examined invariant differences by hand, we dis-
covered that many of them result from different values for
pointers and uninitialized array elements. For example, the
minimum value found in an array might be -128 in one set

of runs and -120 in another, even though the array should
contain only (nonnegative) characters. Other nonsensical
values, such as the sum of the elements of a string, also ap-
peared frequently in differing invariants. Important future
directions of research will include reporting, or directing the
user to, more relevant invariants and determining which in-
variant differences are significant and which can be safely
ignored.

Improvements to the Approach

There are potentially large numbers of program points to in-
strument, variables to examine at each point, and invariants
to check over those variables. We have identified ways to mit-
igate this combinatorial blowup in instrumentation output
size, inference time, and number of results. The techniques

221

generally trade off the time spent on inference against the
precision of the discovered invaria.nts, possibly under pro-
grammer control.

The granularity of instrumentation affects the amount of
data gathered and thus the time required to process it. In-
ferring loop invariants or relationships among local vari-
ables can require instrumentation at loop heads, at func-
tion calls, or elsewhere, whereas determining properties of
global variables or other large-scale structures does not re-

quire so many instrumentation points; perhaps module entry
and exit points would be sufficient. When only a part of the
program is of interest, the whole program need not be in-
strumented; we often computed invariants over just a single
procedure. The choice of variables instrumented at each pro-
gram point also affects inference performance. When some
are not of interest, they can be skipped, and variables that
cannot have changed since the last instrumentation point
may not need to be reexamined. Finally, supplying fewer
test cases results in faster runtimes at the risk of less precise
output.

The inference engine can be directly sped up by checking for
fewer invariants; this is particularly useful when a program-
mer is focusing on part of the program and is not interested
in certain kinds of properties (say, transcendental arithmetic
functions). Derived variables can likewise be throttled to
save time or increased to provide more extensive coverage.
More complicated derived variables may be added for com-
plex expressions that appear in the program text; derived
variables or invariants may also involve functions defined in
the program. Type analysis can indicate which variables are

incomparable, even if they have the same type in the pro-
gramming language [OJ97]; our prototype does not use even
the types present in the source code to prevent nonsensical
comparisons.

User Interface
A large data set and large number of derived invariants can
be overwhelming. We have already developed a tool that
retrieves the variable-value tuples that satisfy or falsify an
invariant. There are also several ways to improve the pre-
sentation of invariants themselves.

To control the number of displayed invariants, a text edi-
tor could provide a list of invariants for the variable under
the cursor. Programmers could also be permitted to filter
out classes of invariants (e.g., array relationships). Stati-
cally obvious invariants (such as x = y + 1 immediately after
x:=y+l) could be filtered. Presenting invariants on demand
naturally permits computing the invariants on demand, pos-
sibly avoiding delays for the computation of unneeded in-
variants. Users should be permitted to declaratively specify
additional relations and derived variables for analysis.

Ordering the reported invariants according to category or
predicted usefulness could also help a programmer find a
relevant invariant more quickly. Our invariant differencing
tool can indicate how a program change has affected the
computed invariants.

6 RELATED WORK

Dynamic Inference
The research most directly related to ours uses inductive

logic programming (ILP) [Qui90, Coh94] to construct Horn
clause loop invariants from variable values on particular loop
executions [BG93]. This variety of ILP requires counterex-
amples (which are not available in our domain) and back-
ground knowledge, and the resulting relations typically mis-

classify portions of the training set. (Our approach charac-
terizes the training set perfectly; either approach can mis-
classify additional data.) Other AI approaches like neural
nets can predict results but have little explicative power.
Traditionally, machine learning attempts to learn a function
over n-l variables producing the 72th or to classify examples
into specified categories, neither of which is directly appli-
cable to our problem [Mit97]. However, we believe that gen-
eralizing these techniques, or applying them to subproblems
of our task, can be fruitful.

Other dynamic analyses that examine progra:m executions
are used for software tasks from testing to debugging. Pro-
gram spectra (specific aspects of program runs, such as event

traces, code coverage, or outputs) [RBDL97, HRWY98] can
reveal differences in inputs or program versions. Other re-
searchers use event traces, which describe the sequence of
events in a possibly concurrent system, to produce a finite

state machine generating the trace [BG97, And98, CW98a,
CW98b].

Static Inference
Static analyses operate on the program text, not on par-
ticular test runs, and are typically sound but conservative.
As a result, properties they report are true for any program
run, and theoretically they can detect all sound invariants if
run to convergence [CC77]. (Static analyses will miss true

but uncomputable properties and properties that depend on
how the program is used, including properties of its inputs;
dynamic techniques can detect both varieties.) Some pro-
gram understanding tools have taken this abstract interpre-

tation/dataflow approach [GC96, JH98]. In practice, static
analyses are limited by uncertainty about properties beyond
their capabilities and by the high cost of modeling program
states. For instance, accurate alias analysis is still beyond
the state of the art, so many static checkers must give up
in the face of pointer manipulation. The ease of dynam-
ically checking some such properties makes static and dy-
namic techniques complementary.

Considerable research has addressed checking formal speci-,
fications [DC94, EGHT94, Det96, Eva96, NCOD97, LN98,
JvHt98, Pfe92]; this work could be used to verify likely in-
variants discovered dynamically. Determining what prop-
erty to check is considered harder than checking it [Weg74,
BLS96]; our goal is the discovery of such properties from a
broad class of possible ones.

Variable types are a variety of formal specification and doc-
umentation. Type inference extends partial type annota-
tions to full ones; similarly, Givan [Giv96] extends speci-
fications on the inputs of a procedure to its output, and
ADDS [HHN92, GH96] propagates data structure shape
descriptions through a program. Some formal proof sys-
tems generate intermediate assertions for help in prov-

ing a given goal formula by propagating known invari-
ants forward or backward in the program [Weg74, GW75,
KM76, DB84, BBM97]. In the case of array bounds check-

222

ing [SI77, Gup90, KW95, NL98, XP98], the desired property
is obvious.

The Illustrating Compiler heuristicany detects the abstract
datatype implemented by a collection of concrete oper-
ations [HWFSO], while ReForm semi-automatically trans-
forms, by provably correct steps, a program into a speci-
fication [War96]. Other related work includes staging and
binding-time analyses, which determine invariant or semi-
invariant values for use in partial evaluation [JGS93].

7 CONCLUSIONS
This paper documents the feasibility and effectiveness of dis-
covering program invariants based on execution traces. Our
technique automatically detected all the stated invariants in
a set of formally-specified programs, and the invariants de-
tected in a real C program proved useful in a software evolu-
tion task. The techniques we have developed, along with the
prototype implementation, are adequately fast when applied
to programs of several hundred lines.

Acting as our own users was advantageous in the initial
phases of this research. Working on evolution tasks with

programs that we did not write gave us insights into the
strengths and weaknesses of the techniques, the tool, and
the overall approach. Moreover, we found that the use of dy-
namically inferred invariants qualitatively affected our pro-
gramming, encouraging us to think in terms of invariants in
situations that we might otherwise not have.

With a variety of performance improvements, including user-
directed indications of instrumentation points and variables
of interest, the approach should be applicable to the evo-

lution of larger systems. More sophisticated invariants will
also be required; a few of the most critical are invariants
over pointer-based data structures such as trees, predicated
invariants (if condition then invariant), and disjunctions (p

= NULL or *p > i). We will need to assess the enhanced
technology by having programmers apply it to larger, more
complicated programming tasks.

Dynamically inferred invariants can be used in many sit-
uations that statically-supplied invariants can, and in some
cases the application of dynamic ones may be more effective.
For instance, dynamic invariants form a program spectrum,
changes to which can indicate properties of a changed pro-
gram or input. They may assist in test case generation and
can also validate a test suite; invariants in the resulting pro-
gram runs can indicate insufficient coverage of program val-
ues, even if every line is executed at least once. A nearly-true
invariant may indicate a bug or special case that should be
brought to the programmer’s attention. Discovered invari-
ants can be inserted into a program as assert statements to
further test the invariant or to ensure that detected invari-
ants are not later violated as code evolves. They can also

double-check existing documentation or assert statements.
Invariants could augment the low-level execution informa-
tion used in profile-directed compilation with higher-level
program properties, permitting better optimization for the
common case. Detected invariants could also bootstrap or
direct a (manual or automatic) correctness proof.

ACKNOWLEDGMENTS
Many of our colleagues provided comments on our ideas; we

are particularly grateful for the feedback of Craig Chambers,

Oren Etzioni, Tessa Lau, David Madigan, and Jared Saia.
Vibha Sazawal provided valuable assistance with statistical
analysis. Gregg Rothermel shared his modified versions of
the Siemens test programs. Greg Badros, Craig Chambers,

Tessa Lau, Todd Millstein, Jon Nowitz, Steve Wolfman, and
the anonymous referees improved this paper by critiquing a
draft. Daniel Jackson, Vass Litvinov, George Necula, James
Noble, and the referees suggested related work.

This work was supported by NSF grants CCR-9506779 and
CCR-9508745, an IBM Cooperative Fellowship, and a gift
from Edison Design Group [EDG95].

REFERENCES

[And981 James H. Andrews. Testing using log file analysis: Tools,
methods and issues. ln Proceedings of the 13th Annual In-
ternational Conference on Automated Software Engineering

(ASE’98), Honolulu, Hawaii, October 1998.

[BBM97] Nicolaj Bjomer, Anca Browne, and Zohar Manna. Au-
tomatic generation of invariants and intermediate assertions.
Theoretical Computer Science, 173(1):49-87, February 1997.

[BG93] Ivan Bratko and Marko Grobelnik. Inductive learning ap-

plied to program construction and verification. In Jose Cuena,

editor, Knowledge Oriented Software Design: Extended Papers

from the IFIP TC 12 Workshop on Art$cial Intelligence from

the Information Processing Perspective, AIFIPP ‘92, Madrid,

Spain, 14-15 September, 1992, pages 169-182. North-Holland,
1993.

[BG97] Bernard Boigelot and Patrice Godefroid. Automatic syn-

thesis of specifications from the dynamic observation of reactive

programs. In Proceedings of the Third International Workshop

on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’97), volume 1217 of Lecture Notes in Com-
puter Science, pages 321-333, Twente, April 1997.

[BLS96] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful tech-
niques for the automatic generation of invariants. ln Proceed-

ings of the Eighth International Conference on Computer Aided
Verification CAV, pages 323-335, New Brunswick, NJ, USA,
1996.

[CC771 Patrick M. Cousot and Radhia Cousot. Automatic syn-
thesis of optimal invariant assertions: Mathematical founda-
tions. In Proceedings of the ACM Symposium on Artijicial In-
telligence and Programming Languages, volume 12(S) of ACM

SIGPLAN Notices, pages l-12, Rochester, NY, August 1977.

[Coh94] William W. Cohen. Grammatically biased learning:
learning logic programs using an explicit antecedent description

language. Artificial Intelligence, 68:303-366,1994.

[CW98a] Jonathan E. Cook and Alexander L. Wolf. Discov-
ering models of software processes from event-based data.
ACM Transactions on Software Engineering and Methodology,

7(3):215-249, July 1998.

[CWBSb] Jonathan E. Cook and Alexander L. Wolf. Event-based

detection of concurrency. In Sixth International Symposdum
on the Foundations of Software Engineering (FSE-6), Orlando,

FL, November 1998.

[DB84] Douglas D. Dunlop and Victor R. Basili. A heuristic
for deriving loop functions. IEEE Transactions on Software

Engineering, 10(3):275-285, May 1984.

[DC941 Matthew B. Dwyer and Lori A. Clarke. Datallow analysis

for verifying properties of concurrent programs. ln Proceedings
of the ACM SIGSOFT ‘94 Symposium on the Foundations of

Software Engineering, pages 62-75, December 1994.

223

[D&96] David L. Detlefs. An overview of the Extended Static

Checking system. In First Workshop on Formal Methods in

Software Practice, pages 1-9, January 1996.

[EDG95] Edison Design Group. C++ Front End Xnter-

nal Documentalion, version 2.28 edition, March 1995.

http://www.edg.com.

[EGHT94] David Evans, John Gut.tag, James Horning, and

Yang Meng Tan. LCLint: A tool for using specifications to
check code. Proceedings of the ACM SIGSOFT ‘94 Symposium
on Ihe Foundadions of Software Engineering, pages 87-97, De-

cember 1994.

[Eva961 David Evans. Static detection of dynamic memory er-
rors. In Proceedings of Ihe SZGPLAN ‘96 Conference on PTO-

gramming Language Design and Implementation, pages 44-53,
Philadelphia, PA, May 1996.

[CC961 Gerald C. GannodandBetty H.C. Cheng. Strongest post-

condition semantics as the formal basis for reverse engineering.
Journal of Automated Software Engineering, 3(1/2):139-164,

June 1996.

[GH96] Rakesh Ghiya and Laurie J. Her&en. Is it a tree, a DAG,
or a cyclic graph? A shape analysis for heap-directed point-
ers in C. In Proceedings of the 23rd Annual ACM SZGPLAN-

SZGACT Symposium on Principles of Programming Languages,

pages l-15, St. Petersburg Beach, Florida, January 1996.

[Giv96] Robert Givan. Inferring program specifications in

polynomial-time. In Proceedings of the Third Znternalional

Symposium on Static Analysis, SAS ‘96, pages 205-219,

Aachen, Germany, September 1996.

[GriSl] David Gries. The Science of Programming. Springer-

Verlag, New York, 1981.

[GupSO] Rajiv Gupta. A fresh look at optimizing array bound
checking. In Proceedings of the SIGPLAN ‘90 Conference

on Programming Language Design and Implementalion, pages

272-282, White Plains, NY, USA, June 1990.

[GW75] Steven M. German and Ben Wegbreit. A synthesizer of

inductiveassertions. IEEE Transactions on Software Engineer-

ing, 1(1):68-75, March 1975.

[HFG094] Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experimentson the effectivenessof dataflow-
and controlflow-based test adequacy criteria. In Proceedings

of the 16th Zntemzational Conference on Sojtware Engineering,

pages 191-200, May 1994.

[HHN92] Laurie J. Hendren, Joseph H-el, and Alexandru
Nicolau. Abstractions for recursive pointer data structures:

Improving the analysis and transformation of imperative pro-
grams. In Proceedings of the SZGPLAN ‘9.2 Conference on PTO-
gramming Language Design and Zmplemenlation, pages 249-

260, San Francisco, California, June 1992.

[HRWY98] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and
Liu Yi. An empirical investigation of program spectra. In ACM

SZGPLAN/SZGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE ‘98), pages 83-90, Mon-
treal, Canada, June 1998.

[HWFSO] Robert Henry, Kenneth M. Whaley, and Bruce Forstall.

The University of Washington Illustrating Compiler. In PTO-
ceedings of the SZGPLAN ‘90 Conference on Programming
Language Design and Zmplemenlation, pages 223-246, June

1990.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program Generation. Pren-

tice Hall, 1993.

[JH98] Ralph Jeffords and Constance Heitmeyer. Automatic
generation of state invariants from requirements specifications.

In Proceedings of the ACM SZGSOFT ‘98 Sympositim on the

Foundations of Software Engineering, pages 56-69, Orlando,

Florida, November 3-5, 1998.

[JvH+98] Bart Jacobs, Joachim van den Berg, Marieke H&man,
Martijn van Berkum, Ulrich Hensel, and Hendrik Tews. Rea-

soning about Java classes. In objec&Oriented Programming

Systems, Languages, and Applicalions (OOPSLA ‘98), Van-

couver, BC, Canada, October 1998.

[KM761 Shmuel Katz and Zohar Manna. Logical analysis of pro-

grams. Communications of the ACM, 19(4)::188-206, April
1976.

[KW95] Priyadarshan Kolte and Michael Wolfe. Elimination of
redundant array subscript range checks. In Proceedings of the

SZGPLAN ‘95 Conference on Programming Language Design

and Zmplemenlalion, pages 270-278, La Jolla, California, June

1995.

[LN98] K. Rustan M. Leino and Greg Nelson. An extended static
checker for Modula-3. In Compiler Construc6sn: 7th Inter-

national Conference, CC’98, pages 302-305. Springer-Verlag,
April 1998.

[Mit97] Tom M. Mitchell. Machine Learning. WCB/McGraw-

Hill, Boston, MA, 1997.

[NCOD97] Gleb Naumovich, Lori A. Clarke, Leon J. Osterweil,
and Matthew B. Dwyer. Verification of concurrent software with

FLAVERS. In Proceedings of the 19th International Conference

on Software Engineering, pages 594-595, May 1997.

[NL98] George C. NecuIa and Peter Lee. The design and imple-

mentation of a certifying compiler. In Proceedings of Ihe ACM

SZGPLAN’BB Conference on Programming Language Design

and Zmplemen2atioq pages 333-344, Montreal, Canada, June
1998.

[0397] Robert O’Callahau and Daniel Jackson. Lackwit: A pro-

gram understanding tool based on type inference. In Proceed-
ings of the 19th International Conference on Software Engi-

neering, pages 338-348, May 1997.

[Pfe92] Frank Pfeting. Dependent types in logic programming.
In Types in Logic Programming, chapter 10, pages 285-311.

MIT Press, Cambridge, MA, 1992.

[Qui90] J. R. Quinlan. Learning logical definitions from relations.
Machine Learning, 5:239-266,199O.

[RBDL97] Thomas Reps, Thomas Ball, Manuvir Drrs, and James

Larus. The use of program profiling for software maintenance
with applications to the year 2000 problem. In Proceedings of
the Sixth European Software Engineering Confere,nce and Fifth

ACM SZGSOFT Symposium on the Foundation3 of Software
Engineering (ESEC/FSE 97), pages 432-449, Zurich, Switzer-

land, September 1997.

[RH98] Gregg Rothermel and Mary Jean Harrold. Empirical

studies of a safe regression test selection technique. TTansac-
lions on Software Engineering, 24(6):401-419, June 1998.

[S177] Norihisa Suzuki and Kiyoshi Ishiheta. Implementation of

an array bound checker. In Proceedings of the Fourth Annual
ACM Symposium on Principles of Programming Languages,
pages 132-143, Los Angeles, CA, January 1977.

[van971 Guido van Rossum. Python Reference Manual, release

1.5 edition, December 1997.

[War961 Martin P. Ward. Program analysis by formal transfor-

mation. The Compuler Journal, 39(7):598-618,1996.

[Weg74] Ben Wegbreit. The synthesis of loop predicates. Com-

munications of the ACM, 17(2):102-112, February 1974.

[XI’981 Hongwei Xi and Frank Pfenning. Eliminating array
bound checking through dependent types. In Proceedings of
Ihe ACM SZGPLAN’98 Conference on Programming Language

Design and Implementation, pages 249-257, Montreal, Canada,

June 1998.

224

