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The most intriguing properties of non-Hermitian systems are found near the exceptional points (EPs) at
which the Hamiltonian matrix becomes defective. Because of the complex topological structure of the
energy Riemann surfaces close to an EP and the breakdown of the adiabatic theorem due to non-
Hermiticity, the state evolution in non-Hermitian systems is much more complex than that in Hermitian
systems. For example, recent experimental work [Doppler et al., Nature (London) 537, 76 (2016)]
demonstrated that dynamically encircling an EP can lead to chiral behaviors; i.e., encircling an EP in
different directions results in different output states. Here, we propose a coupled ferromagnetic waveguide
system that carries two EPs and design an experimental setup in which the trajectory of state evolution can
be controlled in situ using a tunable external field, allowing us to dynamically encircle zero, one, or even
two EPs experimentally. The tunability allows us to control the trajectory of encircling in the parameter
space, including the size of the encircling loop and the starting/end point. We discovered that whether or not
the dynamics is chiral actually depends on the starting point of the loop. In particular, dynamically
encircling an EP with a starting point in the parity-time-broken phase results in nonchiral behaviors such
that the output state is the same no matter which direction the encircling takes. The proposed system is a
useful platform to explore the topology of energy surfaces and the dynamics of state evolution in non-
Hermitian systems and will likely find applications in mode switching controlled with external parameters.

DOI: 10.1103/PhysRevX.8.021066 Subject Areas: Nonlinear Dynamics, Optics

I. INTRODUCTION

Exceptional points (EPs) are degeneracies in non-
Hermitian systems [1–4]. Unlike degeneracies in
Hermitian systems such as diabolic points (DPs) [5,6],
whose eigenvalues but not eigenvectors coalesce, at EPs,
both the eigenvalues and the eigenvectors coalesce, leading
to various counterintuitive phenomena and fascinating
applications such as loss-induced transmission enhance-
ment [7], lasing effects [8–11], unusual beam dynamics
[12,13], enhanced sensing [14–16], robust wireless power
transfer [17], and others [18–23]. The most intriguing
feature of the EP is perhaps its topological structure in

the sense that adiabatically encircling an EP can result in
an exchange of the eigenstate [24,25], unlike the encircling
of a DP in Hermitian systems where the eigenstate would
only acquire a geometric phase [5,6]. The so-called state
flip achieved by adiabatically encircling an EP is made
possible by the degeneracy-induced intersection of com-
plex Riemann sheets [24,25]. This phenomenon has been
demonstrated experimentally in microwave cavities [26],
exciton-polariton systems [27] and acoustic systems [28],
where static measurements of the spectra and eigenmodes
successfully revealed the topological structure of EPs.
However, the outcome is completely different if an EP is
encircled in a dynamical process. In dynamical encircling,
the output state has been predicted to be determined solely
by the direction of rotation in the parameter space regard-
less of the input state. Such “chiral behavior” [29] is a
manifestation of the breakdown of the adiabatic theorem in
non-Hermitian systems in the presence of gain and loss
[30,31]. The chiral nature of the dynamics has also been
theoretically investigated from the viewpoint of stability
loss delay [32] and the Stokes phenomenon of asymptotics
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[33], and a full analytical model has been proposed for a
better understanding [34]. It was not until recently that the
dynamical encircling of an EP was realized experimentally
in microwave [35] and optomechanical systems [36]. The
chiral behavior is expected to have promising applications
in asymmetric mode switching [35,37] and on-chip non-
reciprocal transmission [38].
Although the dynamical encircling of an EP has been

demonstrated both theoretically and experimentally, pre-
vious studies focused exclusively on encircling loops with
the starting/end point near the parity-time-symmetric
(PT-symmetric) phase [34–38], where the imaginary parts
of the eigenvalues coalesce. But what if the starting point of
the dynamical process lies somewhere else in the parameter
space? Would the chiral behavior persist if the dynamical
encircling starts from a point near the PT-broken phase
where the real parts of the eigenvalues coalesce? These
questions remain open. Furthermore, the dynamical evo-
lution of states in non-Hermitian systems, in which non-
adiabatic transitions (NATs) may occur due to the
breakdown of the adiabatic theorem, is of fundamental
interest. This area is, however, largely unexplored, espe-
cially experimentally, due to the complexity in system
design. A recent pioneering work [35] used a modulated
waveguide system to realize EP encircling. The system
offers an excellent platform to study the dynamics in non-
Hermitian systems as the state evolution and NATs can be
understood intuitively from the field profiles in the wave-
guides. However, the encircling loop in the experiment is
fixed once the sample is fabricated, and changing the loop
in fact requires fabricating new samples. A new platform on
which the encircling loop could be controlled in situ using,
for example, external parameters is highly desirable.
In this work, we propose a platform to study the

dynamical process in non-Hermitian systems and the
dynamical encircling of EPs. On this platform, the trajec-
tory of state evolution in the parameter space can be
controlled in situ using an external parameter. Our system
consists of a pair of ferromagnetic waveguides applied with
transverse bias magnetic fields. The waveguide width and
the external magnetic field are nonuniform so that when a
wave scatters through the system, it is effectively traveling
along a trajectory in a predesigned two-variable parameter
space, where a pair of EPs with opposite chirality reside.
The topological structure of the system can be designed by
choosing appropriate system parameters, allowing us not
only to dynamically encircle different numbers of EPs
(e.g., zero, one, or even two) without changing or moving
the sample, but also to study the dependence of the
dynamics on the starting/end point of the encircling loop.
We first realized experimentally the previously discovered
chiral transmission behavior [35] by dynamically encir-
cling an EP with the starting point in the symmetric phase.
Moreover, our system has two EPs, which allows us to
dynamically encircle two EPs to reveal the more complex

topological structure of energy surfaces. The main finding
of this work is that we investigated the dynamical encircling
of an EP with the starting point in the broken phase and
discovered a nonchiral behavior, indicating that whether the
dynamics is chiral or not depends on the starting point. A
theoretical model was used to investigate the underlying
physics and reveal the role of the starting point.

II. IN SITU CONTROL OF ENCIRCLING LOOPS

WITH AN EXTERNAL FIELD

We start by introducing a platform for studying the
dynamical process in non-Hermitian systems. As shown in
Fig. 1(a), the system consists of a pair of yttrium iron garnet
(YIG) waveguides separated by a small gap. We apply a
transverse bias magnetic field along the negative x-axis. A
microwave absorber is attached to the side of YIG wave-
guide-2 to introduce asymmetric losses [39] into the
system. The background is air. The width of YIG wave-
guide-2 is controlled by a scale factor α, corresponding to a
detuning of the system. We first calculated the effective
mode index of the waveguide pair system (W ¼ 8mm,
H ¼ 4mm, g ¼ 1mm) as a function of the scale factor α
and the bias field using COMSOL [40]. In the simulation,
the relative permittivity of YIG is set to approximately
15.26, and the relative permeability tensor of YIG is
modeled with a diagonal term μb¼1þωmω0=ðω

2

0
−ω2Þ

and off-diagonal terms �iχ ¼ �iωmω=ðω
2

0
− ω2Þ, where

ωm ¼ μ0γRM is determined by the gyromagnetic ratio γR
and the magnetizationM, and ω0 ¼ γRB0 is determined by
the bias magnetic field B0 [41]. The effective mode index is
defined as neff ¼ βz=k0, where βz and k0 are the mode
propagation constant and vacuum wave number, respec-
tively. The results for the lossless system (i.e., without the
absorber) at 9 GHz are shown in Fig. 1(c). We find that two
eigenmodes are supported in the system. A DP emerges
(B0 ¼ 0.092 T, α ¼ 1) due to the accidental degeneracy of
the two eigenmodes [42]. When the microwave absorber is
attached (w ¼ 1.5mm, h ¼ 2mm, ε ¼ 3þ 3i), the effec-
tive mode index becomes a complex number, and the DP
splits into a pair of EPs [42], exhibiting a self-intersecting
Riemann surface as shown in Figs. 1(d) (real part) and 1(e)
(imaginary part). The white dashed line in Fig. 1(d) marks
the broken phase line on which the real parts of the two
eigenvalues coalesce (also refer to the side view). The two
end points of this broken phase line are EPs, beyond which
are two symmetric phase lines [see the two white dashed
lines in Fig. 1(e)], on which the imaginary parts of the two
eigenvalues coalesce. The symmetric phase line is a branch
cut that connects the lower-loss Riemann sheet [see the blue
sheet in Fig. 1(e)] with the higher-loss Riemann sheet [see
the red sheet in Fig. 1(e)].
As we have a Riemann surface containing a pair of EPs,

forming an encircling loop requires changing two param-
eters (the bias field and the scale factor α) continuously
in space. To implement the encircling, we design a system
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that is 400 mm long as shown in Figs. 2(a) (top view) and
2(b) (side view) with the two parameters varying contin-
uously along the waveguiding direction (i.e., z-axis). The
bias field is experimentally generated with a vibrating
sample magnetometer (VSM), which has two magnets with
a diameter of approximately 200 mm. The experimentally
measured bias field distribution along the z-axis is plotted

with circles in Fig. 2(c), and Bm denotes the maximum field
strength at the center of the waveguides (i.e., z ¼ 200mm).
The field is essentially uniform along the x- and y-axis in
our experimental setup. The field distribution is well fitted
using a sinusoidal function [solid line in Fig. 2(c)] for
further numerical simulations. The scale factor α is
designed to vary along the z-axis, with a minimum of

(e)(d)

(b) (c)

(g)(f)

(a)

FIG. 1. (a) Schematic diagram of a coupled yttrium iron garnet (YIG) waveguide system with a microwave absorber attached to
waveguide-2 to introduce asymmetric losses. A bias magnetic field is applied along the negative x-axis. (b) Calculated bias magnetic
field at which a diabolic point (DP) emerges in the lossless system (i.e., without the absorber attached) as a function of frequency with
g ¼ 0.5mm (black line) and 1 mm (red line). Other structural parameters are W ¼ 8mm, H ¼ 4mm, and α ¼ 1. The red and black
circles mark the configurations whose Riemann surfaces are shown in Figs. 1 and 7, respectively. (c) Calculated effective mode index as
a function of the bias field and scale factor of the lossless system. A DP appears at B0 ¼ 0.092 T and α ¼ 1 due to accidental
degeneracy. (d), (e) Calculated real part (d) and imaginary part (e) of the effective mode index as a function of the bias field and scale
factor of the lossy system. The two figures show self-intersecting Riemann surfaces with two exceptional points (EPs) at B0 ¼ 0.06 T,
α ¼ 0.988 and B0 ¼ 0.123 T, α ¼ 0.982. The white dashed line in (d) [(e)] marks the broken (symmetric) phase line where the real
(imaginary) parts of the two eigenvalues coalesce. The black and yellow lines represent the trajectory of state evolution for case I (i.e.,
counterclockwise loops with symmetric injections) with Bm ¼ 0.08 T (encircling one EP) and 0.17 T (encircling two EPs), respectively.
(f), (g) Same as panels (d) and (e) except that the trajectories are for case II (i.e., counterclockwise loops with antisymmetric injections).
In the simulations of (c)–(g), the frequency is 9 GHz and the system parameters are W ¼ 8mm, H ¼ 4mm, g ¼ 1mm, w ¼ 1.5mm,
and h ¼ 2mm. The relative permittivity of the absorber is 3þ 3i.
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0.875 at z ¼ 100mm and a maximum of 1.125 at z ¼
300mm [see Fig. 2(d); also see the Supplemental Material
for a discussion on the two corners [43]]. A two-parameter
space is defined in Fig. 3(a), where the locations of the
two EPs are also marked. We note that the wave scattering
through the system is analogous to a loop in the two-
parameter space, with the starting/end point at B0 ¼ 0 and
α ¼ 1. Injections from the left (z ¼ 0) and the right
side (z ¼ 400mm) of the waveguide system [see the
schematic diagram in Fig. 2(a)] correspond to counterclock-
wise and clockwise loops, respectively. Selected examples of
the loops are illustrated in Fig. 3(a), where the green, black,
and yellow loops are generated at bias field strengths
Bm ¼ 0.01, 0.08, and 0.17 T, corresponding to a dynamical
encircling of zero, one, and two EPs, respectively.
The encircling loop in the proposed system can be tuned

in situ along the B0-axis of the parameter space, and the
loop size is determined by an adiabatically tunable param-
eter, Bm. Although the loop cannot be tuned along the
α-axis, such tunability can already enable us to control
in situ the number of EPs encircled. This was not possible
in previous experimental work (see, for example,
Ref. [35]), where the encircling loop was fixed once the
samples were fabricated. The topological structure of our
system is also more complex than previous ones [34–38]
due to the presence of two EPs, and the locations of the EPs
can be specified by choosing appropriate system parame-
ters. To demonstrate this point, we show in Fig. 1(b) the
calculated bias fields required to access the DP in the
lossless system as a function of frequency with two
different gap distances. The red circle corresponds to the

case in Fig. 1(c). When loss is introduced, the DP splits into
two EPs and their locations can be specified by choosing
appropriate absorbers. Higher-loss absorbers can result in a
broader broken phase region, whereas lower-loss absorbers
can lead to a narrower region [42]. Our system serves as a
controllable platform to study the dynamical process of
state evolution on complex energy surfaces in non-
Hermitian systems.

III. STARTING/END POINT IN THE SYMMETRIC

PHASE: CHIRAL DYNAMICS

We performed numerical simulations to demonstrate the
effects arising from the dynamical encircling of EPs. We
first consider encircling loops [Fig. 3(a)] with a starting/end
point in the symmetric phase, where one eigenmode is
symmetric and the other one antisymmetric. As the
encircling can proceed either in the clockwise or the
counterclockwise direction, and we can choose to excite
either the symmetric or the antisymmetric mode at the
starting point, there are four possible cases. Cases I and II
correspond to counterclockwise loops and cases III and IV
clockwise loops. The injection is a symmetric mode for
cases I and III and an antisymmetric mode for cases II and
IV. We calculated the modal transmission intensities Tnm

(T 0
nm), which are defined as the transmission from mode m

to mode n in a counterclockwise (clockwise) loop, where
the subscript s denotes the symmetric mode and a the
antisymmetric mode. The modal transmission intensities
can reveal the behavior of mode switching. Figure 3(b)
plots the calculated transmission intensities of the proposed

(a)

(b) (c) (d)

FIG. 2. (a) Schematic diagram of a coupled YIG waveguide system with a length L ¼ 400 mm, where the bias field generated by the
two magnets and the width of YIG waveguide-2 vary continuously along the z-axis. (b) Side view of the coupled system.
(c) Experimentally measured bias field distributions along the z-axis (circles), fitted using B0ðzÞ ¼ Bm sinðπz=LÞ for numerical
simulations (solid line). (d) Variation in the scale factor α along the z-axis. The minimum α is 0.875 at z ¼ 100 mm and the maximum is
1.125 at z ¼ 300 mm. Injections from z ¼ 0 and z ¼ 400 mm correspond to counterclockwise and clockwise loops, respectively.
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system at 9 GHz as a function of Bm for the four cases. In
each plot, the left, middle (shaded), and right regions
correspond to the bias field strengths at which zero, one,
and two EPs are encircled, respectively. We note that the
system is still reciprocal (i.e., Tnm ¼ T 0

mn) in the presence
of the transverse bias field, since the cross section of the
coupled waveguides has a mirror symmetry with respect to
the plane y ¼ 0 (see Ref. [44]; also see the Supplemental
Material [43] for detailed descriptions of the mirror
symmetry).
We first study the dynamics of encircling one EP for

counterclockwise loops. Case I in Fig. 3(b) shows that
Tas > Tss in the shaded region (corresponding to one EP
being encircled), so that the antisymmetric mode dominates

the output. This means that a symmetric mode at the
starting point ends up being an antisymmetric mode once
the system has traveled one counterclockwise loop in the
parameter space. This phenomenon is representative of
state flipping due to the self-intersecting Riemann energy
surface in non-Hermitian systems. We note that the output
is also an antisymmetric mode in case II, indicating that
there is no state flip in this case. We take the loop generated
at Bm ¼ 0.08 T that encircles one EP [see Fig. 3(a)] as an
example to explain the dynamics. The simulated field
distributions (Hy component) in the waveguide system
for cases I and II are shown in Figs. 3(c) and 3(d),
respectively. In Fig. 3(c), we see the mode switching;
i.e., a symmetric mode excited at the left becomes an

(b)(a)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. (a) Three loops in parameter space, generated as examples with Bm ¼ 0.01 T (green loop not enclosing any EP), 0.08 T (black
loop enclosing one EP), and 0.17 T (yellow loop enclosing two EPs). The starting/end point lies at B0 ¼ 0 and α ¼ 1, corresponding to
the symmetric phase. The black dashed line represents the broken phase line, where the real parts of the eigenvalues coalesce.
(b) Calculated transmission intensities for the four cases (see text for definition) as a function of Bm. The shaded region represents the
field strengths where one EP is dynamically encircled, and a state flip occurs for cases I and IVonly. Outside the shaded region, zero (left
region) or two EPs (right region) are encircled. The number of nonadiabatic transitions (NATs) in the dynamical process, denoted by
NNAT, is given in different regions. (c)–(h) Numerically simulated Hy field distributions in the waveguide system with different input
modes and injection directions. The results with Bm ¼ 0.08 T for cases I–IV are shown in (c)–(f), respectively, corresponding to an
encircling of one EP. Panels (g) and (h) show results for cases I and II, respectively, with Bm ¼ 0.01 T, corresponding to an encircling of
zero EP. In all of the simulations, the frequency is 9 GHz, and the system parameters are the same as those given in Fig. 1.
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antisymmetric mode at the exit on the right. But mode
switching is not observed in Fig. 3(d). To better under-
stand the dynamics, we expand the transverse field dis-

tributions f⃗ðzÞ into a linear combination of the eigenfields
(i.e., right eigenvectors) rG

�!ðzÞ and rL
!ðzÞ of the con-

figuration at a particular value of z. That is, we write

f⃗ðzÞ ¼ cG rG
�!ðzÞ þ cLrL

!ðzÞ, where cG and cL are ampli-
tudes, and the subscripts G and L are associated with the
eigenmode with a lower loss (a relative “gain” mode) and
the eigenmode with a higher loss (a relative loss mode),
respectively. The right eigenvectors rG

�!ðzÞ and rL
!ðzÞ are

typically not orthogonal since the system is non-Hermitian.
We construct their corresponding left eigenvectors via

lGðLÞ
��!

¼ rGðLÞ
��!

− hrGðLÞ
��!jrLðGÞ

��!irLðGÞ
��!, and then we determine

the amplitudes by projecting the transverse field distribu-
tions onto the left eigenvectors (see Appendix A for
details). The calculated amplitudes for cases I and II with
Bm ¼ 0.08 T are plotted in Figs. 4(a) and 4(b), respectively.
We find that, in case I, the encircling process is stable and
adiabatic since the state evolution takes place on the lower-
loss Riemann sheet [also see the black line in Figs. 1(d) and
1(e)] so that cG dominates in the whole process. For case II,
however, the state first propagates on the higher-loss
Riemann sheet on which the state is known to be unstable
[29–38]. There is a delay time [32], after which a NAT
occurs [also see the black lines in Figs. 1(f) and 1(g)],
corresponding to the breakdown of adiabaticity [30–32].

After the NAT, the state propagates on the lower-loss
Riemann sheet and no further NATs occur. As a result,
the state returns to itself at the end of the loop because of
the one NAT. The output for counterclockwise loops is
therefore always an antisymmetric mode, independent
of the symmetry of the input mode, when one EP is
encircled. By the same argument, the output for clockwise
loops (i.e., cases III and IV) is always a symmetric mode
[see Figs. 3(e) and 3(f); also see the Supplemental Material
for trajectories on the Riemann surface [43]]. This is the
so-called chiral behavior of the transmission when one EP
is encircled [29,30,32–38]; i.e., the output depends solely
on the encircling direction regardless of the symmetry of
injection.
As we can vary the bias field strength to control the

size of the loop and our system has two EPs, we can then
study the dynamics when zero or two EPs are encircled.
Figure 3(b) indicates that in the two nonshaded regions, the
output mode is the same as the injection for all four cases,
as long as the loop is nowhere near the EP. The dynamics
turns out to be rather complex. We take the loops generated
at Bm ¼ 0.01 T and Bm ¼ 0.17 T as examples to inves-
tigate the dynamics. Figures 3(g) and 3(h) show, respec-
tively, the Hy field distributions in the waveguide system
for cases I and II at Bm ¼ 0.01 T. Although in both cases
the state returns to itself after completing the loop, they
exhibit different dynamics. To illustrate this point, we plot
in Figs. 4(c) and 4(d) the corresponding amplitudes of the
eigenmodes in the evolution process. The evolution process
in case I is adiabatic so that the state returns to itself, since
the loop does not enclose any EP. In case II, however, the
dynamics is highly nonadiabatic and two NATs occur
throughout the process. As a result, the mode symmetry
stays the same. The difference in the number of NATs can
be understood intuitively by drawing the trajectories of the
state evolution on the Riemann surface for cases I and II at
Bm ¼ 0.17 T, corresponding to an encircling of two EPs.
Considering the topological structure of our system, encir-
cling zero or two EPs should not make any difference to the
behavior of mode switching because the chirality of one EP
cancels the chirality of the other, since they are derived
from the same DP. The state acquires a geometric phase
when two EPs are encircled, although this is unrelated to
the symmetry of the output mode. We first consider case II
[yellow lines in Figs. 1(f) and 1(g)]. At the beginning, the
state stays on the higher-loss Riemann sheet until the first
NAT occurs, after which the state jumps to the lower-loss
sheet on which it becomes stable. Later at z ≈ 200mm, the
state reenters the higher-loss Riemann sheet via the branch
cut [also see Fig. 4(d)] and becomes unstable again until the
second NAT occurs. A total of two NATs occur in this
highly nonadiabatic process. The evolution process in case
I [yellow lines in Figs. 1(d) and 1(e)] is quite different
since at first the state propagates on the lower-loss sheet. It
is not until the state crosses over the branch cut [also see

(a) (b)

(c) (d)

FIG. 4. Calculated amplitudes of the eigenstates along the
waveguiding direction for (a) case I with Bm ¼ 0.08 T, (b) case II
with Bm ¼ 0.08 T, (c) case I with Bm ¼ 0.01 T, and (d) case II
with Bm ¼ 0.01 T, where cG and cL represent the coefficient of
the eigenstate projected onto the lower-loss and higher-loss
Riemann sheets, respectively. The black dashed lines in (c)
and (d) show the existence of a branch cut via which the state
can cross from one Riemann sheet to the other. The NAT is
characterized by the crossing of two curves.
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Fig. 4(c)] that it enters the higher-loss sheet. Interestingly,
the expected NAT does not occur, although in the rest of the
process the state is not stable. This is because the delay time
exceeds the time spent on the higher-loss sheet, indicating
that the expected NAT may occur if we increase the length
of the system (see the Supplemental Material for a
discussion [43]). The results of cases III and IV can be
similarly understood (see the Supplemental Material for
trajectories on the Riemann surface [43]). The number of
NATs, denoted by NNAT, is summarized in Fig. 3(b) for the
four cases.
We performed microwave experiments to demonstrate

the above effects. A photograph of the fabricated samples is
shown in Fig. 5(a) (see the figure caption for detailed
parameters). The YIG waveguides were made from pure
YIG with a saturation magnetization of 4πMs ≈ 1884 G
(produced by Nanjing Bi’ao Electronic Technology Co.,
Ltd.). The YIG waveguide-2 was created from a larger
sample using a hand polishing machine and followed the
shape designed in Fig. 2(d). The microwave absorber was
attached to only half of YIG waveguide-2. This has been

shown to be an effective way to minimize the dissipation of
the system while keeping the topology of the system intact
(see Ref. [35]; also see the Supplemental Material [43] for a
discussion on the performance of such a system). We
consider the phase difference Δφ ¼ jφ1 − φ2j as the
criterion to determine the symmetry of the output mode,
where φ1 (φ2) is the phase measured at the output side of
waveguide-1 (waveguide-2). By definition, Δφ ¼ 0° cor-
responds to a symmetric mode, whereas Δφ ¼ 180° to an
antisymmetric mode. In the experiment, the symmetric
injection was excited using an approximately 20-mm-long
antenna, while the antisymmetric injection was excited
using two approximately 8-mm-long antennas that were
connected to the source via a one-to-two power splitter and
placed along opposite directions so that their currents were
oscillating out of phase. An antenna approximately 8 mm in
length was placed at the exit of waveguide-1 and wave-
guide-2 to detect their corresponding phases φ1 and φ2. All
of the antennas were connected to an Agilent Technologies
8720ES Network Analyzer to record the transmission
intensity and phase.

(b) (c)

(d) (e)

(a)

FIG. 5. (a) A photograph of the fabricated coupled YIG waveguides. Waveguide-1 measures W ×H × L ¼ 8 × 4 × 400 mm, while
waveguide-2 measures αðzÞW ×H × L with the profile of αðzÞ shown in Fig. 2(d). The gap distance is g ≈ 0.5 mm. Microwave
absorbers with the dimensions of approximately 2 × 1 × 200 mm are attached to the side of waveguide-2 to introduce loss. (b), (c)
Experimentally measured phase differences Δφ at various bias fields Bm and frequencies for case I (b) and case III (c). (d), (e)
Numerically simulated phase differences Δφ as a function of the bias field Bm and frequency for case I (d) and case III (e). The two
dashed lines mark the calculated locations of EPs that partition the map into three regions depending on the number of EPs encircled.
The phase difference was calculated based on the obtained transmission intensities [e.g., Δφ ¼ 2 arctanðTas=TssÞ for case I].
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The measured phase differences as a function of the
external field strength (Bm) and frequency are shown in
Figs. 5(b) and 5(c), respectively, for cases I and III in which
a symmetric mode is injected. We note in Fig. 5(b) that, for
each frequency above approximately 8 GHz, there is a
specific range of Bm (in red) within which the system
exhibits a state flip. This specific range shifts towards larger
bias fields for lower frequencies. Figure 5(d) shows the
numerical simulation results for case I, which agree well
with the measurement. In the simulation, the relative
permittivity of the absorber is set to 3þ 10i, which can
best match the experimental results. We also determine for
each frequency the location of the EPs in the parameter
space and mark them with the two white dashed lines in
Fig. 5(d). The whole map is partitioned with these EP
trajectories into three regions depending on the number of
EPs encircled. The variation in the output mode symmetry
with increasing bias field indeed reflects a change in the
number of EPs encircled in the parameter space. In contrast,
the output in case III is always a symmetric mode
regardless of the number of EPs encircled [Figs. 5(c)
and 5(e)]. This thus demonstrates experimentally the
breakdown of adiabaticity. The deviation between exper-
imental and numerical results comes from the imperfect-
ness of the sample, which is made by hand polishing. In
addition, the input mode is excited using antennas placed
outside the waveguide and, as such, its symmetry can only
be approximately correct. However, even by just comparing
the experimental results themselves [Figs. 5(b) and 5(c)],

there is obviously a marked difference for the case of
encircling one EP. The phase differences for cases II and IV
injected with an antisymmetric mode are shown in Fig. 6.
All these results are consistent with the analysis in Fig. 3,
convincingly demonstrating the behavior of mode switch-
ing when different numbers of EPs are encircled; i.e., a
chiral behavior is found when one EP is encircled and no
state flip occurs when zero or two EPs are encircled.
Results of a control experiment are given in the
Supplemental Material [43]. The chiral nature of the
dynamics of encircling one EP has been exploited for
asymmetric mode switching [35,37]. Since the external
field in this work can be tuned continuously, our system can
be applied to the switching of modes controlled with
external fields, i.e., manipulating the symmetry of the
output state by dynamically encircling different numbers
of EPs. Note that the microwave absorber in our design is
attached on the YIG waveguide-2 with a varying width. We
can also attach the absorber on the straight YIG waveguide-
1 and the physics is the same.

IV. STARTING/END POINT IN THE BROKEN

PHASE: NONCHIRAL DYNAMICS

In the previous section, we have explored the dynamical
behavior when zero, one, or two EPs are dynamically
encircled. The starting/end point lies in the symmetric
phase, which is also the configuration explored in all
previous works [34–38]. In this section, we show that

(a) (b)

(c) (d)

FIG. 6. (a), (b) Experimentally measured phase differences Δφ at various bias fields Bm and frequencies for case II (a) and case IV (b).
(c), (d) Numerically simulated phase differences Δφ as a function of the bias field Bm and frequency for case II (c) and case IV (d).
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when the starting/end point moves to the broken phase, the
dynamical encircling results in a nonchiral transmission
behavior, in stark contrast to the chiral behavior when the
system starts from a point in the symmetric phase.
We first describe the principle behind the system design.

The starting/end point is still fixed at B0 ¼ 0 and α ¼ 1 for
ease of experimental realization. To fulfill this requirement,
the DP in the lossless system should be located close
enough to the zero-bias field. We find in Fig. 1(b) that
higher frequencies meet this requirement, so we set the
frequency to 11.5 GHz and choose the following system
parameters: W ¼ 8mm, H ¼ 4mm, and g ¼ 0.5mm.
The DP is then located at B0 ¼ 0.047 T [black circle in
Fig. 1(b)], which is also approximately the center of the
broken phase when microwave absorbers are attached [42].
We should choose a stronger absorber to ensure that the
lossy system stays in the broken phase region at B0 ¼ 0 and
α ¼ 1. To verify the design concept, we calculated the
effective mode index of the system with a stronger absorber
(w ¼ 2mm, h ¼ 3mm, ε ¼ 4þ 15i) and show the
Riemann surface in Fig. 7(a) (imaginary part). There is a
large gap between the two Riemann sheets at B0 ¼ 0,
confirming that the starting/end point indeed lies in the
broken phase, where one eigenmode is nearly lossless (see
the blue sheet) and the other one more lossy (see the red
sheet). This is a result of symmetry breaking; i.e., the power
flow of the lossless/lossy mode mainly propagates in the
lossless/lossy YIG waveguide. As expected, there is only
one EP, which lies at B0 ¼ 0.121 T and α ¼ 1.02 [also see
the parameter space in Fig. 8(a)].
The transmission intensities of the proposed system [see

Figs. 2(a) and 2(b) for the schematic diagram] with the
parameters mentioned above are calculated as a function of
Bm to investigate the behavior when the EP is encircled
with the starting/end point in the broken phase. The
transmission intensity Tnm (T 0

nm) is defined in the same
way as that in Fig. 3(b), except that here we use subscripts
G and L to denote the nearly lossless (i.e., a relative gain)
mode and the lossy mode, respectively. The results with a

gain mode injection and a loss mode injection are plotted in
Figs. 8(b) and 8(c), respectively, in which the region where
one EP is encircled is shaded. Under each injection, the
results of counterclockwise loops and clockwise loops look
almost the same, indicating a nonchiral transmission
behavior, which is distinct from the chiral behavior found
when the starting/end point is in the symmetric phase [see
Fig. 3(b)]. More interestingly, we find that the output is
always a gain mode, regardless of the details such as the
input, encircling direction, or even the number of EPs
encircled. To investigate the underlying physics, we study
four configurations in this section. Configurations A and B
are counterclockwise loops generated at Bm ¼ 0.03 T and
0.22 T, corresponding to an encircling of zero and one
EP, respectively, with a gain mode as the injection [see
Fig. 8(b)]. It is the same for configurations C and D, but
with a loss mode as the input [see Fig. 8(c)].
Figures 8(d)–8(g) show the Hy field profiles in the

waveguide system for configurations A–D, and the
amplitudes of their eigenmodes extracted from the field
profiles are plotted in Figs. 9(a)–9(d), respectively. We first
analyze the small encircling loop that excludes the EP.
Configuration A is the simplest case in the sense that the
state evolution stays all the time on the lower-loss Riemann
sheet [see the yellow line in Fig. 7(a)]. As a result, the
dynamical process is stable and adiabatic [Fig. 9(a)], as
verified by the calculated results, showing a concentration
of power flow in YIG waveguide-1 in the whole process
[Fig. 8(d)]. Configuration C is different in that a loss mode
is injected. The process is unstable at first until a NAT to the
lower-loss Riemann sheet occurs, and the state becomes
stable for the rest of the process [see the yellow line in
Fig. 7(b)]. This NAT can be seen from the field profiles in
Fig. 8(f). It is characterized by a power transfer from
waveguide-2 to waveguide-1 [see the black dashed line;
also refer to Fig. 9(c)].
Configurations B and D, in which one EP is encircled,

exhibit rather complex dynamics. Configuration B starts
with a stable evolution process. As the state encircles the

(a) (b)

FIG. 7. (a) Calculated imaginary part of the effective mode index as a function of the bias field and scale factor of the system at
11.5 GHz with structure parameters:W ¼ 8 mm, H ¼ 4 mm, g ¼ 0.5 mm, w ¼ 2 mm, and h ¼ 3 mm. The relative permittivity of the
absorber is set to 4þ 15i. The yellow and black lines mark the state evolution trajectory for configurations A and B (see text for
definition), respectively, and the white dashed line marks the branch cut. (b) Same as those in (a) except that the trajectories are for
configurations C and D.
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EP, it enters the higher-loss Riemann sheet via the branch
cut. A NAT then occurs after some delay time, causing the
state to jump to the lower-loss sheet, after which the stable
state arrives at the end point as a gain mode. The trajectory
of this process is plotted with a black line in Fig. 7(a),
according to the simulated field profiles in Fig. 8(e) and
amplitudes of the eigenmodes in Fig. 9(b). The branch cut
is characterized by a power transfer from waveguide-1 to
waveguide-2 [see the red dashed line in Fig. 8(e)].
Configuration D has the most complex dynamics. The
state is unstable at first so that it jumps to the lower-loss
sheet via a NAT. The following process is the same as that
of configuration B; i.e., the state reenters the higher-loss
sheet via the branch cut, experiences a second NAT, and
reaches the end point as a gain mode [see the black line in
Fig. 7(b); also see Figs. 8(g) and 9(d)].
The number of NATs obtained from the above analysis is

summarized in Figs. 8(b) and 8(c), which shed light on the
complex transmission behavior. When a gain mode is
injected, configuration A exhibits the highest transmission
intensity, since the state evolution is always on the lower-
loss sheet. As the bias field is increased to enlarge the

(d)

(a) (b)

(e)

(f)

(g)

FIG. 8. (a) Loops in the parameter space generated with Bm ¼ 0.03 T (yellow loop not enclosing any EP) and 0.22 T (black loop
enclosing one EP). The starting/end point lies at B0 ¼ 0 and α ¼ 1, corresponding to the broken phase. The black dashed line represents
the broken phase line, where the real parts of the eigenvalues coalesce. (b) Calculated transmission intensities as a function of Bm for
counterclockwise loops and clockwise loops with a gain mode as the injection. The shaded region represents the area where one EP is
dynamically encircled. The number of NATs in the dynamical process is given in different regions. (c) Same as those in (b) except that
the injection is a loss mode. (d)–(g) Numerically simulated Hy field distributions in the waveguide system for configurations A–D (see
text for definition). The black dashed lines and red dashed lines mark the NAT and branch cut, respectively. System parameters are the
same as those given in Fig. 7.

(a) (b)

(c) (d)

FIG. 9. (a)–(d) Calculated amplitudes of the eigenstates along
the waveguiding direction for configurations A–D.
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encircling loop, the EP can be encircled. The state is then
able to climb up to the higher-loss sheet so that the
transmission drops considerably. The delay time of the
unstable state on the higher-loss sheet is determined by
the system parameters, especially the absorber properties.
The transmission dip in Fig. 8(b) (Bm ≈ 0.17 T) can thus
be interpreted as a process featuring the largest energy
attenuation, considering both the encircling loop and the
delay time. It is also evident that the transmission intensity
should be much lower when a loss mode is injected, e.g.,
configurations C and D.
We performed experiments to verify the above analysis.

In the experiments, the gain mode and loss mode were

excited by putting an approximately 8-mm-long antenna
near the entrance of waveguide-1 and waveguide-2, respec-
tively. The measured transmission spectra at 11.5 GHz are
shown in Figs. 10(a) and 10(b), which agree well with the
numerical results in Figs. 8(b) and 8(c), confirming the
nonchiral transmission behavior. We also measured
the electric field intensity to elucidate the NATs in the
dynamical process. In the experimental measurement, we
put an approximately 8-mm-long antenna on top of each
YIG waveguide to measure their corresponding electric
field intensity as a function of z. The measured results of
counterclockwise loops with a gain injection at differentBm

values are shown in Figs. 10(c) and 10(d), respectively, for

(a) (b)

(c) (d)

(e) (f)

FIG. 10. (a), (b) Experimentally measured transmission intensities at 11.5 GHz as a function of Bm with a gain mode (a) or a loss mode
(b) as the injection. The system parameters areW ¼ 8 mm, H ¼ 4 mm, and g ¼ 0.5 mm. A microwave absorber stronger than the one
used in Fig. 5(a) with the dimensions of approximately 3 × 2 × 400 mm is attached to waveguide-2. (c)–(f) Experimentally measured
surface electric field intensities along the waveguiding direction at 11.5 GHz for different values of Bm. Results for counterclockwise
loops with a gain mode as the injection are shown in (c) and (d) for waveguide-1 (WG1) and waveguide-2 (WG2), respectively, while
results for counterclockwise loops with a loss injection are shown in (e) and (f).
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waveguide-1 and waveguide-2. We find in Fig. 10(d) that
the field intensity in waveguide-2 is very weak at z ¼ 0. In
the range Bm > ∼0.125 T, there is a considerable increase
in the field intensity at the center of the system
(z ≈ 20mm). This is a typical feature of the branch cut
(see the dashed ellipse) and confirms the dynamical
encircling of one EP in experiment. The state then climbs
up to the higher-loss Riemann sheet via the branch cut so
that it becomes unstable, allowing a NAT to occur, as
shown by the drastic decrease in the field intensity at z ≈
30mm (see the dashed ellipse). The number of NATs is,
therefore, a good indicator of the number of EPs encircled.
The same measurements but with a loss injection are shown
in Figs. 10(e) and 10(f). The first NAT appears at z ≈ 5mm
for all values of Bm [see the white dashed ellipse in
Fig. 10(f)], after which the state jumps to the lower-loss
Riemann sheet associated with a sudden increase in the
field intensity in waveguide-1 [see Fig. 10(e)]. The follow-
ing dynamics is the same as that with a gain injection;
i.e., the state reenters the higher-loss sheet via the branch
cut and experiences a second NAT [see the two dashed
ellipses in Fig. 10(f)], for the loops enclosing one EP only.
The experimentally measured transmission spectra and
number of NATs extracted from the field profiles strongly
support the numerical simulations and demonstrate the
nonchiral behavior when the starting/end point lies in the
broken phase.

V. THEORETICAL DEMONSTRATION OF THE

NONCHIRAL DYNAMICS

In this section, we consider the time evolution of a
simple non-Hermitian Hamiltonian to show that the dynam-
ics is nonchiral when the starting point lies in the broken
phase. We consider a two-state system governed by
i∂tjψðtÞi ¼ HðtÞjψðtÞi, where the generic time-dependent
Hamiltonian has the form

HðtÞ ¼

�
igðtÞ þ δðtÞ κ

κ −igðtÞ − δðtÞ

�

; ð1Þ

and jψðtÞi ¼ ½aðtÞ; bðtÞ�T is the state vector at time t. It is
easy to see that gðtÞ and δðtÞ represent, respectively, the
amount of gain/loss and detuning, and the coupling
strength is denoted by κ, which, for simplicity, is set to
be −1. We use this simple Hamiltonian to highlight the fact
that the phenomenon we have observed is rather generic,
and not just specific to our particular experimental con-
figuration. A two-parameter space with g and δ is shown in
Fig. 11(a), where we have a pair of EPs at g ¼ �1 and
δ ¼ 0. The red line and green line correspond to the broken
phase and symmetric phase, respectively. We consider an
encircling loop parametrized by

gðtÞ ¼ 1 − ρ cosðγtÞ; δðtÞ ¼ ρ sinðγtÞ; ð2Þ

where ρ denotes the radius of the loop [see Fig. 11(a)], and
γ is a measure of adiabaticity. A positive γ leads to a
counterclockwise loop, whereas a negative γ to a clockwise
loop. The starting point and end point are chosen at t0 ¼
−π=jγj and tend ¼ π=jγj, respectively, so that they both lie
in the broken phase. There are two eigenmodes, i.e., a
gain mode and a loss mode, at the starting/end point.

The corresponding eigenvalues are λG ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

and

λL ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

, while the right eigenvectors are jψGi ¼

½1; iðρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ�
T and jψLi ¼ ½1; iðρþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ�T .

(a) (b)

(c) (d)

(f)(e)

FIG. 11. (a) The g − δ parameter space where a pair of EPs
locates at g ¼ �1 and δ ¼ 0. The circle with a radius ρ depicts a
trajectory to encircle the EP with the starting point in the broken
phase. The red line and green line denote the broken phase and
symmetric phase, respectively. (b) Calculated jbðtendÞ=aðtendÞj as
a function of ρ with γ ¼ 0.1 (counterclockwise loops) and −0.1
(clockwise loops). The region with ρ < 2 corresponds to the
dynamical encircling of one EP, whereas that with ρ > 2

corresponds to the encircling of two EPs. We performed four
calculations (i.e., counterclockwise/clockwise loop with a gain/
loss input) and the results are all the same, as shown by the black

circles. The red line shows the value of ρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

as a
function of ρ, which matches well with the black circles,
indicating that the final state is always a gain state. (c)–(f)
Calculated amplitudes of the eigenvectors for (c) counterclock-
wise loop with a gain input, (d) counterclockwise loop with a loss
input, (e) clockwise loop with a gain input, and (f) clockwise loop
with a loss input. In the calculations, we choose ρ ¼ 1 and
γ ¼ �0.1, corresponding to the dynamical encircling of an EP.
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We first calculated the evolution of the state vector
jψðtÞi by numerically solving the time-dependent
equation. The state vector at each time step can be
decomposed as a sum of the instantaneous right eigenvec-
tors, i.e., jψðtÞi ¼ CGjψGðtÞi þ CLjψLðtÞi, where jψGðtÞi
and jψLðtÞi are instantaneous right eigenvectors that can be
solved from the instantaneous Hamiltonian, and their
corresponding amplitudes CG and CL can be obtained
by projecting the state vector onto the left eigenvectors.
This process is exactly the same as that for calculating
the amplitudes of the instantaneous eigenmodes in the
coupled waveguide system (see Figs. 4 and 9). The
amplitudes of the instantaneous eigenvectors with ρ ¼ 1

and γ ¼ �0.1, corresponding to the dynamical encircling
of an EP, are shown in Figs. 11(c)–11(f) for different input
modes and encircling directions as indicated in the
figures. The blue lines are associated with the gain
eigenstate while the red dashed lines with the loss
eigenstate. We can infer from the results that the output
is always dominated by the gain eigenstate, regardless of
the input state and encircling direction. For any input
state, the dynamics for counterclockwise and clockwise
loops are nearly the same. There is one NAT when a
gain state is injected and two NATs with a loss state
injection. The results of this simple model well reproduce
the features of the coupled waveguide system [see
Figs. 9(b) and 9(d)]. A more rigorous way to identify
the output state is to calculate jbðtendÞ=aðtendÞj as a
function of ρ. We find that, no matter which state is
injected and which direction the encircling takes, the
results are the same, as shown by the black circles in
Fig. 11(b), where we fix γ ¼ �0.1. We know the gain state

has the eigenvector jψGi ¼ ½1; iðρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ�
T, so

that the corresponding ratio jb=aj ¼ ρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

.
This expression is plotted as a function of ρ in Fig. 11(b)
by the red line, which coincides with jbðtendÞ=aðtendÞj,
indicating that the final state is always a gain state when
the starting point lies in the broken phase, no matter
whether one or two EPs are encircled (i.e., ρ < 2 for
encircling one EP and ρ > 2 for two EPs).
In fact, this preferred final state and the corresponding

nonchiral dynamics can be proved mathematically by
deriving an analytical form of jbðtendÞ=aðtendÞj. The above
model Hamiltonian and trajectory in the parameter space
have been analyzed recently [34], where the authors
studied the dynamics with the starting point in the sym-
metric phase and derived a closed-form expression of the
state evolution. We adopt the same method to study our
case. The key to the derivation is to first recast Eq. (1)
into a second order differential equation for aðtÞ, e.g.,
d2aðtÞ=dt2 − ½ρ2e2iγt − ρð2þ iγÞeiγt�aðtÞ ¼ 0, which can
further be reduced to a degenerate hypergeometric differ-
ential equation. We first consider γ > 0, and the solution
can be written as a sum of confluent hypergeometric
functions of the first kind F and second kind U. By

applying initial conditions, the state vector can be
expressed in the form of a transfer matrix,

½aðtÞ; bðtÞ�T ¼ σðtÞM1ðtÞM2M3½aðt0Þ; bðt0Þ�
T ; ð3Þ

where σðtÞ ¼ iΓði=γÞeiðρ=γÞðe
iγt−1Þ, with Γ being the gamma

function, and the matrices are

M1ðtÞ ¼

�

Fð0Þ Uð0Þ

iFð0Þ þ 2ρeiγtFð1Þ=γ iUð0Þ − 2ρeiγtUð1Þ=γ

�

;

ð4aÞ

M2 ¼

2

6
4

ρU
ð0Þ
t¼−π=γ=γ þ 2iρU

ð1Þ
t¼−π=γ=γ

2 −U
ð0Þ
t¼−π=γ

−ρF
ð0Þ
t¼−π=γ=γ þ 2iρF

ð1Þ
t¼−π=γ=γ

2 F
ð0Þ
t¼−π=γ

3

7
5;

ð4bÞ

M3 ¼

�
1 0

ð1þ ρÞ=γ i=γ

�

; ð4cÞ

where FðnÞ and UðnÞ represent confluent hypergeometric
functions [45] Fðnþi=γ;nþ1;−2iρeiγt=γÞ and Uðnþ i=γ;

nþ 1;−2iρeiγt=γÞ, respectively. The mathematical tech-
niques used to solve the differential equation can be found
in Ref. [34]. Our formulas are slightly different from those
in Ref. [34] [see Eqs. (6a)–(6c) there] since here we have
the initial condition t0 ¼ −π=γ (i.e., the starting point in the
broken phase), whereas the starting point in Ref. [34] lies in
the symmetric phase with t0 ¼ 0.
We now take a closer look at Eqs. (4a)–(4c). We focus

on the final time step tend ¼ π=γ and we introduce a
matrix M ¼ M1ðtendÞM2M3 with matrix elements (see
Appendix B for details)

m11 ¼ −
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ

þ
2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ; ð5aÞ

m12 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ; ð5bÞ

m21 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

8πρi

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ

−
8πρ2

γ3Γði=γÞ
F
ð1Þ
t¼π=γF

ð1Þ
t¼π=γ; ð5cÞ

m22 ¼
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ −

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ

þ
2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ: ð5dÞ
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It is difficult to further simplify the above formulas, but it
is instructive to consider some limiting cases. Here, we
choose a finite γ and let ρ → ∞, corresponding to the
dynamical encircling of two EPs. A big enough ρ can make
the system parameters change slowly enough so that it will
not introduce nonadiabaticity into the system, which means
the nonadiabaticity (if any) only comes from the non-
Hermiticity induced by the gain and loss. In the limit
ρ → ∞, we have z → ∞ for Fðp1; p2; zÞ and Uðp1; p2; zÞ
since z ¼ 2iρ=γ. Then we can use the asymptotic expan-
sions of Fðp1; p2; zÞ ≈ ð−zÞ−p1Γðp2Þ=Γðp2 − p1Þ and
Uðp1; p2; zÞ ≈ z−p1 in the limit z → ∞ [see Eqs. (4.1.3)
and (4.1.12) in Ref. [45]], which leads to

F
ð0Þ
t¼π=γ ≈ iΓði=γÞð2iρ=γÞ−i=γ=ð2πÞ; ð6aÞ

F
ð1Þ
t¼π=γ ≈ −γΓði=γÞð2iρ=γÞ−i=γ=ð4πρÞ; ð6bÞ

U
ð0Þ
t¼π=γ ≈ ð2iρ=γÞ−i=γ ð6cÞ

U
ð1Þ
t¼π=γ ≈ −iγð2iρ=γÞ−i=γ=ð2ρÞ: ð6dÞ

Inserting these asymptotic forms into Eqs. (5a)–(5d)
can help simplify the expressions of the matrix elements.
We find m11 ¼ m21 ¼ m22 ¼ 0 and only m12 ≠ 0 (see
Appendix C for details). The final state jbðtendÞ=aðtendÞj
then takes the form

jbðtendÞ=aðtendÞj ¼

�
�
�
�

m21aðt0Þ þm22bðt0Þ

m11aðt0Þ þm12bðt0Þ

�
�
�
�

¼

�
�
�
�

0

m12bðt0Þ

�
�
�
�
¼ 0. ð7Þ

This analytic result demonstrates that no matter
what state is injected, the final state always has
jbðtendÞ=aðtendÞj → 0 when ρ → ∞. Meanwhile, the ratio
of the eigenvector element jb=aj for the gain state [i.e.,

a ¼ 1, b ¼ iðρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ] and loss state [i.e.,

a ¼ 1, b ¼ iðρþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ] is, respectively, 0 and
∞ in the limit ρ → ∞. We can, therefore, conclude that the
final state is always a gain mode for the generic model
described by Eq. (1). The case of γ < 0 can also be proved
to have jbðtendÞ=aðtendÞj → 0 using a similar process. This
demonstrates the nonchiral dynamics when the starting
point lies in the broken phase.

VI. DISCUSSION ON THE ROLE OF THE

STARTING/END POINT

As we have demonstrated the chiral and nonchiral
dynamics in Secs. III and IV, we discuss the role of the
starting/end point in this section. The key to understanding
the dynamics in the encircling process is the NAT, which
may occur if there is more than one eigenstate in the

non-Hermitian system and the predominant eigenstate is
not the one with the lowest loss. The state in the dynamical
process is stable only if it is on the Riemann sheet with the
lowest loss. Once the state climbs up to a higher-loss
Riemann sheet via the branch cut (e.g., see configurations
B and D in Figs. 7–10), it becomes unstable, but a NAT
does not occur immediately. There is a certain system-
parameter-dependent delay before a NAT occurs, and this
delay time plays a key role in the dynamical process. We
have demonstrated both numerically and experimentally
that the delay time can always be accessed in the systems
studied in this work when one EP is encircled (see the state
trajectories in Figs. 1 and 7). This fact implies that when the
state approaches the end point, it would be on the lower-
loss Riemann sheet (i.e., the blue sheet in Figs. 1 and 7),
and the details of the previous dynamical process such as
the injected mode and the number of NATs would all be
forgotten by the system. As a result, the final state is solely
determined by the encircling direction. We note in Fig. 1(d)
that in the symmetric phase line, the blue sheet is
discontinuous so that when the starting/end point lies
there, counterclockwise loops result in an antisymmetric
output, whereas clockwise loops a symmetric output,
corresponding to a chiral transmission behavior. When
the starting/end point moves to the broken phase, where the
blue sheet is continuous [see Fig. 7(a)], counterclockwise
loops and clockwise loops give the same output, i.e., the
gain mode, showing a nonchiral transmission behavior.
The chiral and nonchiral dynamics can also be under-

stood using the theoretical model proposed in Sec. V.
It was shown in Ref. [34] that, when the encircling
direction is reversed, the final state can be obtained by
simply employing a transformation to the state vector
½aend; bend�

T
→ ½a�end;−b

�
end�

T . When the starting/end
point lies in the symmetric phase (i.e., t ¼ 0), the eigen-
vectors are jψ1i ¼ ½1; eiθ�T and jψ2i ¼ ½1;−e−iθ�T , where
θ ¼ arcsinð1 − ρÞ. It is easy to find jψ1i → jψ2i and
jψ2i → jψ1i by doing the above transformation. The
dynamics is chiral, i.e., changing the encircling direction
flips the final state. The situation is quite different
if the starting point is in the broken phase where the

eigenvectors are jψGi ¼ ½1; iðρþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ�
T and

jψLi ¼ ½1; iðρþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

Þ�
T . Performing the above

transformation leads to jψGi→ jψGi and jψLi → jψLi,
indicating that reversing the encircling direction does not
affect the final state, which is exactly the nonchiral
dynamics found in this work. This mathematical interpre-
tation shows that the chiral and nonchiral dynamics
are related to the properties of the eigenvectors in the
symmetric and broken phase.
The above analysis actually applies to loops that enclose

any number of EPs, provided that the NAToccurs each time
when the state is on the higher-loss sheet. In fact, we have
observed the nonchiral dynamics when zero EPs [see
Figs. 8(b) and 8(c)] and two EPs [see Fig. 11(b) and
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Eq. (7)] are dynamically encircled with the starting point
in the broken phase. For the case with the starting point in
the symmetric phase, we note in Fig. S3(a) (see the
Supplemental Material [43]) that, when the waveguide is
longer (L ¼ 1000 nm), the dynamics is always chiral,
independent of whether zero, one, or two EPs are encircled.
However, the chiral dynamics is not observed in our
experimental system (L ¼ 400 nm) when zero and two
EPs are encircled (see Figs. 5 and 6), which is due to the
fact that our system is not long enough for the required
NAT to occur. We note that a very recent paper [46] (with a
starting point in the symmetric phase) also pointed out that
the chiral dynamics can be observed when the loop does not
encircle any EP in the limit of very slow cycles, which is
consistent with our analysis.
A natural question to ask is what the final state would be

if the starting/end point lies somewhere far away from both
the symmetric and broken phases. Although the above
analysis indicates that the output is likely to be the mode
with a lower loss, this is still an open question since the
delay time is not always accessible. A stability loss delay
was introduced in Ref. [32] to study the dynamical
encircling of EPs, and the analytical form of the delay
time for simple examples was derived. However, determin-
ing the delay time in realistic non-Hermitian systems
remains a very complicated issue that needs further
investigation.

VII. CONCLUSION

In summary, we have shown both numerically and
experimentally that a pair of ferromagnetic waveguides
applied with nonuniform bias magnetic fields serves as a
good platform to study dynamical processes in non-
Hermitian systems. Such a system has two EPs and, hence,
energy surfaces with a more complex topology. The
trajectory of the state in the parameter space can be
controlled in situ, as demonstrated experimentally. Using
the proposed system, we have demonstrated experimentally
the chiral dynamics when one EP is encircled. We can also
dynamically encircle more than one EP experimentally to
reveal the topological structure of the system possessing
multiple EPs. More importantly, we revealed that whether
the so-called chiral behavior can be observed depends on
the location of the starting/end point of the encircling loop.
When the starting/end point moves to the broken phase, the
system exhibits nonchiral dynamics. We have proposed a
theoretical model to interpret the underlying physics. Our
results clarify the role of the starting/end point in the
dynamical process of encircling EPs. The proposed system
can be applied to mode switching controlled with an
external parameter without changing or moving the sample.
The platform can also be used to study more complex
dynamics in non-Hermitian systems such as the encircling
of high-order EPs.
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APPENDIX A: CONSTRUCTING LEFT

EIGENVECTORS

There are two eigenmodes in the waveguide system
propagating along the positive z-axis. Their transverse
electric and magnetic fields are denoted by E

R
νt, E

R
μt and

H
R
νt, H

R
μt, where ν ≠ μ and the superscript R indicates that

they are right eigenvectors. The inner product of the two
right eigenvectors in the waveguide configuration is defined
as an integration over the entire waveguide cross section S:

ξ ¼
1

4

Z

S

½ER
νtðx; yÞ ×H

R�
μt ðx; yÞ

þ E
R�
μt ðx; yÞ ×H

R
νtðx; yÞ� · zds: ðA1Þ

We have ξ ≠ 0 since the system is non-Hermitian. The
corresponding left eigenvector can then be constructed via

E
L
νt ¼ ðER

νt − ξER
μtÞ=ζ

H
L
νt ¼ ðHR

νt − ξHR
μtÞ=ζ; ðA2Þ

where we have defined

ζ ¼

Z

S

1

2
Re½ER

νtðx; yÞ ×H
R�
νt ðx; yÞ� · zds − jξj2: ðA3Þ

It is easy to verify that

1

4

Z

S

½EL
νtðx; yÞ ×H

R�
μt ðx; yÞ þE

R�
μt ðx; yÞ ×H

L
νtðx; yÞ�

· zds ¼ 0

1

4

Z

S

½EL
νtðx; yÞ ×H

R�
νt ðx; yÞ þE

R�
νt ðx; yÞ ×H

L
νtðx; yÞ�

· zds ¼ 1; ðA4Þ

which satisfies the orthogonal relation between left
eigenvectors and right eigenvectors. Consider the trans-
verse field distributions as a linear combination of the
eigenfields:
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Etðx; yÞ ¼ cνE
R
νtðx; yÞ þ cμE

R
μtðx; yÞ

Htðx; yÞ ¼ cνH
R
νtðx; yÞ þ cμH

R
μtðx; yÞ: ðA5Þ

The amplitude coefficients can then be solved by
projecting the transverse field distribution onto the left
eigenvectors:

cν ¼
1

4

Z

S

½EL�
νt ðx; yÞ ×Htðx; yÞ þ Etðx; yÞ ×H

L�
νt ðx; yÞ�

· zds: ðA6Þ

In the simulations, we first performed full wave calcu-
lations to obtain all the field components in the system such
as those in Figs. 8(d)–8(g). Then we performed eigenmode

analysis at each position z to get the right eigenvectors of a
uniform waveguide of the same cross section. After that, we
constructed the left eigenvectors using Eq. (A2). Finally,
we projected the transverse field distributions at each
position z onto the corresponding left eigenvectors using
Eq. (A6), and we got the amplitudes of the eigenmodes,
which were then shown in, for example, Figs. 9(a)–9(d) to
help understand the number of nonadiabatic transitions that
occurred in the process.

APPENDIX B: DERIVATION OF EQ. (5)

Starting from Eqs. (4a)–(4c), the elements of the matrix
M at the final time step tend ¼ π=γ are

m11 ¼
1

γ
ðU

ð0Þ
t¼π=γF

ð0Þ
t¼−π=γ − F

ð0Þ
t¼π=γU

ð0Þ
t¼−π=γÞ þ

2iρ

γ2
ðF

ð0Þ
t¼π=γU

ð1Þ
t¼−π=γ þ U

ð0Þ
t¼π=γF

ð1Þ
t¼−π=γÞ

m12 ¼
i

γ
ðU

ð0Þ
t¼π=γF

ð0Þ
t¼−π=γ − F

ð0Þ
t¼π=γU

ð0Þ
t¼−π=γÞ

m21 ¼ −
2ρ

γ2
ðF

ð0Þ
t¼π=γU

ð1Þ
t¼−π=γ þU

ð0Þ
t¼π=γF

ð1Þ
t¼−π=γÞ −

4iρ2

γ3
ðF

ð1Þ
t¼π=γU

ð1Þ
t¼−π=γ −U

ð1Þ
t¼π=γF

ð1Þ
t¼−π=γÞ

−
i

γ
ðF

ð0Þ
t¼π=γU

ð0Þ
t¼−π=γ −U

ð0Þ
t¼π=γF

ð0Þ
t¼−π=γÞ þ

2ρ

γ2
ðF

ð1Þ
t¼π=γU

ð0Þ
t¼−π=γ þU

ð1Þ
t¼π=γF

ð0Þ
t¼−π=γÞ

m22 ¼
1

γ
ðF

ð0Þ
t¼π=γU

ð0Þ
t¼−π=γ −U

ð0Þ
t¼π=γF

ð0Þ
t¼−π=γÞ þ

2iρ

γ2
ðF

ð1Þ
t¼π=γU

ð0Þ
t¼−π=γ þ U

ð1Þ
t¼π=γF

ð0Þ
t¼−π=γÞ: ðB1Þ

We use the properties of confluent hypergeometric functions to simplify these formulas. It is easy to find F
ð0Þ
t¼−π=γ ¼

F
ð0Þ
t¼π=γ and F

ð1Þ
t¼−π=γ ¼ F

ð1Þ
t¼π=γ . On the other hand, the principal value of Uðp1; p2; zÞ is in the interval −π < argðzÞ < π.

Apparently, Uð0Þ
t¼−π=γ and U

ð1Þ
t¼−π=γ are out of this range so that we have to use a connection formula [see Eq. (2.2.20) in

Ref. [45]]

U
ð0Þ
t¼−π=γ ¼

2πi

Γði=γÞ
F
ð0Þ
t¼π=γ þ U

ð0Þ
t¼π=γ

U
ð1Þ
t¼−π=γ ¼ −

2πi

Γði=γÞ
F
ð1Þ
t¼π=γ þU

ð1Þ
t¼π=γ: ðB2Þ

Inserting Eq. (B2) into Eq. (B1), we obtain more simplified expressions

m11 ¼ −
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ

m12 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ

m21 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

8πρi

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ −

8πρ2

γ3Γði=γÞ
F
ð1Þ
t¼π=γF

ð1Þ
t¼π=γ

m22 ¼
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ −

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ; ðB3Þ

which are exactly Eqs. (5a)–(5d) of the main text.
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APPENDIX C: DETERMINATION OF m11, m12, m21, AND m22

Inserting Eqs. (6a)–(6d) into Eqs. (5a)–(5d), we have

m11 ¼ −
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ ¼

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ

−
iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ þ

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ −

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ ¼ 0; ðC1Þ

m12 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ ¼ −

Γði=γÞ

2πγ
ð2iρ=γÞ−2i=γ; ðC2Þ

m21 ¼
2π

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ þ

8πρi

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ −

8πρ2

γ3Γði=γÞ
F
ð1Þ
t¼π=γF

ð1Þ
t¼π=γ ¼ −

Γði=γÞ

2πγ
ð2iρ=γÞ−2i=γ

þ
Γði=γÞ

πγ
ð2iρ=γÞ−2i=γ −

Γði=γÞ

2πγ
ð2iρ=γÞ−2i=γ ¼ Γði=γÞð2iρ=γÞ−2i=γ

�

−
1

2πγ
þ

1

πγ
−

1

2πγ

�

¼ 0; ðC3Þ

m22 ¼
2πi

γΓði=γÞ
F
ð0Þ
t¼π=γF

ð0Þ
t¼π=γ −

4πρ

γ2Γði=γÞ
F
ð0Þ
t¼π=γF

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð0Þ
t¼π=γU

ð1Þ
t¼π=γ þ

2iρ

γ2
F
ð1Þ
t¼π=γU

ð0Þ
t¼π=γ ¼ −

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ

þ
iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ þ

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ −

iΓði=γÞ

2πγ
ð2iρ=γÞ−2i=γ ¼ 0: ðC4Þ

Therefore, we see that m11 ¼ m21 ¼ m22 ¼ 0 and m12 ≠ 0 in the limit ρ→ ∞.
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