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DYNAMICALLY EVOLVING GAUSSIAN SPATIAL FIELDS

ANASTASSIA BAXEVANI, KRZYSZTOF PODGÓRSKI1, AND IGOR RYCHLIK

Abstract. We discuss general non-stationary spatio-temporal surfaces that involve dy-

namics governed by velocity fields. The approach formalizes and expands previously used

models in analysis of satellite data of significant wave heights. We start with homogeneous

spatial fields and by applying an extension of the standard moving average construction

we arrive to stationary in time models. The obtained surface although changing in time

can be considered dynamically inactive since its velocities when sampled across the field

have distributions centered at zero. We introduce a dynamical evolution to such a field

by composing it with a dynamical flow governed by a given velocity field. This leads to

non-stationary models that are extensions of the previous discretized auto-regressions ac-

counting for a local velocity of traveling surface. For such a surface we demonstrate that its

dynamics is a combination of dynamics introduced by the flow and the dynamics resulting

from the covariance structure of the underlying stochastic field. We extend this approach

to fields that are only locally stationary and have their parameters varying over a larger

spatio-temporal horizon.

1. Introduction

1.1. Motivation and basic terminology. Recent technological advances such as aerial

laser and satelite scanning result in increasingly complex environmental data over large

regions in space and over relatively long periods of time. Examples of such data, among

others, come from marine climate, air quality, and vegetation surveys. Accounting for all

aspects of such spatio-temporal data can be a challenging task thus a proper stochastic

framework has to be carefully designed to capture important features of the considered data.

For example in [4], Gaussian spatio-temporal fields have been successfully used to model

non-stationary in time and space variation of the significant wave height data combined from

1Research partially supported by the Swedish Research Council Grant 2008-5382
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vast satellite records as well as by a stationary buoy or systems of buoys. Here we elaborate

on general mathematical models that, in a special case, lead to the models discussed in

that work. In the analysis of such models, the focus is on dynamically evolving fields that

locally represent the data. The considered fields account both for large scale variability and

variability introduced by a dynamical flow that transports stochastic effects from one region

to another.

In view of environmental applications, our main object of studies, a stochastic fieldX(p, t),

has two arguments: space variable p representing position and time variable t. We limit

ourselves to the case p = (x, y) although extension to higher dimensions is immediate. In

connection with some invariance properties, we use the following terminology. We call a field

stationary if it is invariant to shifts in time and space, i.e. for each fixed p0 and t0: X(p +

p0, t+ t0)
d
= X(p, t), where

d
= stands for the equality of underlying probability distributions

of stochastic processes (in p and t variables). The invariance only to shift in space (time)

will be referred to as spatial (temporal) stationarity. If the field is (in distribution) invariant

on the space rotation, i.e. X(Rφp, t)
d
= X(p, t), where Rφ is the rotation by an angle φ,

then we call X isotropic. Finally, a field that is isotropic and stationary in space is referred

to as homogeneous.

1.2. Description of the approach. Gaussian stationary fields constitute a convenient class

of models that found many applications. In this work they serve as building blocks for more

general, non-stationary models. The need to reach beyond stationarity is usually due to two

aspects observed in environmental records: dynamics and spatio-temporal variability due to

different properties at different locations (or/and time instants). The nature of these devi-

ations from stationarity is different and thus has to be treated differently. In our approach,

the dynamics is introduced through a deterministic flow that transports independently and

locally generated stochastic fields, while the long scale variability is represented by location

and time dependent spectra of the underlying locally stationary fields. In the course of our

presentation we start with a given spatial-only covariance and introduce temporal depen-

dence following a classical time series approach in which independent spatial innovations

have the assumed spatial covariance structure. For the so obtained fields under stationarity,

we argue that properly defined velocities sampled randomly from the surface are centered

at zero indicating that the fields are dynamically inactive. Then we introduce dynamics by
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means of a velocity field representing the motion of the surface. This velocity field transports

the independent stochastic innovations created at each time point and weighted by a proper

time dependent scaling that diminishes over time. These scaled innovations, when added up,

result in a field that is stationary neither in space nor in time. This spatio-temporal variabil-

ity is due only to different velocities at different locations and times and thus is dictated by

the underlying flow. Analysis of the velocity distributions of these fields can be performed

by a method of [5] and it is observed that velocities are centered at the value that is the sum

of the flow velocity and an additional term that is due to the non-isotropic character of the

underlying stochastic field.

As it was pointed out, from a practical point of view it is also important to account for

the spatial variability that is due not only to the motion but also to geographic specificity of

the location. The approach is extended to account for this type of non-stationarity in space

by taking spectral representations corresponding to stationary fields but making spectra

depending on parameters that vary from one location to another.

1.3. Relation to previous work. Our main inspiration is the model that was described

in a discretized version in [4]. It starts with a selected spatial stationary Gaussian covari-

ance function rS(p) = σ2 exp(−|p|2/(2L2)). Then, temporal dependence is introduced by

considering the recursive autoregression

(1) X(p, t) = ρX(p − vdt, t− dt) +
√

1 − ρ2 Φt(p),

with independent (in t) innovations Φt(p) having the covariance rS. The model has simple

motivation: at each time step the past surface is moving forward to a new location with

velocity v and is modified by an independent innovation with prescribed (fixed) spatial

covariance structure. The resulting (stationary) covariance is of the form r(p, t) = ρtrS(p−
vt).

In the quoted work the model has been also extended to account for a lack of station-

arity in space. This has been accomplished at three different levels. Firstly, by taking the

non-stationary innovation Φt(p) with a general covariance rS(p′,p). In particular, the de-

pendence of L on location in the Gaussian covariances has been considered. Secondly, the

auto-regression coefficient ρ has been made dependent on the location. Finally, it has been

also assumed that the velocity v depends on both location p and time t. In this work, the
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case of equation (1) with v = 0 will be referred to as the underlying static field and be

denoted by X0 in parallel to the dynamical field X with non-zero velocity. We note that

the first two sources of non-stationarity mentioned above are due to the non-dynamical field

while the latter is a result of dynamical flow represented here by velocities.

This work is extending the above model in several aspects. Firstly, we depart from the

discretization and provide with a fully continuous set-up by means of properly defined moving

averages in time of independent spatial fields

X(p, t) =

∫ ∞

−∞

f(t− s) Φ(p; ds).

Secondly, and more importantly, we notice that the construction is independent of the form

of spatial covariance rS and can lead to fairly general time dependence as defined by corre-

lations ρ(t) ∼ f ∗ f̃(t), where ∗ stands for the operation of convolution and f̃(u) = f(−u).
Essentially, for each covariance in space rS(p) and a general class of correlations in time

ρ(t), we explicitly represent Gaussian fields with covariance structure given by the product

rS(p) · ρ(t).
The model coincides with the one that in the discretized version was given by (1). Dy-

namics is expressed by an arbitrary time varying velocity field that generates a flow given

by ψt,h(p) which is the location at time t+ h of a point that at time t is at p. Such a flow

is incorporated into a stochastic framework by means of the stochastic integral

Y (p, t) =

∫
f(t, t− s;p) Φ(ψt,s−t(p); ds),

where for fixed p and t the value f(t, t−s;p) represent the weight with which the innovation

Φ(ψt,s−t(p), ds) that is introduced at time s contributes to the value Y (p, t). As a result we

obtain a large class of Gaussian spatio-temporal fields that incorporate dynamical evolution

of a random surface. A general scheme of fitting to the actual spatio-temporal data can be

obtained by extension of the approach presented before in [4].

The concept of integration that is used above, is based on the general methods of defining

integrals with respect to spectral measures of orthogonal projections in Hilbert spaces (see,

for example, [10]) and can be considered standard in mathematical literature, so here we

only sketch fundamentals in the Appendix. The generality of the approach allows a natural

extension for second order models that goes beyond Gaussian distribution but this is not
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explored here. Steps in this direction have been undertaken for the fields driven by Laplace

motion in [1] and will be continued in future research.

2. Spatio-temporal static fields

2.1. Locally stationary spatial fields. Before we turn to the building of spatio-temporal

structures let us briefly discuss a way to obtain a fairly general class of spatial non-stationary

fields. The starting point is the following spectral representation of a stationary process

(2) X(p)
d
=

∫

Rn

exp(ip · ω)
√
S(ω) dB(ω),

where the symmetric S(ω) ≥ 0 is a spectral density and dB is a random Gaussian measure

whose variance coincides with the Lebesgue measure in Rn.

A natural extension of (2) to non-stationary fields is by considering spectra that depend

on location. More precisely, for a family of symmetric spectral densities Sp(ω) ≥ 0 parame-

terized by p, we define

X(p)
d
=

∫

Rn

exp(ip · ω)
√
Sp(ω) dB(ω).

The non-stationary covariance of X is given by

rS(p,p′) = Cov(X(p), X(p′)) =

∫

Rn

exp(i(p − p′) · ω)
√
Sp(ω)Sp′(ω) dω.

If Sp(·) ≈ Sp0(·) in some neighborhood of p0, then X(·) in this neighborhood can be ap-

proximately viewed as a realization of

X(p) =

∫

Rn

exp(ip ·ω)
√
Sp0(ω) dB(ω).

Thus such random fields provide a convenient way of modelling phenomena that are locally

stationary in space.

Example 1 (Non-stationary locally isotropic covariance). In this example, n is

an arbitrary natural number although in this work we are mainly interested in n = 1, 2. In

[4], we considered isotropic spectra that locally had the so-called Gaussian form

Sp(ω) =
s2(p)Ln(p)

2πn/2
exp

(
−L2(p)|ω|2/2

)
,
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where s2(p) is the variance at a location p. The covariance of processes with such spectra

can be evaluated and is given by

rS(p,p′) =
s(p)s(p′)

2

(
L(p)L(p′)

π

)n/2 ∫

Rn

exp

(
i(p− p′) ·ω − L2(p) + L2(p′)

4
|ω|2

)
dω

=
s(p)s(p′)

2

(
L(p)L(p′)

π

)n/2 ∫

Rn

exp(i(p− p′) ·ω) exp
(
−ωTΣ−1ω/2

)
dω,

where Σ = Σ(p,p′) = 2/ (L2(p) + L2(p′)) · I, with I being the identity matrix in Rn. Using

the formula for the characteristic function of n-dimensional Gaussian vector we obtain

(3) rS(p,p′) = s(p)s(p′)

(
2L(p)L(p′)

L2(p) + L2(p′)

)−n/2

exp
(
−(p − p′)TΣ(p− p′)/2

)
.

Consequently, if s(p) and L(p) are approximately constant in some region, then the corre-

lation is approximately invariant with respect to isometries of R
n. In such a case, we refer

to the field as locally isotropic. Obviously, by taking an arbitrary positive definite Σ we can

obtain an anisotropic extension of the model. Here and in the rest of this paper we follow

the convention that vectors are column matrices and for a matrix A its transpose is denoted

by AT .

2.2. Building spatio-temporal dependence. In the Appendix 5.1, a notion of integral

has been introduced to give a proper meaning to the following general spatio-temporal field

(4) X(p, t) =

∫
f(t, s;p) Φ(p; ds),

for a deterministic kernel f and a Gaussian field valued measure Φ(·; ds) that is uniquely

characterized by time dependent spatial covariances rS(p,p′; s). Here, they will be referred

to as spatial covariances governing X. As an example of rS(p,p′; s), one can consider the

covariances of the previous subsection where dependence on time can be introduced quite

arbitrarily by making spectra Sp also dependent on time t. The above model is the most

general form of static fields discussed in this work. Since the fields we are interested in

are centered Gaussian fields, to compare the different models is enough to compare their

covariance functions,

(5) r(p,p′; t, t′) = Cov(X(p, t), X(p′, t′)) =

∫
f(t, s;p)f(t′, s;p′) · rS(p,p′; s) ds.
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One important simplification of the model is obtained by taking rS(p,p′; s) = rS(p − p′; s)

– the case which will be referred to as the spatially stationary innovation model, while the

case rS(p,p′; s) = rS(p,p′) defines the time independent innovation model. Several other

specifications of the above model will be important throughout the paper and they are listed

below in order of increasing complexity. Before we commence with the presentation we need

some notation. We write r(p,p′; t, t′) to denote the covariance between X(p, t) and X(p′, t′).

In the presence of spatial stationarity we write r(p; t, t′) while if the field is stationary in

time r(p,p′; t). Finally if the field X is stationary both in space and time we write r(p; t).

Stationary moving average: This case is defined by taking f(t, s;p) = f(t− s) and

thus the kernel f does not depend on p, while the stationary spatial covariance

rS(p − p′) is independent of time. In this case, we obtain the complete stationary

case with covariance given by

r(p; t) = rS(p) · rT (t),

where rT (t) =
∫
f(t − s)f(−s) ds. If additionally we assume rS(p) to be isotropic

we obtain the special subcase of a homogeneous moving average field.

Separable stationary in time moving average: A generalization of the previous

case is when the spatial stationarity of rS(p,p′) is dropped so that the covariance is

given by

(6) r(p,p′; t) = rS(p,p′) · rT (t).

Observe the temporal stationarity of the model.

Separable covariance model: This case corresponds to kernel f independent of the

space variable p, and spatial covariance independent of the time variable t. In this

case the covariance can be still presented as a product of the spatial and temporal

covariances which sometimes is referred to as multiplicative separability of the model,

r(p,p′; t, t′) = rS(p,p′) · rT (t, t′),

where rT (t, t′) =
∫ ∞

−∞
f(t, s) · f(t′, s) ds. Notice that the covariance of both the

stationary moving average and the separable stationary in time moving average are

also of (multiplicative) separable models.
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Heteroscedastic moving average: This corresponds to the case of time dependent

spatial covariance structure with space independent kernel f(t− t′) for which

(7) r(p,p′; t, t′) =

∫ ∞

−∞

f(t− s) · f(t′ − s) · rS(p,p′; s) ds.

We note that typically this model is non-stationary both in time and space. The

terminology is borrowed from the general theory of time series as a spatial analog

of the non-constant variance innovation case. We also consider a special subcase of

space stationary innovation that is referred to as heterodscedastic, space-stationary

moving average and which is defined by stationary covariances rS(p− p′; s). Clearly

in this case, the stationarity in space holds.

Temporal stationary moving average: Here we assume time independent (homoscedas-

tic) spatial covariance structure with space dependent kernel f(t, s;p) = f(t− s;p)

for which

(8) r(p,p′; t) = rS(p,p′) · fp ∗ f̃p′(t),

where fp ∗ f̃p′ is the convolution of fp(s) = f(s;p) with f̃p′(s) = f(−s;p′). We

note stationarity in the time direction at any fixed spatial position p while temporal

models differ at various locations.

Remark 1 (Temporal moving averages). The temporal moving average field is intro-

duced by (6) by taking f(t, s) = f(t− s) and assuming that the spatial covariance function

rS is independent of time. The relation to moving averages appearing in time series anal-

ysis can be more explicitly seen through the approximation of the field by a sum. Let

s = k∆t, k = −M, . . . ,M for some large M and t = n∆t. Then,

(9) X(p, t) ≈
M∑

k=−M

f((n− k)∆t) · ǫk(p) ·
√

∆t,

where ǫk(p) are independent (in time) Gaussian fields with Cov(ǫk(p), ǫk(p
′)) = rS(p,p′)

that are related to the fields Φ by

ǫk(p) =
Φ(p; (k∆t, (k + 1)∆t])√

∆t
.
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Relation (9) can be rewritten as

(10) Xn(p) = lim
M→∞,∆t→0

M∑

k=−M

αkǫn−k(p),

with αk =
√

∆t · f(k∆t), which is the well known form of a discrete moving average time

series.

Example 2 (Temporal Ornstein-Uhlenbeck field). A special case of the separable

temporal moving average model (6) is obtained by taking f(t) = e−λt1[0,∞)(t). In this case,

(11) X(p, t) =

∫ t

−∞

e−λ(t−s) Φ(p; ds)

and since additionally rS(p,p′; s) = rS(p,p′), its covariance is given by

(12) r(p,p′; t) = rS(p,p′) · 1

2λ
e−λ|t|.

This example corresponds to the case considered in [4], where the autoregression model of

order one

X(p, t) = ρX(p, t− ∆t) +
√

1 − ρ2 Φt(p),

has been discussed. It is clear from Remark 1 that the above is a discretization of the

Ornstein-Uhlenbeck model with ρ = e−λ∆t.

The space dependent Ornstein-Uhlenbeck model is obtained as a special case of temporal

stationary moving average (8) by taking a space dependent λ(p) in which case we obtain

(13) r(p,p′; t) =
rS(p,p′)

λ(p) + λ(p′)






e−λ(p′)·t ; if t > 0,

e−λ(p)·t ; if t < 0.

We note stationarity in time as in any other space dependent moving average.

Example 3 (Temporal Gaussian dependence). Another case of a temporal stationary

moving average model (8) can be obtained by taking the Gaussian kernel fp(t) = f(t;p) =

π−1/4 · e−t2/L2(p). By (8) we have

r(p,p′; t) = rS(p,p′) · fp ∗ f̃p′(t),
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and since the convolution of Gaussian kernels is again a Gaussian kernel, the resulting

covariance is stationary in t and given by

(14) r(p,p′; t) = rS(p,p′) ·
(

1

L2(p)
+

1

L2(p′)

)−1/2

· e−
(t−t′)2

L2(p)+L2(p′) .

Use of space dependent kernel f(t, s;p) is natural for building non-stationary spatio-

temporal correlation. However, by an analogy to the approach of Subsection 2.1, one can

alternatively consider for this purpose space dependent temporal spectra. More specifically,

one can consider the model

(15)

∫

Rn+1

ei(p,t)·(ω,τ)
√
Sp(ω)ST

p (τ) dB(ω, τ),

where ST
p (τ) is a location dependent temporal spectrum. It must be realized that this

alternative construction is for the most part equivalent to the one based on space dependent

symmetric kernels as stated in the following result.

Theorem 1. Let a Gaussian random field X1(p, t) be defined through (15) and a Gauss-

ian space dependent moving average X2(p, t) be defined through (8). Let us assume that
∫

R
eitτST

p (τ) dτ = fp ∗ f̃p(t), where f̃p(t) = fp(−t), so that the covariances in time at a fixed

point p are the same for X1 and X2. If we assume that the kernels fp are symmetric and

have non-negative Fourier transform, then the spatio-temporal covariances for both processes

agree and consequently X1
d
= X2.

Proof. The spatio-temporal covariance of (15) is given by

Cov(X1(p, t), X1(p
′, t′)) =

∫

Rn

ei(p−p′)ω
√
Sp(ω) · Sp′(ω) dω ·

·
∫

R

ei(t−t′)τ
√
ST

p (τ) · ST
p′(τ) dτ

= rS(p,p′) ·
∫

R

ei(t−t′)τ
√
ST

p (τ) · ST
p′(τ) dτ,

while in the space dependent moving average case the covariance is given by

Cov(X2(p, t), X2(p
′, t′)) = rS(p,p′) · fp ∗ f̃p′(t− t′).

By taking the Fourier transform Fh(τ) =
∫
e−iτth(t) dt, we obtain

Ffp ∗ f̃p = (Ffp)2 = 2πST
p ,
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so Ffp =
√

2πST
p . On the other hand we note that

F−1(2π
√
ST

p · ST
p′)(t− t′) =

∫

R

ei(t−t′)τ
√
ST

p (τ) · ST
p′(τ) dτ

Consequently, by the inverse Fourier theorem and

Ffp ∗ f̃p′ = Ffp · F f̃p′

= 2π
√
ST

p

√
ST

p′

we obtain equality of the covariances. �

Remark 2. The above result assumes symmetric kernels. The case of Ornstein-Uhlenbeck

process is not covered by it since this process is not represented by a symmetric kernel. The

spectra are given by

ST
p (τ) =

1

λ2(p) + τ 2
,

while the kernel approach leads to the correlation given in (13). Thus the equivalence of the

models would mean that e−λ(p′)t/ (λ(p) + λ(p′)) is equal to

∫

R

e−itτ 1

(λ2(p) + τ 2)1/2
· 1

(λ2(p′) + τ 2)1/2
dτ.

which obviously is not true. We conclude that the symmetry of kernels can not be dropped

from the assumptions.

2.3. Velocities of a random field. Defining motion of a surface is a non-trivial task.

A proper definition of velocity emerges as a fundamental issue in describing dynamics of

surface. There is no unique approach to this problem and for a comprehensive treatment we

refer to [5], [8], and [11]. Below we focus on a conceptually simple surface velocity that was

first introduced in the pioneering work of Longuet-Higgins [8], and allows us to investigate

the field dynamics or the lack thereof.

Let X(p, t) be as before, a Gaussian random field defined through the stochastic integral in

(4), for a sufficiently smooth kernel f so that the process has well-defined partial derivative

fields. We introduce velocity in an arbitrary but fixed direction. Since a simple rotation

would allow us to obtain velocity in any direction in what follows we focus on the velocity
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along the direction of the x-axis. Indeed, for

Rφ =


 cosφ sinφ

− sin φ cosφ




being a rotation matrix by angle φ, we can consider

(16) X(Rφp, t) =

∫
f(t, s;Rφp) Φ(Rφp; ds),

which is the field X(p, t) rotated by angle φ and Φ(Rφp; ds) is the Gaussian field measure

governed by covariance rφ
S(p,p′; s) = rS(Rφp,Rφp

′; s). Thus to obtain the results in an

arbitrary direction φ from the ones given along the x-axis one needs to substitute rφ
S for rS

and fφ(t, s;p) = f(t, s;Rφp) for f(t, s;p). Later when the dynamical flow is governed by

a velocity field v(p, t), one needs to substitute instead the rotated velocity field vφ(p, t) =

v(Rφp, t).

Hence, let us consider a zero-upcrossing in the x-direction at (x, y, t). Then, the zero

upcrossing speed at the x-direction V is the x-coordinate of the slope of the tangent plane

to the up-crossing contour attached at the point (x, y, t). Clearly we have

(17) V = −X t

Xx
,

at the points (x, y, t) such that Xx = Xx(x, y, t) > 0 and X = X(x, y, t) = 0. Here

Xx = Xx(x, y, t) and X t = X t(x, y, t) are the first order partial derivatives of X = X(p, t)

with respect to x and t, respectively and p = (x, y).

Remark 3. Let us mention here that from scalar velocities along directions we can get to

the vector velocity by integrating them along all directions. For this, at any point (x, y),

we define a new velocity V(x, y) =
∫ π

0
(cos(φ), sin(φ)) · V (x, y, φ) dφ, where V (x, y, φ) for

the special case φ = 0 is the velocity defined in (17) and for other φ is its analog in the φ

direction as described above.

To obtain the one-dimensional marginal distribution of the velocity V defined in (17), we

just need to use some standard facts from the theory of Gaussian random vectors. For a

jointly Gaussian vector (Xx, X t), we can write

X t = E(X t|Xx) + sX · Z,



SPATIO-TEMPORAL GAUSSIAN FIELDS 13

where E(X t|Xx) = Cov(Xx, X t)/Var(Xx) · Xx and Z = X t − E(X t|Xx)/sX is a standard

Gaussian random variable independent of Xx while

s2
X =

Var(Xx)Var(X t) − Cov(Xx, X t)2

Var(Xx)
.

Hence, since Xx =
√

Var(Xx)Z1, where Z1 is a standard normal variable independent of Z,

we get

(18) V = −X t

Xx
= −Cov(Xx, X t)

Var(Xx)
− sX√

Var(Xx)
· C

where C is a random Cauchy variable defined as the ratio Z/Z1 of two independent normal

variables. We use the above velocity to describe local dynamics of a stochastic field. Although

it is properly defined only if the partial derivatives of the process exist, the previous definition

could be extended to more irregular fields by applying a proper filtering that would smooth

the process so that the derivatives are well-defined. We skip obvious details of such an

approach. We say that a Gaussian stochastic field X(p, t) does not exhibit any organized

movement at the point (x, y) and at time t in the direction x, if the median of the distribution

of V is equal to zero, i.e. if

Cov(Xx(p, t), X t(p, t)) = 0.

Theorem 2. A heteroscedastic space-stationary moving average X(p, t) that is defined by

(7) with rS(p,p′; s) = rS(p− p′; s) does not exhibit any organized movement.

Proof. Indeed, since the field X(p, t) is governed by stationary rS, this follows from

Lemma 2 in the Appendix.

Notice that contrary to the above case, when the kernel is space dependent the resulting

field may exhibit some non-trivial dynamics as their velocities are no-longer centered at zero.

Theorem 3. For X(p, t) defined by (4) with space-stationary innovations defined through

covariances rS(p, t), the center of the velocity in (17) equals

(19) −
∫

fx(t, s;p)

A
· f t(t, s;p) · rS(0; s) ds,

where A =
∫
|fx(t, s;p)|2rS(0; s) + |f(t, s;p)|2rxx

S (0; s) ds.
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Proof. This is a direct consequence of (56) in the Appendix, Subsection 5.2, since the

first order partial derivative with respect to x of the covariance rS(p; s) equals zero when

evaluated at p = 0 for the reasons explained in Theorem 1 of the Appendix.

Another way of obtaining dynamics is through space varying scaling. That type of “dynam-

ics” may be not desirable and the following example shows that eliminating the space scaling

variability (in terms of variance) should probably precede analysis of the ‘real’ dynamics.

Example 4 (Deterministic rescaling). Let X(p, t) be a heteroscedastic space-stationary

moving average X(p, t) that is defined by (7) with rS(p,p′; s) = rS(p−p′; s). By Theorem 2,

it does not exhibit any organized motion since rxt
X (p, t) = 0. Consider a positive deterministic

field A(p, t) and define Y (p, t) = A(p, t)X(p, t). Then the covariance of Y (p, t) is given by

rY (p,p′; t, t′) = A(p, t)A(p′, t′)rX(p− p′; t− t′).

Consequently by Lemma 2, we have

Cov(Y x(p, t), Y t(p, t)) = Ax(p, t)At(p, t) · rX(0; 0) + Ax(p, t)A(p, t) · rt
X(0; 0),

Var(Y x(p, t)) = (Ax)2 (p, t) · rX(0; 0) + A2(p, t) · rxx
X (0; 0),

The center of velocity is thus given by

−A
xAtrX + AxArt

X

(Ax)2rX + A2rxx
X

.

In general, the field Y has non-trivial dynamics (unless A does not depend on space variable)

identified by the velocity center as given above. Since the underlying field X has no dynamics

we conclude that the organized movement of Y is only due to the deterministic rescaling A.

To avoid the dynamics illustrated in the above example, in practice, the variable space

rescaling can be eliminated by dividing the data by local in space standard deviation, i.e.

by replacing X(p, t) by X(p, t)/
√

Var(X(p, t)) (for example by local estimation of the

variance). Therefore, typically, we consider a version of the presented models for which

rS(p,p; t) = σ2(t) or even rS(p,p; t) = 1, i.e. the variance of innovations is space inde-

pendent. In such a case, as long as the kernel f(t, s) is independent of the space variable

p, the variance of X(p, t) is only time dependent. For this more general model the thesis
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of Theorem 2 remains valid as stated in the following result with the proof being a direct

consequence of Lemma 3 of the Appendix.

Theorem 4. A heteroscedastic moving average X(p, t) with innovations having space inde-

pendent variance does not exhibit any organized movement.

Despite a possibility of introducing dynamics through the space variable kernels as shown

in Theorem 3, it is difficult to give a natural interpretation to the obtained center of velocities.

In the next section we turn to a more direct method of imposing dynamics on stochastic

fields that is based on using deterministic flow generated by velocity fields.

3. Dynamics in the models

3.1. Constant Velocity Dynamics. The constant velocity field v(p, t) = v = (v1, v2)

applied to stochastic fields with space independent kernels f results in

Y (p, t) =

∫ ∞

−∞

f(t, s) Φ(p + v(s− t); ds)

with covariance

r(p,p′; t, t′) =

∫ ∞

−∞

f(t, s) · f(t′, s) · rS(p + v · (s− t),p′ + v · (s− t′); s) ds.

A notable special case is given by a spatial stationary innovation covariance rS as

r(p− p′; t, t′) =

∫ ∞

∞

f(t, s) · f(t′, s) · rS(p− p′ + v(t− t′); s) ds

in which we observe that the dynamic field is equivalent to the static field subordinated to

the deterministic dynamics, i.e. Y (p, t) = X(p + v · t, t).

Theorem 5. The center of velocities in the x-direction of the field Y that is driven by

constant velocity v = (v1, v2) is given by

v1 + v2

∫
|f(t, s)|2rxy

S (0; s) ds∫
|f(t, s)|2rxx

S (0; s) ds
.

If additionally the innovations are homogeneous (isotropic and stationary), then the above

velocity equals the constant flow velocity component v1.
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Proof. By Lemma 1 of the Appendix we have

Cov(Y x(p, t), Y t(p, t)) =

∫ ∞

−∞

f(t, s) · f t(t, s) · rx
S(0; s) ds+

+ v1

∫ ∞

−∞

|f(t, s)|2 · rxx
S (0; s) ds+ v2

∫ ∞

−∞

|f(t, s)|2 · rxy
S (0; s) ds

=v1

∫ ∞

−∞

|f(t, s)|2 · rxx
S (0; s) ds+ v2

∫ ∞

−∞

|f(t, s)|2 · rxy
S (0; s) ds.

For the homogeneous field it is enough to use Lemma 2 to conclude that rxy
S (0; s) = 0 and

the result follows.

Example 5. Consider the Ornstein-Uhlenbeck type time dependence. Then

r(p,p′; t, t′) = e−λ(t+t′)

∫ t∧t′

−∞

e2λsrS(p− p′ − v(t− t′); s) ds.

If additionally rS does not depend on time, then

r(p,p′; t, t′) =
1

2λ
rS(p− p′ − v(t− t′)) · e−λ|t−t′|.

3.2. Spatio-temporal dynamical models. In the static scheme described in Section 2, a

stochastic fieldX(p) has been built from independent innovation fields Φ(p; ds) that occurred

at time s and were summed up while weighted by f(s). Dynamics can be introduced to this

model by assuming that the contribution to a field Y (p, t) from the innovation field Φ(·; ds)

that occurred at time s is not evaluated at the point p but at the point ψt,s−t(p) that

corresponds to the location at time s of what at time t is at p. This has been presented in

the previous section for the constant velocity dynamics where ψt,h(p) = p + v · h. It can be

generalized as follows.

Let us consider a flow ψt,h(p) obtained from a velocity field v(p, t) satisfying the transport

equation

(20) ψt,h(p) = p +

∫ t+h

t

v(ψt,u−t(p), u) du = p +

∫ h

0

v(ψt,s(p), t+ s) ds,

i.e. a point with the initial location p at t relocates after h time units to ψt,h(p). In what

follows it will be convenient to use ψ(p, t, h) for ψt,h(p) and ψt(p, t, h) = ψt
t,h(p) for the
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partial derivative of ψ with respect to t. We note the following basic properties

ψ(p, t, 0) = p,

ψ(ψ(p, t, h), t+ h, h̃) = ψ(p, t, h+ h̃),

∂ψ

∂h
(p, t, h) = v(ψt,h(p), t+ h),

∂ψ

∂h
(p, t, 0) = v(p, t).

(21)

Construction of the stochastic field

(22) Y (p, t) =

∫ b

a

f(t, s) Φ(ψt,s−t(p); ds)

with dynamics driven by φ is obtained at the fixed location and fixed time t from the

following elements

• Φ(p, (s, s+ ds]) – the field generated at time s with assumed independence between

different s,

• f(t, s) – a weight function defining how much of contribution should come from the

spatial field Φ(p, (s, s+ ds]),

• ψt,s−t(p) – the location at time s of a flow element that at time t resides at p,

• Φ(ψt,s−t(p), (s, s + ds]) – the value of the field at time s that contributes to Y (p, t)

after accounting on the flow movement,

• f(t, s) · Φ(ψt,s−t(p), (s, s + ds]) – contribution to Y (p, t) accounted for the weight

function f(t, s).

Consequently, the contribution to Y (p, t) at time s is coming from

(23) Φt(p; ds) :=

∫ s+ds

s

Φ(ψt,s−t(p); ds)

multiplied by f(t, s) and the integral Y (p, t) =
∫ ∞

−∞
f(s, t) Φt(p; ds) in its essence does not

differ from the one defined in (4). One has simply to consider

rt
S(p,p′; s) = rS(ψt,s−t(p),ψt,s−t(p

′))

instead of rS(p,p′; s). Thus if we have two fields X(p, t) and Y (p′, t′) with corresponding

functions f and g, we obtain the cross-correlation formula

(24) Cov(X(p, t), Y (p′, t′)) =

∫ ∞

−∞

f(s, t) · g(s, t′) · rS(ψt,s−t(p),ψt′,s−t′(p
′); s) ds.
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The technical but standard details of the above construction which for the most part hinge

on the definition (23) are omitted.

The median the velocity of the so defined Y (p, t) is given in the next result.

Theorem 6. Let the field measure Φ(p; ds) be driven by stationary in space innovations, so

rx
S(0; s) = 0. Then the center of the velocity in the x-direction is given by

(25) V =

∫
|f(t, s)|2 ·

∂ψt,s−t(p)

∂x

T

 rxx

S rxy
S

ryx
S ryy

S


(
ψt

t,s−t(p) − v(ψt,s−t(p), s)
)
ds

∫
|f(t, s)|2 ·

∂ψt,t−s(p)

∂x

T


 rxx
S rxy

S

ryx
S ryy

S



 ∂ψt,t−s(p)

∂x
ds

,

where rxx
S , ryy

S , r
xy
S , r

yx
S are all evaluated at ψt,s−t(p). If additionally it is assumed that the

innovations are isotropic, then

(26) V =

∫
|f(t, s)|2 ·

(
xx

t,s−t(p) · αt,s−t(p) · rxx
S + yx

t,s−t(p) · βt,s−t(p) · ryy
S

)
ds

∫
|f(t, s)|2 ·

(
(xx

t,s−t)
2(p) · rxx

S + (yx
t,s−t)

2(p) · ryy
S

)
ds

,

where

αt,h(p) = xt
t,h(p) − v1(ψt,h(p), t+ h),

βt,h(p) = yt
t,h(p) − v2(ψt,h(p), t+ h).

Here ψt,h(p) = (xt,h(p), yt,h(p)), ψt
t,h(p) = (xt

t,h(p), yt
t,h(p)), and v(p, t) = (v1(p, t), v2(p, t).

Proof. The proof is a direct consequence of (18) after applying Lemma 2 and the formulas

for covariances given in (56) both in the Appendix.

Example 6 (Temporal Dynamic Ornstein-Uhlenbeck). A dynamic modification of

the Ornstein-Uhlenbeck model discussed in Example 2 is obtained by taking

(27) Y (p, t) =

∫ t

−∞

e−λ(t−s) Φt(p; ds)

with covariance

(28) Cov(Y (p, t), Y (p′, t′)) = e−λ(t+t′)

∫ t∧t′

−∞

e−2λsrS(ψt,s−t(p),ψt′,s−t′(p
′); s) ds.

We note that the covariance is no longer separable even if rS(p,p′; s) = rS(p,p′).
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Example 7 (Dynamic Autoregression Field of Order One). A discretized way of

introducing dynamics represented by a flow ψ for some suitably chosen time lag dt is through

the following recurrence

(29) Y (p, t) = ρY (ψt,−dt(p), t− dt) +
√

1 − ρ2ǫt(p),

where ρ = ρ(dt) = e−λdt for some λ > 0 and ǫt(p) represent independent in time t fields with

the spatial covariance Cov(ǫt(p), ǫt(p
′)) = rS(p,p′; t). This example has been discussed in

detail in [4].

In the next result, it is shown that the last two examples describe in fact the same model.

Theorem 7. Consider a spatio-temporal centered Gaussian field, Y (p, t) defined by the

recursive formula (29). Then, it has a covariance function that converges with time increment

dt decreasing to zero to the covariance function (28) scaled by 2λ.

Proof. Let t = kdt for some k ∈ Z. Using the flow properties given in (21), the recursive

formula in (29) can be rewritten in a non-recursive way assuming that the series below is

convergent

Y (p, kdt) =
∞∑

j=0

ρj
√

1 − ρ2ǫ(k−j)dt(ψkdt,−jdt(p))

=
√

1 − ρ2

k∑

l=−∞

ρk−lǫldt(ψkdt,(l−k)dt(p)).(30)

The covariance function if t ≤ t′ = k′dt is given by

(31) Cov(Y (p, t), Y (p′, t′)) = (1− ρ2)

k∑

l=−∞

ρk+k′−2l · rS(ψkdt,(l−k)dt(p),ψk′dt,(l−k′)dt(p
′); ldt).

For small values of dt, 1 − ρ2 ≈ 2λ · dt, and therefore letting dt→ 0 we have

(32) lim
dt→0

Cov(Y (p, t), Y (p′, t′)) = 2λ

∫ t

−∞

e−λ(t+t′−2u)rS(ψt,u−t(p),ψt′,u−t′(p
′); u) du.



20 A. BAXEVANI, K. PODGÓRSKI, AND I. RYCHLIK

The most complicated dynamics appears when the temporal dependence of the field Y (p, t)

varies in space and additionally there is dynamics introduced by the deterministic flow ψ.

A model like this can be written as

Y (p, t) =

∫ ∞

−∞

f(t, s;p) Φt(p; ds),

with the covariance

Cov(Y (p, t), Y (p′, t′)) =

∫ ∞

−∞

f(t, s;p) · f(t′, s,p′) · rS(ψt,s−t(p)ψt′,s−t′(p
′); s) ds.

Example 8 (Space varying Ornstein-Uhlenbeck field driven by a dynamical

flow). The model is an extension of (27) that can be obtained by letting in (11) the

parameter λ depend on p, i.e. by considering

(33) Y (p, t) =

∫ t

−∞

e−λ(p)(t−s) Φt(p, t; ds).

Then

(34) Cov(Y (p, t), Y (p′, t′)) = eλ(p′)t′+λ(p)t

∫ t∧t′

−∞

e−(λ(p)+λ(p′))srS(ψt,s−t(p),ψt′,s−t′(p
′)) ds.

In particular, when the flow is generated by a constant velocity v (the case that is important

in local approximations of more general fields) and rS(p,p′; s) = rS(p − p′), we obtain for

t < t′

(35) Cov(Y (p, t), Y (p′, t′)) = rS (p′ − p − v(t′ − t)) · 1

λ(p) + λ(p′)
· e−λ(p′)(t′−t).

4. Fatigue damage of a vessel - an application

4.1. Introduction. Material fatigue is one of the most important safety issues for structures

subjected to cyclic loads and the cause of failure in a majority of cases. Fatigue is a two phase

process that starts with the initiation of microscopic cracks in the material and continues with

these cracks growing to a critical size at which a fracture occurs. Often in large structures,

cracks initiate at the construction phase in which case their growth is computed using fracture

mechanics. There is a number of factors, depending both on the component and the material

the component is made of, that influence the fatigue life. Such factors are geometry, size

of the structure, surface smoothness, surface coating, residual tensions, material grain size

and inner defects. Furthermore, the nature of the load process is also of importance. The

complex dependence between these factors and the fatigue life makes predictions uncertain.
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Experiments from fatigue life tests, even during controlled laboratory experiments, exhibit

considerable scatter especially for high cycle life.

In this example we are interested in computing the fatigue at some critical point of a

vessel. For simplicity, we consider dependence only on the load variability and the rest of

the uncertainties are represented by a “quality” factor k. Empirically it is known that the

damage rate of the material, d(t), is proportional to the average wave energy raised to the

power 1.5. Then, the damage rate d(t) is defined

d(t) = k · fz(t) ·Hs(t)
3

where fz(t) is the intensity of the encountered waves at time t, Hs(t) is the significant wave

height at time t, which equals four times the standard deviation of the sea surface elevation

and k is a generic constant. In [9], the authors have used the more realistic damage rate

(36) d(t) = k1(β) ·Hs(t)
2.5 + k2(β) ·Hs(t)

2,

where β is the heading angle, while the constants k1(β), k2(β) depend strongly on the location

of the structural detail on a ship, the carried load and some additional factors. Summarizing,

in order to study the fatigue damage accumulation process one needs to be able to compute

the distribution of integrals of polynomials in Hs(t), such as the total damage

(37) D =

∫ t1

t0

d(t) dt,

where d(t) is given by (36).

Already at the design stage it is important to have some estimates of the variability of

the total damage, D, for different possible routes during the operation life of a vessel. More

precisely, let t0 be the starting date for a voyage p(t) = (x(t), y(t)), t ∈ [t0, t1], where x(t), y(t)

are the coordinates of the vessel at time t. (Alternatively, a route could be specified using

the starting location p(t0) and the ship velocity vs(t) = (vs
x(t), v

s
y(t)) for the duration of

the trip [t0, t1].) In the following subsection we provide the means for simulating the total

damage D for different routes.

4.2. Encountered significant wave heights during a voyage. As reported in [6], the

significant wave height Hs at position p and time t is accurately modelled by means of a

log-normal distribution. Let X(p, t) = ln(Hs(p, t)) denote the field of logarithmic values
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of the significant wave height that evolves with time. Let also t0 denote the starting date

of a voyage, p(t) = (x(t), y(t)), t ∈ [t0, t1] the planned route, and v(t) = (vx(t), vy(t))

the velocity the ship moves with. Additionally let z(t) = X(p(t), t) be the encountered

logarithms of the significant wave height field. (The encountered significant wave heights are

Hs(t) = exp(z(t)).) Then the process z(t) is non stationary Gaussian with moments which

we will compute next.

Locally stationary field: Suppose that for a fixed geographical region and season X(p, t)

is modelled as a stationary Gaussian field that drifts (moves) with constant velocity V =

(Vx, Vy), has mean m, variance σ2 and separable correlation structure, which can attain the

form

Cov(X(p1, t1), X(p2, t2)) = σ2 ρS(x2 − x1 − Vx(t2 − t1), y2 − y1 − Vy(t2 − t1)) · ρT (t2 − t1),

where as before ρS denotes the spatial correlation and ρT the temporal correlation. In

our particular case, the correlation ρS could be estimated using a map of significant wave

heights derived by means of reanalysis data (ERA-40) or using satellite measurements, while

the temporal correlation ρT can be computed using buoy measurements. If additionally

the vessel is sailing with constant velocity (vx, vy), then the process z(t) is also stationary

Gaussian with the same mean as the field and covariance function given by

(38) Cov(z(t1), z(t2)) = σ2 ρS(v1 (t2 − t1), v2 (t2 − t1))ρT (t2 − t1) = rz(t2 − t1),

where v1 = vx − Vx and v2 = vy − Vy. In [3] the authors have used in formula (38),

(39) ρS(x, y) = exp(−(x2 + y2)/2L2), ρT (t) = exp(−λ|t|),

where t was measured in hours and the parameters L and λ were slowly varying over the

oceans and the different seasons.

Since the z is stationary it has a power spectral density S(ω) which depends on the

parameters σ2, L, λ as well as the relative ship velocity v = (v1, v2). The parameters

σ2, L were estimated by means of satellite observations while λ was estimated using buoy

measuremets, see [3] where the variability of the parameters in space and time over the globe

is presented.

However, since the statistical properties of the sea change with the geographical region, the

parameters m, σ2, L, λ and the velocity v vary with space and hence the encountered process
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z(t) cannot be assumed stationary during the whole voyage. Since though the properties

of the encountered process z change slowly we can model it by means of locally stationary

processes to the definition of which we turn next.

Let St(ω) be the spectrum of a stationary process z with the covariance function defined by

formulas (38-39) where the parameters σ2(t), L(t), λ(t) and v(t) are functions of the vessel’s

position p(t). If St is known for all t ∈ [t0, t1] then a “locally stationary” process z can be

defined by means of spectral representation and moving average construction, as follows

(40) z(t) =

∫
exp(−it ω)

√
St(ω) dB(ω),

where B(ω) is a Brownian motion. This technical construction results in a non-stationary

Gaussian model for z, with ez(t) = m(t) and covariance

(41) Cov(z(t1), z(t2)) =

∫
exp(−i(t2 − t1)ω)

√
St1(ω)St2(ω) dω = rz(t1, t2).

As a result of the fundamental property of the Gaussian models, the process Hs(t) =

exp(z(t)) is uniquely defined by the encountered local spectra St(ω) and the mean values

m(t).

Having estimates of the first two moments of the encountered process z, one can compute,

employing the methods presented in [7], the mean E[Dj ] and the variance Var(Dj) of the

damage during the jth trip assuming that the heading angle β(t) and the vessel’s speed are

known. Alternatively, the distribution of the damage Dj can be computed using Monte

Carlo methods. For this, one generates sequences of the encountered significant wave height

processes during the jth trip and computes the damageDj . More precisely, let ti, i = 0, . . . , n,

with ti+1 − ti = ∆t equal 30 minutes, be the times a vessel is at the locations (xi, yi) =

(x(ti), y(ti)) and Hs(i) = exp(zi) be the corresponding significant wave height values, where

zi = z(ti) are correlated normal variables. Then it is a simple task to generate a sequence of

zi with means m = [mi], mi = m(ti) and covariance matrix Σ = [rij] = [rz(ti, tj)]. If instead

of the integral (41) one has an explicit formula for the covariance rz, that would improve

considerably the speed of the calculations.

However in order to make computation fast one would like to have explicit formula for

covariance rz instead of the that has to be evaluated numerically. In the following subsection,

we modify the autocorrelation function ρT in such a way that the covariance rz is given by

an explicit algebraic expression that depends only on easily interpretable parameters.
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Approximation of rz(t1, t2). In [4], the authors have used formula (38) with ρT (t) =

exp(−λ|t|) to model the temporal correlation structure of the significant wave field at a

fixed position. A typical value for the parameter λ, estimated using buoy measurements,

is 0.0125. That means that the correlation length τT , that is the time it takes for the

temporal correlation at a position to drop to 0.6, is about 40 hours. The computations

are simplified considerably in one instead approximates ρT (t) = exp(−0.0125 |t|), with the

Gaussian covariance with the same correlation length ρ(t) = exp(−0.5(t/τT )2) τT = 2/λ.

Then, formula (38) and some simple algebra gives

(42) rz(t) = σ2 exp(−0.5t2/C2), C =
τT τS√
τ 2
T + τ 2

S

, τS =
√
v2
1 + v2

2/L.

Note that the space correlation length, τS, has an interpretation analogous to that of τT ,

as the time it takes for a vessel to travel between the points p1 and p2 for which the

spatial correlation of the logarithmic values of the significant wave heights drops to 0.6. The

parameters τS and τT characterize the spatial and temporal sizes of storms, respectively. The

covariance (42) is particularly convenient since now the power spectrum St, used in (40),

attains the explicit formula

St(ω) = σ2 C√
2π

exp(−ω2C2/2).

The spectrum depends on t since the parameters σ2 and C depend on the location p(t).

Assuming that σ(t) and C(t) are known the integral in (41) can be computed resulting to

(43) rz(t, s) = 2σ(t)σ(s)
C(t)C(s)

C(t)2 + C(s)2
e−(t−s)2/(C(s)2+C(t)2).

Example 9. This example is based on results presented in [9] where the authors studied the

fatigue damage of a container ship sailing between Europe and Canada during the first half

of 2008. For a detailed description see [12]. In Figure 9 (left) the routes along which the

stresses were measured are presented. Using these stresses the damage during the different

voyages were estimated. The empirical distribution of the observed damages is presented in

Figure 9 (right). The dotted line corresponds to the distribution derived using the covariance

model (43) with parameter values taken from [3] and the ship’s specific constants Ki(β). As

heading angles we used those observed during the voyages. A passage was taken at random

and the sequence of the logarithmic values of significant wave heights were simulated using

the derived model. Then the damage D was computed by means of (37-36). The procedure
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Figure 1. The 15 routes for which the damage was measured (Left). Com-

parison between empirical cumulative distributions of the observed (computed

from the measured stresses) damages for the 15 voyages and the cumulative

distribution of D (dotted line). Here D has distribution derived by means of

parametric bootstrap derived using and (43)(Right).

was repeated 10000 times and the empirical distribution of the data resulted to the dotted line

in Figure 9 (right). We can see that the agreement between the observed damage distribution

and the distribution derived from the model is excellent, at least for this particular data set.

5. Appendix

5.1. Integration with respect to field valued random measure. The following is a

short account of how to combine independent spatial fields that are obtained at time points

according to various spatial covariances into a single spatial field. This is an example of a

standard construction known in general theory of integration and functional analysis, see for

example [10]. For each t ∈ R, let rS(p,p′; t) be a spatial covariance in p and p′ (non-negative

definite function). We interpret it as a spatial covariance of independent innovations created

at time t. We assume that for each a < b, the following integral is well defined as a function

of p and p′:

r(a,b](p,p
′) =

∫ b

a

rS(p,p′; s) ds,

and thus corresponds to a certain spatial covariance function.
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It follows from the additivity of the covariance function with respect to independent fields

and its correspondence to the additivity of the integral that there exists a family of Gaussian

spatial fields Φ(p; (a, b]) centered at zero such that

(i) For each a < b, c < d ∈ R we have

r(a,b]∩(c,d](p,p
′) = Cov(Φ(p; (a, b]),Φ(p′; (c, d])).

(ii) For (a, b] =
⋃∞

i=1(ai, bi], where (ai, bi] are disjoint intervals, we have with probability

one

Φ(p; (a, b]) =

∞∑

i=1

Φ(p; (ai, bi]).

Thus Φ is a σ-additive measure having as values Gaussian random fields and (ii) is evoca-

tive of Lebesgue integration. Consequently, for a step function

(44) f(t) =

n∑

i=1

αi1(ai,bi](t),

where (ai, bi] are disjoint we define X(p) :=
∫
f(s)Φ(p; ds) as

(45) X(p) =
n∑

i=1

αiΦ(p; (ai, bi]).

The function f(t) can be viewed as the weights with which the independent fields Φ(p; ds)

are weighted and add up to build the field X(p). It follows immediately from (i) - (ii),

that the integral is a Gaussian centered field with covariance
∫ ∞

−∞
f 2(s)rS(p,p′; s) ds =

∑n
i=1 α

2
i r(ai,bi](p,p

′).

The remainder of the construction of X(p) =
∫
f(s)Φ(p; ds) extends it for any complex-

valued function f that satisfies for each p, p′

∫ ∞

−∞

|f |2(s) · rS(p,p′; s) ds <∞,

which can be done using standard measure theoretic arguments that are skipped here. In

particular, it follows that for the fields X and Y with corresponding f and g satisfying the

above condition, we have

(46) rX,Y (p,p′) = Cov(X(p), Y (p′)) =

∫ ∞

−∞

f(s) · g(s) · rS(p,p′; s) ds.
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5.2. Partial derivative fields. In this section we derive the partial mean square derivatives

of the field X(p, t) defined as the stochastic integral (4). For simplicity in presentation, we

consider only the case p ∈ R2. Generalization to higher dimensions is straightforward.

Let p and p′ be two points in R2 with first coordinate x and x′ respectively. The covariance

functions that are considered here can in general depend on six variables: x, y, x′, y′, t, t′ and

partial derivatives of these covariances with respect to these variables will be indicated by

upper-scripts. So for example, rxx′

(p,p′; s) stands for the second order partial derivative

∂2

∂x∂x′
r(p,p′; s). For a field X(p, t) that depends only on three variables with generic names

x, y, t, the derivatives are marked in a similar manner. For example Xx(p′, t′) = ∂X
∂x

(x′, y′, t′).

The second order derivative of the covariance function with respect to the first spatial

coordinates x and x′ is given by

(47) rxx′

(a,b](p,p
′) =

∂2

∂x∂x′
r(a,b](p,p

′) =

∫ b

a

rxx′

S (p,p′; s)ds,

which is again a covariance function. It follows from the additivity of the covariance function

with respect to independent fields and its correspondence to the additivity of the integral that

there exists a family of Gaussian spatial fields Φx(p; (a, b]) centered at zero with properties

analogous to those of the field Φ(p; (a, b]) with the governing covariance rxx′

S (p,p′; s).

By some standard arguments and under suitable regularity conditions it can be shown

that

(48) Xx(p) =

∫
f(s)Φx(p; ds).

To extend the above to calculus of partial derivatives for a process X(p, t), basic facts

about mean square derivatives can be employed and a detailed treatment of this can be

found in [2]. Here we just present some basic principles and resulting formulas. For a field

X(t), t = (t1, . . . , tn) ∈ Rn the mean square (partial) derivatives are defined as

(49) X ti =
∂X

∂ti
(t) = lim

h→0

X(t + h · ei) −X(t)

h
,

where ei is the vector with the ith element 1 and all others zero while convergence is in

the mean square sense. Derivatives of higher order are defined in an analogous way. It is

straightforward that the covariance function of such partial derivatives must be given by

(50) Cov

(
∂kX(s)

∂si1 . . . ∂sik

,
∂kX(t)

∂ti1 . . . ∂tik

)
=

∂2kr(s, t)

∂si1∂ti1 . . . ∂sik∂tik
,
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where r(s, t) = Cov(X(s), X(t)).

Lemma 1. For a stationary field X(t), the following relations between the field and its mean

square derivatives (when they exist) are true.

(i) The field and its first order partial derivatives, i.e., X(t) and X tj (t), when evaluated at

the same point are uncorrelated.

(ii) The first and second order partial derivatives of the field evaluated at t, i.e., X ti(t) and

X tjtk(t), are uncorrelated for any ti, tj and tk.

(iii) If additionally the field is isotropic, i.e. the covariance function depends only on the Eu-

clidean length |t| of the vector t so we can write r(t) = r(|t|), then the first order derivatives

of the field X ti and X tj , i 6= j, are uncorrelated.

Proof. For a stationary field X(t) with (mean square) derivatives of orders α + β and

γ + δ for α, β, γ, δ ∈ {0, 1, 2, . . .}, formula (50) takes the equivalent form

(51) Cov

(
∂α+βX(t)

∂αti∂βtj
,
∂γ+δX(t)

∂γtk∂δtl

)
= (−1)α+β ∂α+β+γ+δr(t)

∂αti∂βtj∂γtk∂δtl
|t=0.

Remember that stationarity implies r(t) = r(−t), (with some abuse in notation) which in

turn means that all odd ordered derivatives of the covariance r are identically zero. Hence

in view of that, follows from (51) for β = γ = δ = 0 and α = 1 that X(t) and X tj (t) are

uncorrelated for every j and all t, since the first order derivative of the covariance at zero

equals zero, ∂r(t)
∂ti

|t=0 = 0, which in the Gaussian case is equivalent to independent. Also for

β = γ = δ = 1 and α = 0, we obtain X ti(t) and X tjtk(t) are uncorrelated for all i, j, k and

every t. This proves statements (i) and (ii).

To see (iii) notice that it is enough to consider only the two dimensional case t = (t1, t2).

The spectral measure S of a stationary and isotropic field is also isotropic, i.e. if Rφ is the

rotation by an angle φ, then S = S ◦ Rφ. The covariance between X t1 and X t2 is given by

rt1t2(t) =

∫

R2

ω1ω2e
iω·t dS(ω).
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Thus for ω̃ = Rπ/2ω, we have

rt1t2(0) =

∫

R2

ω1ω2 dS(ω)

=

∫

ω1ω2>0

ω1ω2 dS(ω) +

∫

ω1ω2<0

ω1ω2 dS(ω)

= −
∫

ω̃1ω̃2<0

ω̃1ω̃2 dS ◦ R−π/2(ω̃) +

∫

ω1ω2<0

ω1ω2 dS(ω)

= −
∫

ω̃1ω̃2<0

ω̃1ω̃2 dS(ω̃) +

∫

ω1ω2<0

ω1ω2 dS(ω)

= 0.

Note that the statements (i), (ii) and (iii) do not imply that the field and its first order

derivatives, or the first and second order derivatives or the first order derivatives with each

other are uncorrelated as fields. For example, in general Cov(X(s), X ti(t)) 6= 0, if s 6= t.

Corollary 1. If the considered field is Gaussian, the uncorrelated variables from the above

results become independent.

Let X(p, t) =
∫
f(t, s) Φ(p; ds) so the following relations hold

Xx(p, t) =

∫
f(t, s) Φx(p; ds)

Xy(p, t) =

∫
f(t, s) Φy(p; ds)

X t(p, t) =

∫
f t(t, s) Φ(p; ds).

(52)

Using basic partial derivative calculus such as formula (50) we can obtain any covariance

between the field and the different partial derivatives, like for example,

Cov(X(p, t), Xx(p′, t′)) =

∫
f(t, s)f(t′, s) · rx′

S (p,p′; s) ds

Cov(X(p, t), X t(p′, t′)) =

∫
f(t, s)f t(t′, s) · rS(p,p′; s) ds

Cov(Xx(p, t), X t(p′, t′)) =

∫
f(t, s)f t(t′, s) · rx

S(p,p′; s) ds

Cov(Xx(p, t), Xy(p′, t′)) =

∫
f(t, s)f(t′, s) · rxy′

S (p,p′; s) ds

(53)
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Lemma 2. If the field X(p, t) is governed by rS that is stationary in space, then

Cov(X(p, t), Xx(p, t′)) = 0

Cov(Xx(p, t), X t(p, t′)) = 0

Cov(Xy(p, t), X t(p, t′)) = 0.

(54)

If additionally X(p, t) is governed by rS that is homogeneous (stationary in space and

isotropic), then

(55) Cov(Xx(p, t), Xy(p, t′)) = 0.

Proof. The result follows from the equations in (53) and Lemma 1 applied to governing

correlations rS.

In the general case of a space dependent kernel

X(p, t) =

∫
f(t, s;p) Φ(p; ds),

the covariances become slightly more complicated. Here we list some cases where all fields

are considered at the same (p, t):

rxx =

∫
|fx(t, s;p)|2 · rS(p,p; s) ds+

∫
|f(t, s;p)|2 · rxx

S (p,p; s) ds+

+ 2

∫
fx(t, s;p)f(t, s;p)rx

S(p,p; s) ds

rxt =

∫
fx(t, s;p)f t(t, s;p) · rS(p,p; s) ds+

∫
f(t, s;p)f t(t, s;p) · rx

S(p,p; s) ds

ryt =

∫
f y(t, s;p)f t(t, s;p) · rS(p,p; s) ds+

∫
f(t, s;p)f t(t, s;p) · ry

S(p,p; s) ds.

Also, in view of Lemma 1, if the field is assumed to be stationary in space the last two

equations in formula (56) simplify since the second terms on the right hand side of the

equations equal zero.

Lemma 3. If the field X(p, t) is governed by rS having space constant variance σ2(t), then

(54) of Lemma 2 still holds.

Proof. Holding the dependence on t implicit, we have

Cov(X(p), Xx(p′)) =
∂

∂x
r(p,p′)|p=p′ =

∂

∂x′
r(p,p′)|p=p′ = 0,
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since constant variance and the symmetry of covariance imply that

0 ≡ ∂r(p,p)

∂x
=

∂

∂x
r(p,p′)|p=p′ +

∂

∂x′
r(p,p′)|p=p′ = 2

∂

∂x
r(p,p′)|p=p′.

Thus, the field and its first order derivatives in space have to be uncorrelated.

Similarly, using (56), we get Cov(Xx(p, t), X t(p, t)) = Cov(Xy(p, t), X t(p, t)) = 0 since

fx ≡ 0, the kernel f is independent of location, and by the same argument as above

rx
S(p,p; s) = ry

S(p,p; s) = 0.

5.3. Dynamic flow driven derivative fields. The diffeomorphism ψt(p) = ψ(p; t) given

by (20) takes values in R2 so let us write ψt(p) = (xt(p), yt(p)) = (x(p; t), y(p; t)). We

will also use the following convention ψt+s(p) = ψs(p; t) to explicitly point out the time

argument t. We note the relations

v(p, t) =
∂ψ−t(p; t)

∂t

v(ψs+t(p), t) =
∂ψs(p; t)

∂t

The field Y (p, t) as defined by (22), has the following partial derivatives:

Y x(p, t) =

∫
f(t, s)

∂ψs−t(p)

∂x

T

 Φx(ψs−t(p); ds)

Φy(ψs−t(p); ds)


 ,

Y y(p, t) =

∫
f(t, s)

∂ψs−t(p)

∂y

T

 Φx(ψs−t(p); ds)

Φy(ψs−t(p); ds)


 ,

Y t(p, t) =

∫
f t(t, s) Φ(ψs−t(p); ds) −

∫
f(t, s) · v(ψs−t(p);−t)T


 Φx(ψs−t(p); ds)

Φy(ψs−t(p); ds)


 .

Here the field valued stochastic measures Φx, Φy are driven by covariances rxx′

(p,p′, t)

and ryy′

(p,p′; t), respectively. Moreover, we follow the convention that vectors are column

matrices and AT stands for the transpose of matrix A so (∂ψs−t(p)/∂x)T is the row vector

of derivatives in x.
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It is quite straightforward to compute the covariances between the different partial deriva-

tives as shown next

Cov(Y x(p, t), Y t(p, t)) =

=

∫
f(t, s) · ∂ψs−t(p)

∂x

T


f t(t, s)



 rx
S

ry
S



 − f(t, s)



 rxx
S rxy

S

ryx
S ryy

S



v(ψs−t(p),−t)



 ds,

Var(Y x(p, t)) =

=

∫
|f(t, s)|2 · ∂ψs−t(p)

∂x

T

 rxx

S rxy
S

ryx
S ryy

S


 ∂ψs−t(p)

∂x
ds

(56)

where rx
S, r

y
S, r

xx
S , ryy

S , r
xy
S , r

yx
S are all evaluated at (ψs−t(p),ψs−t(p); s).
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