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Abstract We propose a simple modified gravity model
without any initial matter fields in terms of several alter-
native non-Riemannian spacetime volume elements within
the metric (second order) formalism. We show how the non-
Riemannian volume-elements, when passing to the physical
Einstein frame, create a canonical scalar field and produce
dynamically a non-trivial inflationary-type potential for the
latter with a large flat region and a stable low-lying minimum.
We study the evolution of the cosmological solutions from
the point of view of theory of dynamical systems. The theory
predicts the spectral index ns ≈ 0.96 and the tensor-to-scalar
ratio r ≈ 0.002 for 60 e-folds, which is in accordance with
the observational data. In the future Euclid and SPHEREx
missions or the BICEP3 experiment are expected to provide
experimental evidence to test those predictions.

1 Introduction

Developments in cosmology have been influenced to a great
extent by the idea of inflation [1–5], which provides an attrac-
tive solution of the fundamental puzzles for the standard Big
Bang model, as the horizon and the flatness problems. In addi-
tion, providing a framework for sensible calculations of pri-
mordial density perturbations were discussed in [6,7]. How-
ever, it has been recognized that a successful implementation
requires some very special restrictions on the dynamics that
drives inflation. In particular, in New Inflation [4], a potential
with a large flat region, which then drops to zero (or almost
zero) in order to reproduce the vacuum with almost zero (in
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Planck units) cosmological constant of the present universe,
is required.

In a parallel development, extended (modified) gravity
theories as alternatives/generalizations of the standard Ein-
stein General Relativity are being extensively studied in the
last decade or so. The main motivation for this development
comes from:

– (a) Cosmology – modified gravity may solve the prob-
lems of dark energy and dark matter and explain the large
scale structure and the accelerated expansion of the uni-
verse [8,9]);

– (b) Quantum field theory in curved spacetime – because
of non-renormalizability of standard general relativity in
higher loops it fails to describe the universe at quantum
scales [10];

– (c) Modern String theory – because of the natural appear-
ance of scalar-tensor couplings and higher-order cur-
vature invariants in low-energy effective field theories
aimed at phenomenologically realistic description of par-
ticle physics [11].

The principal approaches to construct modified gravity the-
ories include f (R)-gravity, scalar-tensor theories, Gauss-
Bonnet gravity models. For detailed accounts, see the book
[12] and the extensive reviews [13–16], as well as for further
details Refs. [17–46].

One broad class of actively developed modified/extended
gravitational theories is based on employing alternative non-
Riemannian spacetime volume-forms, i.e., metric- indepen-
dent generally covariant volume elements in the pertinent
Lagrangian actions on spacetime manifolds with an ordinary
Riemannian geometry, instead of the canonical Riemannian
volume element

√−g d4x whose density is given by the
square-root of the determinant of the Riemannian metric:
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√−g ≡ √− det ‖gμν‖ (1)

originally proposed in [47–51]. For a concise geometric for-
mulation, see [52,53].

This formalism was used as a basis for constructing a
series of extended gravity-matter models describing unified
dark energy and dark matter scenario [54,55], quintessen-
tial cosmological models with gravity-assisted and inflaton-
assisted dynamical suppression (in the “early” universe) or
generation (in the post-inflationary universe) of electroweak
spontaneous symmetry breaking and charge confinement
[56–58], and a novel mechanism for the supersymmetric
Brout–Englert–Higgs effect in supergravity [52].

In the present paper we propose a very simple gravity
model without any initial matter fields involving several non-
Riemannian volume-forms instead of the standard Rieman-
nian volume element

√−g d4x . We show how the non-
Riemannian volume-elements, when passing to the physi-
cal Einstein frame, generate a canonical scalar field u and
manage to create dynamically a non-trivial inflationary-type
potential for u with a large flat region for large positive u and
a stable low-lying minimum, i.e., u will play the role of a
dynamically created “inflaton”. This dynamically generated
inflationary potential turns out to be a generalization of the
well-known Starobinsky potential [1].

We study the evolution of the cosmological solutions from
the point of view of the theory of dynamical systems and cal-
culate the spectral index ns and the tensor-to-scalar ratio r in
our model whose values are in accordance with the observa-
tional data.

In Sect. 2 below we briefly review the general notion of
volume forms on arbitrary differential manifolds. Section
3 briefly presents the general construction of Lagrangian
actions on Riemannian manifolds employing metric-
independent (non-Riemannian) volume forms (volume ele-
ments). Our main results are contained in Sects. 4, 5 and 6.
In Sect. 4 we propose our simple modified gravity model
in terms of several non-Riemannian volume elements with-
out any matter fields and derive the corresponding Einstein-
frame description with the associated dynamical creation of a
canonical scalar field with a non-trivial effective inflationary
potential. In Sect. 5 we study the cosmological evolutionary
solutions within the Friedmann-Lemaitre-Robertson-Walker
framework. In Sect. 6 we derive the explicit expressions for
the Hubble slow-roll parameters and use them to obtain ana-
lytic results for the scalar power spectral index and the tensor-
to-scalar ratio which we compare with the available obser-
vational data.The last Sect. 7 contains our conclusions.

2 Non-Riemannian volume-forms formalism

Let us first recall the general notion of volume-forms
(volume elements) in integrals over arbitrary differentiable

manifolds – not necessarily Riemannian one, so no metric
is needed. Volume forms are given by nonsingular maximal
rank differential forms ω (see e.g. Ref. [59]):
∫

M
ω

(
. . .

) =
∫

M
dxD Ω

(
. . .

)
,

ω = 1

D!ωμ1...μDdx
μ1 ∧ · · · ∧ dxμD ,

ωμ1...μD = −εμ1...μDΩ , (2)

(our conventions for the alternating symbols εμ1,...,μD and
εμ1,...,μD are: ε01...D−1 = 1 and ε01...D−1 = −1).

The volume element density Ω , as it is evident from its
definition in (2), transforms as scalar density under general
coordinate reparametrizations on the manifold.

In Riemannian D-dimensional spacetime manifolds a
standard generally-covariant volume-form is defined through
the “D-bein” (frame-bundle) canonical one-forms eA =
eAμdx

μ (A = 0, . . . , D − 1):

ω = e0 ∧ · · · ∧ eD−1 = det ‖eAμ‖ dxμ1 ∧ · · · ∧ dxμD

−→ Ω = det ‖eAμ‖ = √− det ‖gμν‖ . (3)

To construct modified gravitational theories as alternatives
to ordinary standard theories in Einstein’s general relativity,
instead of

√−g we can employ one or more alternative non-
Riemannian volume element densities as in (2) given by non-
singular exact D-forms ω = d A where:

A = 1

(D − 1)! Aμ1...μD−1dx
μ1 ∧ · · · ∧ dxμ−1

−→ Ω ≡ Φ(A) = 1

(D − 1)!ε
μ1...μD ∂μ1 Aμ2...μD . (4)

Thus, the non-Riemannian volume element density Φ(A)

is defined in terms of the (scalar density of the) dual field-
strength of an auxiliary rank D − 1 tensor gauge field
Aμ1...μD−1 and it transforms as scalar density under general
coordinate transformations, which is evident from its defi-
nition (4). Accordingly, the integration element

∫
d4xΦ(A)

is manifestly invariant under general coordinate transforma-
tions.

Let us stress that the term “non-Riemannian” relates only
to the nature of the volume element density (4), whose defi-
nition does not involve the metric. Otherwise the geometry of
the spacetime is a regular Riemannian one – scalar products
of vector fields are given as usual by the Riemannian metric
gμν , the connection �λ

μν is the usual Levi-Civita one in terms
of gμν , there is no torsion, etc.

3 The action

In general, modified gravity Lagrangian actions based on the
non-Riemannian volume-form formalism have the follow-
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ing generic form (here and below we are using units with
16πGNewton = 1):

S =
∫

d4x

{
Φ1(A)

[
R + L(1)

]
+ Φ2(B)

[
L(2) + Φ0(C)√−g

]
+ · · ·

}
. (5)

Here Φ1(A),Φ2(B),Φ0(C) are several different non-Rie-
mannian volume element densities of the form (4), i.e.,
defined by auxiliary rank 3 tensor gauge fields Aμνλ, Bμνλ,

Cμνλ; R denotes the scalar curvature in either first-order
(Palatini) or second order (metric) formalism; L(1) and L(2)

are some matter field Lagrangians; the dots indicate pos-
sible additional terms containing higher powers of the non-
Riemannian volume element densities e.g.,

(
Φ1(A)

)2
/
√−g.

The specific forms of L(1) and L(2) can be uniquely fixed via
the requirement for invariance of (5) under global Weyl-scale
invariance (see (10) below).

Let us stress that the modified gravity action (5), in com-
plete analogy with
∫

d4x
√−g

[
R + . . .

]
(6)

which is the standard Einstein–Hilbert action, is explicitly
invariant under general coordinate reparametrizations since,
as mentioned above, non-Riemannian volume element den-
sities transform as scalar densities similarly to

√−g.
A characteristic feature of the modified gravitational the-

ories (5) is that when starting in the first-order (Palatini) for-
malism all non-Riemannian volume-forms are almost pure-
gauge degrees of freedom, i.e. they do not introduce any
additional physical (field-propagating) gravitational degrees
of freedom except for few discrete degrees of freedom with
conserved canonical momenta appearing as arbitrary integra-
tion constants. The reason is that the modified gravity action
in Palatini formalism is linear w.r.t. the velocities of some
of the auxiliary gauge field components defining the non-
Riemannian volume element densities, and does not depend
on the velocities of the rest of auxiliary gauge field compo-
nents. The (almost) pure-gauge nature of the latter is explic-
itly shown in Refs. [53,56] (appendices A) employing the
standard canonical Hamiltonian treatment of systems with
gauge symmetries, i.e., systems with first-class Hamiltonian
constraints a’la Dirac (e.g., [60,61]).

Unlike Palatini formalism, the above situation changes
significantly when we treat (5) in the second order (met-
ric) formalism. In the latter case the “Einstein–Hilbert” part∫
d4x Φ1(A)R of the modified gravity action (5) contains

second order time derivative terms of the metric in R, which
is in sharp contrast with the case of ordinary Riemannian vol-
ume element

∫
d4x

√−gR where the corresponding second-
order time derivatives amount to a total derivative. According
to the general canonical Hamiltonian treatment of systems

with higher-order time derivatives on the canonical variables
(see e.g., [62] – modern version of the classical Ostrograd-
sky formalism [63]) the presence of the latter implies the
appearance of some of the corresponding velocities as addi-
tional physical degrees of freedom. In the present case this is
reflected in the fact that (as we will see below, Eqs.(19)–(21))
upon passing to the physical Einstein frame via conformal
transformation:

gμν → ḡμν = χ1gμν , χ1 ≡ Φ1(A)√−g
, (7)

the first non-Riemannian volume element density Φ1(A) in
(5) is not any more a “pure gauge”, but creates a new dynami-
cal canonical scalar field u via χ1 = exp u√

3
. In the following

Section we will see how a non-trivial inflationary potential
for u is dynamically generated.

4 Einstein Frame: the Effective Scalar Potential

Let us now consider the simplest member in the class of
modified gravitational models (5) with no original matter
fields. i.e., L(1) = 0 and L(2) = 0, and where we only add a
quadratic term w.r.t. non-Riemannian volume element den-
sity Φ1(A):

S =
∫

d4x
{
Φ1(A)

[
R − 2Λ0

Φ1(A)√−g

]
+ Φ2(B)

Φ0(C)√−g

}
,

(8)

Here R is the scalar curvature in the second order (metric)
formalism and:

Φ1(A) ≡ 1

3!ε
μνκλ∂μAνκλ , Φ2(B) ≡ 1

3!ε
μνκλ∂μBνκλ ,

Φ0(C) ≡ 1

3!ε
μνκλ∂μCνκλ . (9)

The specific form of the action (8) is dictated by the require-
ment about global Weyl-scale invariance under:

gμν → λgμν ,

Aμνκ → λAμνκ , Bμνκ → λ2Bμνκ , Cμνκ → Cμνκ . (10)

where λ = const.
Scale invariance has always played an important role since

the original papers on the non-canonical volume-form for-
malism [49].

In a more general context let us recall, that scale invariance
is a symmetry which relates small scales to large scales. As
such (together with conformal symmetry) it plays fundamen-
tal role in quantum field theory and modern string theory in
particle physics at (ultra)high energies as it dynamically gen-
erates (via spontaneous breakdown) mass scales hierarchies.
On the other hand it plays an important role in cosmology
as well, where it leads naturally to flat inflationary potentials
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(in the present context this is because it introduces a shift
symmetry of the scalar field(s)) and produces candidates for
dark matter (see the lectures at CERN’s Workshop on “Scale
invariance in particle physics and cosmology”, Ref. [64]).
Also let us note another specific application of spontaneously
broken dilatation symmetry in combination with application
of the non-canonical volume form formalism: elimination
of the Fifth Force Problem in a quintessential inflationary
scenario [51].

The equations of motion resulting from (8) upon varia-
tion w.r.t. the auxiliary gauge fields Aμνλ, Bμνλ ,Cμνλ yield,
respectively:

R − 4Λ0
Φ1(A)√−g

= −M1 ≡ const, (11)

Φ0(C)√−g
= −M2 ≡ const,

Φ2(B)√−g
= χ2 ≡ const.

(12)

Here M1, M2 and χ2 are (dimensionful and dimension-
less, respectively) integration constants. The appearance of
M1, M2 indicate spontaneous breaking of global Weyl sym-
metry (10).

The equations of motion w.r.t. gμν from (8) read:

Rμν − Λ0χ1 gμν + 1

χ1

(
gμν�χ1 − ∇μ∇νχ1

)

−χ2M2

χ1
gμν = 0, (13)

with χ1 as in (7). On the other hand, taking the trace of (13)
and using Eq. (11) we obtain the equation of motion for χ1:

3
�χ1

χ1
− 4χ2M2

χ1
− M1 = 0. (14)

We now transform Eqs. (13) and (14) via the conformal
transformation (7) and show that the transformed equations
acquire the standard form of Einstein equations w.r.t. the
new “Einstein-frame” metric ḡμν . To this end we are using
the known formulas for the conformal transformations of Rμν

and �Ψ , the latter being an arbitrary scalar field, in particular
Ψ ≡ χ1 (see e.g. Ref. [65]; bars indicate magnitudes in the
ḡμν-frame):

Rμν(g) = Rμν(ḡ) − 3
ḡμν

χ1
ḡκλ∂κχ

1/2
1 ∂λχ

1/2
1 (15)

+χ
−1/2
1

(∇̄μ∇̄νχ
1/2
1 + ḡμν�̄χ

1/2
1

)
,

and

�χ1 = χ1

(
�̄χ1 − 2ḡμν ∂μχ

1/2
1 ∂νχ1

χ
1/2
1

)
, (16)
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Fig. 1 Qualitative shape of the effective potential Ueff (u) in the Ein-
stein frame, as presented in Eq. (19). The physical unit for u is
MPlanck/

√
2

Following the analogous derivation in Ref. [66], upon using
(15), (16) we rewite Eq. (13) as:

Rμν(ḡ) − 1

2
ḡμνR(ḡ)

= 1

2

[
∂μu∂νu − ḡμν

(
1

2
ḡκλ∂κu∂λu +Ueff(u)

)]
, (17)

where we have redefined:

Φ1(A)/
√−g ≡ χ1 = exp

(
u/

√
3
)

(18)

in order to obtain a canonically normalized kinetic term for
the scalar field u, and where:

Ueff(u) = 2Λ0 − M1 exp

(
− u√

3

)

+χ2M2 exp

(
− 2

u√
3

)
. (19)

On the other hand, using (16) we rewrite Eq. (14) in terms of
the canonical scalar field u:

�̄u + ∂Ueff

∂u
= 0 (20)

with Ueff as in (19).
Accordingly, the corresponding Einstein-frame action

reads:

SEF =
∫

d4x
√−ḡ

[
R(ḡ) − 1

2
ḡμν∂μu∂νu −Ueff(u)

]
.

(21)

We now observe an important result – in (21) we have a
dynamically created scalar field u with a non-trivial effec-
tive scalar potential Ueff(u) (19) entirely dynamically gener-
ated by the initial non-Riemannian volume elements in (8)
because of the appearance of the free integration constants
M1, M2, χ2 in their respective equations of motion (11), (12).

The qualitative shape of (19) is depicted on Fig. 1. The
effective potential Ueff(u) has two main features relevant
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for cosmological applications. First, Ueff(u) (19) possesses
a flat region for large positive u and, second, it has a stable
minimum for a small finite value u = u∗:

(i) Ueff(u) 
 2Λ0 for large u;
(ii) ∂Ueff

∂u = 0 for u ≡ u∗ where:

exp

(
− u∗√

3

)
= M1

2χ2M2
,

∂2Ueff

∂u2

∣∣∣∣
u=u∗

= M2
1

6χ2M2
> 0. (22)

The flat region of Ueff(u) for large positive u correspond
to “early” universe’ inflationary evolution with energy scale
2Λ0. On the other hand, the region around the stable mini-
mum at u = u∗ (22) correspond to “late” universe’ evolution
where the minimum value of the potential:

Ueff(u∗) = 2Λ0 − M2
1

4χ2M2
≡ 2ΛDE (23)

is the dark energy density value [67,68].
Let us note that the effective potentialUeff (19) generalizes

the well-known Starobinsky inflationary potential [1] ((19)
reduces to Starobinsky potential upon taking the following
special values for the parameters: Λ0 = 1

4 M1 = 1
2χ2M2).

5 Evolution of the homogeneous solution

We now consider reduction of the Einstein-frame action (21)
to the Friedmann–Lemaitre–Robertson–Walker (FLRW) set-
ting with metric ds2 = −N 2dt2 + a(t)2dx2, and with
u = u(t). In order to study the evolution of the scalar field
u = u(t) and the Friedmann scale factor a = a(t), it is useful
to use the method of autonomous dynamical systems.

The FLRW action describes a minimally coupled canon-
ical scalar field u with specific potential Ueff(u) (19) (using
again units with 16πGNewton = 1):

SFLRW =
∫

d4x
[
−6

a
.
a

2

N
+ Na3

(1

2

.
u

2
/N 2

+M1e
−u/

√
3 − M2χ2e

−2u/
√

3
)]

. (24)

Variations w.r.t. N , a, u (and subsequently using the gauge
N = 1 for the lapse function) yield the pertinent Friedmann
and field equations (H = .

a /a being the Hubble parameter):

H2 = 1

6
ρ , ρ = 1

2

.
u

2 +Ueff(u) , (25)

.

H= −1

4
(ρ + p) , p = 1

2

.
u

2 −Ueff(u) , (26)

..
u +3H

.
u +∂Ueff

∂u
= 0 . (27)

− 1.0 − 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z

x

Fig. 2 Phase space portrait of the autonomous system (30). The x axis
denotes the relative kinetic part of the scalar inflaton, and the z axis
denotes the relative part of the dark energy density ΛDE

In the treatment of Eqs. (25)–(27) it is instructive to rewite
them in terms of a set of dimensionless parameters (following
the approach in Ref. [69]):

x := u̇√
12H

, y :=
√
Ueff(u) − 2ΛDE√

6H
, z :=

√
ΛDE√
3H

,

(28)

with LDE as in (23). In these coordinates the system defines
a closed orbit:

x2 + y2 + z2 = 1 , (29)

which is equivalent to the first Friedmann equation (25).
Employing the variables (x, y, z) in Eqs. (25)–(27) and

taking into account the constraint (29) we obtain the
autonomous dynamical system w.r.t. (x, z):

x ′ =
√

3

2ΛDE
z2

[
−M1ξ(x, z) + 2M2χ2ξ

2(x, z)
]

−3x(1 − x2),

z′ = 3zx2 , (30)

where the primes denote derivative w.r.t. the parameter N =
log a, and the function ξ(x, z) is defined as:

ξ(x, z) = M1

2χ2M2

[
1 −

√
8Λ0M2χ2

M2
1

1 − x2 − z2

z2

]
. (31)

The phase portrait of the system (30) is depicted on Fig. 2.
There are two critical points in the system. The stable point
A (x = 0, z = 1) corresponds to the “late” universe de Sit-
ter solution with the asymptotic cosmological constant ΛDE

(23).
The second point B

(
x = 0, z = √

ΛDE/Λ0
)

is unstable
corresponding to the beginning of the universe’ evolution in
the “early” universe at large u. If the evolution starts at any
point close to B, initially the evolution is of de Sitter type with
effective cosmological constant ≈ Λ0. Then the dynamics

123



806 Page 6 of 9 Eur. Phys. J. C (2019) 79 :806
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0.1

0.2

0.5
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t [(10−32)sec]

H
[t]

Fig. 3 Numerical example of the Hubble parameter H(t) and the scalar
field u(t) vs. time. For short times the inflationary Hubble parameter
is large and afterwards approaches its cosmological late time value. As
an example we take: M1

M2χ2

 10−2, H(0) ∼ 1, u(0) ∼ 17. The phys-

ical units for the numbers representing u and H on the vertical axis
in both graphics conform to our choice of normalization of “Planck”
units 16πGNewton = 1 in Eq. (5) and henceforth. Thus, the physical

unit for u is 1/
√

16πGNewton ≡ MPlanck/
√

2, and the unit for H is
around 10−17sec−1 or around 300(km/sec)/Mpc which conforms to
the current value of the Hubble parameter around 60(km/sec)/Mpc.
On the right panel the blown-up rectangle depicts the oscillations of
u(t) around the minimum of Ueff (19). One can see that the universe
starts with an inflationary Hubble constant and ends with a smaller value
representing the dark energy epoch

drives the system away from B all the way towards the stable
point A at late times.

Numerical solutions are demonstrated in Fig. 3. One can
see that the Hubble parameter begins and ends with two dif-
ferent values. The first one is related to the inflationary epoch
and the other related to the dark energy in the late universe.
The scalar field u oscillates around the minimum point u∗
(22) of Ueff (19), which corresponds to particle creation in
the reheating epoch.

6 Perturbations

In order to check the viability of the model we investigate
the perturbations of the above background evolution, in par-
ticular focusing on the inflationary observables such as the
scalar spectral index ns and the tensor-to-scalar ratio r . As
usual, we introduce the Hubble slow-roll parameters [39,40],
which in our case using the potential (19) read:

ε =
(
U ′

eff(u)

Ueff(u)

)2

= 4ζ 2

3

(
1/2 − ζ

)2

[(
1/2 − ζ

)2

+ δ/4

]2 , (32)

|η| = 2|U
′′
eff(u)

Ueff(u)
| = 2ζ

3

(
1 − 4ζ

)

[(
1/2 − ζ

)2 + δ/4
] , (33)

where:

ζ ≡ M2χ2

M1
e−u/

√
3, δ ≡ 8M2χ2

M2
1

ΛDE , (34)

with ΛDE – the dark energy density (23), and therefore δ very
small.

Inflation ends when ε(u f ) = 1 for some u = u f where

(ζ f ≡ M2χ2
M1

e−u f /
√

3):

ζ f = 1

2

(
1 + 2/

√
3

)
[

1 + 1√
3

−
√

1/3 −
(

1 + 2/
√

3

)
δ

]


 1

2

(
1 + 2/

√
3

) . (35)

For the number of e-foldings N = 1
2

∫ u f
ui

du Ueff/U ′
eff

we obtain:

N = 3

8
(1 + δ)

(
1/ζi − 1/ζ f

)

−3

4
(1 − δ) log

ζ f

ζi
+ 3

4
δ log

( 1 − 2ζi

1 − 2ζ f

)
, (36)

where ζi ≡ M2χ2
M1

e−ui /
√

3 and u = ui is very large corre-
sponding to the start of the inflation. Ignoring δ and using
the last equality (35) we have approximately:

N 
 3M1

8M2χ2
eui /

√
3 −

√
3

4
ui − 3

4

(
1 + 2/

√
3
)

+3

4
log

(
2
(
1 + 2/

√
3
))

. (37)

Using the slow-roll parameters, one can calculate the val-
ues of the scalar spectral index and the tensor-to-scalar ratio
respectively as [45,70]:

r ≈ 16ε, ns ≈ 1 − 6ε + 2η (38)

123
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Fig. 4 The predicted values of the r and ns for different e-foldings. The
different values of the r and ns are compatible with the observational
data

Taking into account Eqs. (32),(33) (ignoring δ) and (37) we
find:

r 
 12
[
N +

√
3

4 ui (N ) + c0

]2 ,

c0 ≡
√

3

2
− 3

4
log

(
2
(
1 + 2/

√
3
)) ; (39)

and

ns 
 1 − r

4
−

√
r

3
, (40)

where ui (N ) is the solution of the transcedental Eq. (37) for
ui as a function of N .

One viable example in our model is to take N = 60 e-
folds. Equation (37) yields N = 60 provided we choose
M1

M2χ2

 10−2, which yields ui 
 17. In such a way the

observables are predicted to be:

ns ≈ 0.969, r ≈ 0.0026, (41)

which are well inside the PLANCK observed constraints
[71]:

0.95 < ns < 0.97, r < 0.064 (42)

Figure 4 demonstrates the relation between the number of
e-folds and the dimensionless parameters. One can see that all
those values fit the latest PLANCK collaboration constraints.

7 Conclusions

We propose a very simple gravity model without any initial
matter fields in terms of several alternative non-Riemannian
spacetime volume elements within the second order (met-
ric) formalism. We show how the non-Riemannian volume-
elements, when passing to the physical Einstein frame, create
a canonical scalar field and produce dynamically a non-trivial

inflationary-type potential for the latter with a large flat region
and a stable low-lying minimum. We study the evolution of
the cosmological solutions from the point of view of the the-
ory of dynamical systems. Our model predicts scalar spectral
index ns ≈ 0.96 and tensor-to-scalar ratio r ≈ 0.002 for 60
e-folds, which is in accordance with the observational data.

A natural next step is to consider two-field inflation (Refs.
[69,72–80], for a geometric treatment see Refs. [81–85], and
references therein) by adding a new scalar field ϕ with non-
trivial potentials in the starting modified gravity action (8)
built in terms of several non-Riemannian volume elements
and subject to preserving the requirement of global Weyl-
scale invariance (10).In this case the non-Riemannian volume
elements will again generate a second scalar field u and create
dynamically a non-trivial two-field scalar potential with a
very specific geometry of the field space of ϕ, u. This is
studied in more detail in our subsequent work [78], where
it is shown that the latter dynamically generated two-field
inflationary model similarly conforms to the observational
data.
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