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We will study open and hidden charm scalar meson resonances within two different models. The first

one is a direct application of a chiral Lagrangian already used to study flavor symmetry breaking in

Skyrme models. In another approach to the problem a SU�4� symmetric Lagrangian is built and the

symmetry is broken down to SU�3� by identifying currents where heavy mesons are exchanged and

suppressing those. Unitarization in coupled channels leads to dynamical generation of resonances in both

models, in particular, a new hidden charm resonance with mass 3.7 GeV is predicted. The small

differences between these models and with previous works is discussed. We also perform an error

analysis of the results, checking their stability and determining the uncertainties in masses and couplings

of the heavy resonances.
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I. INTRODUCTION

The discovery and soon after confirmation of charmed

scalar resonances by BABAR and Belle [1–3] has opened a

controversy about their structures. In the q �q picture these

resonances are naturally assigned as 3P0 states in the 2S�1lj
notation, but calculations done long before in the frame-

work of quark model potentials [4] had mass predictions

which turned out to be more than 100 MeV off the real

mass of the states. Lattice calculations also fail in calculat-

ing the masses with a q �q assignment [5].

This situation has sparked the discussion whether

these resonances could have a different structure. Some

authors have suggested a qq �q �q structure [6,7] or a mixing

between four quarks and the usual q �q structure [8]. Also

molecular states have been suggested [9–11]. For discus-

sions on these and other controversial heavy mesons see

Refs. [12–14].

Unitarized coupled channel models have also been con-

sidered for the study of these resonances in [15–17]. These

works have used a chiral Lagrangian based on heavy quark

symmetry [18–21] for the open charm sector which ne-

glects exchanges of heavy vector mesons in the implicit

Weinberg-Tomozawa term. We intend to extend the study

for all possible sectors of the interaction, including the

hidden charm and the double charmed sector. The ex-

change of heavy vector mesons is also taken into account

in our approach, with the corresponding terms properly

accounting for the larger mass of the heavy vector mesons.

In the present work we will construct a Lagrangian for

the interaction of the 15-plet of pseudoscalar mesons in

SU�4�. SU�4� symmetry breaking will be considered by

suppressing the exchange of heavy vector mesons. The

SU�3� structure of the interaction will be thoroughly ana-

lyzed and unitarization in coupled channels will lead to the

generation of scalar resonances corresponding to poles in

the T-matrix. For comparison, in the open charm sector, we

will also solve the problem with yet another Lagrangian

which has been considered in the study of flavor symmetry

breaking effects in Skyrme models. This Lagrangian gives

similar results, supporting our present model.

The work is organized as follows. In the next section a

brief review of the structure of the SU�4� 15-plet will be

presented. Section III is dedicated to the explanation of the

construction of the Lagrangian and in Sec. IV the theoreti-

cal framework for solving the scattering equations in a

unitarized approach is presented. Section V is dedicated

to analyzing the results and a brief summary is presented in

Sec. VI.

II. THE 15-PLET

In this work the framework already used to study the

interaction of the octet of pseudoscalar mesons in SU�3�
[22] will be extended to include charmed mesons. This will

involve some extrapolation to SU�4�. In the q �q picture,

mesons involving charm will be classified as 4 � �4 � 15 �
1, hence belonging to a 15-plet or a singlet. It is interesting

to understand how the 15 representation of SU�4� breaks

down into representations of SU�3� and in which channels

the interaction of the multiplets will be attractive or

repulsive.

The pseudoscalar mesons are represented by a 15-plet of

SU�4� as shown in Fig. 1. Once SU�4� symmetry is broken

into SU�3�, the 15-plet breaks down into four multiplets of

the lower symmetry, an octet, a triplet, an antitriplet and a

singlet:

 15 ! 1 � 3 � �3 � 8: (1)

The octet and the singlet have null charm quantum

number, the triplet and the antitriplet have negative and

positive charm quantum number, respectively. When

studying the meson-meson interaction, one can decompose

the scattering of two 15-plets of SU�4� according to its

SU�3� inner structure, see Table I.
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The interaction 8 � 8 is already very well studied [22–

29]. It is already known that in s-wave it generates dy-

namically poles in the T-matrix which are associated with

the f0�980�, �, a0�980�, and � resonances. Also the inter-

action �3 � 8 has already been studied [15–17] in some

different approaches. In this sector, as we will show in

the following sections, the interaction, when diagonalized

in a SU�3� basis, is attractive in �3 and 6, while repulsive in

the 15, so one could expect to generate five poles in (S, I):
from the �3 with isospin 0 and 1

2
and strangeness 1 and 0,

respectively; from the 6 with I � 0, 1
2

, 1 and S � �1, 0, 1,

respectively. Moreover, the interaction in the �3 � 3 is at-

tractive in both the 8 and the 1, so one can, in principle,

expect four new resonances in the hidden charm sector.

The interaction in the C � 2 sector is repulsive in the �6 and

in the 3 the interaction vanishes.

Apart from studying the different sectors separately, it is

interesting to see how the mixing of states from different

sectors with the same SU�3� representation of Table I

affects the interaction.

Furthermore, if heavy resonances are generated from the

3 � �3 one can expect, in principle, that the mixing of those

heavy channels with light ones coming from 8 � 8 will

make its width quite large because of the large phase-space

available for decay. However, we shall also see that there

are subtleties in the interaction which suppress these

decays.

III. THE LAGRANGIANS

The SU�3� lowest order chiral Lagrangian reads [30,31]:

 L � � f2�
4

Tr�@�U@�U� �
f2�m

2
�

4
Tr�U�Uy � 2�; (2)

where U is the field containing the pseudoscalar mesons

from the SU�3� octet and Tr represents a trace in flavor

space:

 U � ei
��
2

p
�8=f� ; (3)

 �8 �

�0
��
2

p � ���
6

p �� K�

�� ��0
��
2

p � ���
6

p K0

K� �K0 �2���
6

p

0

B
B
B
@

1

C
C
C
A
: (4)

Flavor symmetry breaking effects can be introduced

with two new terms in the Lagrangian [32,33]:

 L SB � f2Km
2
K � f2�m

2
�

6
Tr��1̂�

���
3

p
�8��U�Uy � 2��

� f2K � f2�
12

Tr��1̂�
���
3

p
�8��Ul�l� � l�l

�Uy��;
(5)

 l� � Uy@�U; (6)

where �8 is one of the SU�3� generators.

In [34] these Lagrangians are extended to SU�n�. In this

new approach the symmetry breaking sector is written as
 

LSB � 1

8

Xn

k�3

	k Tr

��

1̂�
���������������������

1

2
k�k� 1�

s

�k2�1

�

� �Ul�l� � l�l
�Uy�

�

� 1

8

Xn

k�3


k Tr

��

1̂�
���������������������

1

2
k�k� 1�

s

�k2�1

�

� �U�Uy � 2�
�

; (7)

but now U belongs to a SU�n� representation.

TABLE I. SU�3� decomposition of the meson-meson interac-

tion in SU�4�. The sectors not shown in the table correspond to

the C � �1;�2 states which are just charge conjugate states

(antiparticles) from the ones shown.

Charm Interacting multiplets

2 �3 � �3 ! 3 � �6

1 �3 � 8 ! �15 � �3 � 6
�3 � 1 ! �3

0 �3 � 3 ! 8 � 1

1 � 1 ! 1

8 � 1 ! 8

8 � 8 ! 1 � 8s � 8a � 10 � 10 � 27

FIG. 1 (color online). 15-plet from SU�4� with its mesons

assignments.
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By expanding the U matrix until fourth order in the

meson fields, one can identify the mass and kinetic terms

for each field and fix the symmetry breaking parameters for

SU�4� and SU�3� as

 	3 � 4
6
�f2K � f2��; (8)

 
3 � 4
3
�f2Km2

K � f2�m
2
��; (9)

 	4 � 1
2
�f2D � f2K � 2f2��; (10)

 
4 � f2Dm
2
D � 1

3
f2Km

2
K � 1

3
f2�m

2
�: (11)

In this work we will consider only the difference be-

tween fD and f� which is about 70% and we will make the

approximation fK � f�.

For constructing our model we will first consider a

SU�4� field containing all fields from the 15-plet1:

 ��
X15

i�1

’i
���
2

p �i

�

�0
��
2

p � ���
6

p � �c����
12

p �� K� �D0

�� ��0
��
2

p � ���
6

p � �c����
12

p K0 D�

K� �K0 �2���
6

p � �c����
12

p D�
s

D0 D� D�
s

�3�c����
12

p

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

(12)

A current is then defined:

 J� � 	@��;�
; (13)

and a Lagrangian is built by connecting two currents and

adding an extra term proportional to the square mass of the

fields:

 L PPPP � 1

12f2
Tr�J�J� ��4M�: (14)

SU�4� and SU�3� flavor symmetry breaking already arise

from the mass term when the matrix M is not proportional

to the identity matrix. We take

 M �
m2
� 0 0 0

0 m2
� 0 0

0 0 2m2
K �m2

� 0

0 0 0 2m2
D �m2

�

0

B
B
B
@

1

C
C
C
A
: (15)

The term with the matrix M is exactly the same one

appearing in the chiral Lagrangian of Eq. (2) after breaking

SU�4� and SU�3� by means of (7). The term J�J
� in

Eq. (14) appears for four meson fields from the kinetic

term, @�U@
�U, of the chiral Lagrangian in Eq. (2) if U is

taken as a SU�4� representation by means of replacing �8

in Eq. (4) by � in Eq. (12).

We will also implement other different sources of SU�4�
flavor symmetry breaking in a way that we explain below.

The constant f appearing in the Lagrangian (14) is, in

principle, the pion decay constant (in this work f� �
93:0 MeV). However, a different one will be used for the

heavy mesons. In this latter case, the f2 appearing in

the amplitudes should be thought of as the product of
���
f

p
for each meson leg in the corresponding vertex, with f �
f� � 93:0 MeV for light mesons and f � fD � 165 MeV
for heavy ones. This value for fD is of the order of

magnitude expected from the experimental point of view

[35] and lattice calculations [36]. Yet, in Sec. V B, we will

study the theoretical uncertainties and the stability of the

generated heavy resonances by varying these parameters

among others still to be introduced.

Directly applying Feynman rules to obtain transition

amplitudes from this Lagrangian would be too much of a

simplification. Indeed, the term J�J
� of the chiral

Lagrangian is usually visualized as the exchange of a

vector meson between pairs of pseudoscalar fields in the

limit of q2 � m2
V (the Weinberg-Tomozawa term). In this

case the kinetic term of the Lagrangian of Eq. (14) is SU�4�
flavor symmetric and therefore implicitly assumes equal

mV for all the exchanges of heavy and light vector mesons.

In Refs. [15,17] an SU�3� version of the interaction based

on heavy quark symmetry is used which would correspond

to allowing the exchange of only light vector mesons in the

Weinberg-Tomozawa Lagrangian described by the deriva-

tive term of Eq. (14), and neglecting theM term [37]. In the

present work we shall go one step further by allowing also

the exchange of heavy vector mesons but weighted by their

respective squared masses and we shall also keep the mass

term as done in [32–34]. In order to implement this we first

decompose the � field into its SU�3� components:

 � �
�8 � 1����

12
p �11̂3 �3

��3 � 3����
12

p �1

 !

: (16)

The 1̂3 is the 3� 3 identity matrix and the fields �i

contain the meson fields for each i-plet of SU�3� into which

the 15-plet of SU�4� decomposes:

 �8 �

�0
��
2

p � ���
6

p �� K�

�� ��0
��
2

p � ���
6

p K0

K� �K0 �2���
6

p

0

B
B
B
@

1

C
C
C
A
;

 �3 �
�D0

D�

D�
s

0

B
@

1

C
A;

 ��3 � �D0 D� D�
s �;

1What here is called � and �c are actually �8 and �15 states,
which mix with a singlet, �1, to form the physical states �, �0,
and �c, but in this work this mixing will not be taken into
account, and it will be considered that the physical states are just
described by their most important components.
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 �1 � �c:

In this way the Lagrangian in (14) can be decomposed

into six parts:
 

LPPPP � 1

12f2
�L8 �L3 �L31 �L83 �L831 �Lmass�;

(17)

 L 8 � Tr�J88�J�88�; (18)

 L 3 � J�33�J
�
�33
� Tr�J3�3�J�3�3�; (19)

 L 31 � 8
3
J�31�J

�
13; (20)

 L 83 � 2�J�38�J�83 � Tr�J3�3�J�88��; (21)

 L 831 �
4
���
3

p �J�31�J�83 � J�38�J
�
13�; (22)

 L mass � Tr�M�4�; (23)

where the currents are defined as J
�
ij � �@��i��j �

�i�@��j�.
Now the exchange of charmed (heavy) vector mesons

can be easily identified in the different pieces of the

Lagrangian by identifying currents carrying explicitly

charm quantum number. The L8 term accounts for the

exchange of light vector mesons only. In L83 the first

term is mediated by heavy vector mesons and the second

term by light ones, L831 and L31 have only contributions

from heavy vector mesons, and L3 will still have to be

worked out further.

The separation of the heavy vector-meson contribution

from L3 is more subtle because the exchange of a heavy

hidden charm meson in this sector occurs in charge and

flavor conserving hadronic currents, where the �0 and !
also contribute. The strategy followed here is to construct a

Lagrangian connecting the current J� with a vector field

V� [37,38]:

 L PPV � � ig
���
2

p Tr�	@��;�
V��: (24)

Here V� is a 4� 4 matrix with the same structure as �, but

with the 15-plet of vector mesons instead. The heavy

vector meson which can be exchanged in charge and flavor

conserving hadronic currents is the J= .

The J= contribution can be calculated from the

Lagrangian (24) and it is easy to see that when the vector

mesons are connecting equal hadronic currents one has a

contribution with weights 1
3

and 2
3

for light vector mesons

and the J= , respectively, while the weights are � 1
3

and 4
3

in terms connecting different currents. Appendix C shows

in more detail how to work out L3.

With all these considerations the full Lagrangian can

now be rewritten in terms of the correction parameters:

 	 �
�
mL

mH

�
2

; (25)

  3 �
1

3
� 2

3

�
mL

mJ= 

�
2

; (26)

  5 � � 1

3
� 4

3

�
mL

mJ= 

�
2

: (27)

Here mL and mH are parameters to represent the masses of

light and heavy vector mesons, respectively. In a first

approximation, they will be set to mL � 800 MeV and

mH � 2050 MeV. With these ingredients the full corrected

Lagrangian can be written as

 L � 1

12f2
�Tr�J88�J�88 � 2J3�3�J

�
88 � J3�3�J

�

3�3
�

� 8

3
	J�31�J

�
13 �

4
���
3

p 	�J�31�J�83 � J�38�J
�
13�

� 2	J�38�J
�
83 �  5J�33�J

�
�33
�Lmass�: (28)

Note that from Eq. (28) we can recover the usual lowest

order chiral Lagrangian for SU�3�, which is the term

proportional to Tr�J88�J�88�, while the Lagrangian used

by Kolomeitsev [15] and Guo [17], based on heavy quark

symmetry [18–21], is proportional to the term Tr�J3�3�J�88�.
Our model has also terms for the interaction of heavy

mesons only, proportional to Tr�J3�3�J�3�3� and J�33�J
�
�33

and

all the other terms are corrections that can be controlled by

the parameter 	.

From this Lagrangian, applying the usual Feynman

rules, the transition amplitudes in Appendix A are calcu-

lated and used as potentials for each possible reaction.

These potentials, projected in s-wave, will be used as the

kernel for solving the scattering equation.

In order to support our results, also the chiral Lagrangian

with the flavor symmetry breaking pieces will be used to

solve the scattering problem in the open charm sector. Very

similar results are found and will be discussed in Sec. V.

IV. THE SCATTERING PROBLEM

The amplitudes needed, M�s; ��, are written in

Appendix A for the Lagrangian of Eq. (28). Since we are

only interested in s-wave meson-meson scattering, we first

project the amplitudes over s-waves, by making a simple

angular integration. After projecting the amplitudes for

s-wave they will be transformed to isospin basis and

inserted into the Bethe-Salpeter equation which in the

on-shell formalism of [22,39] is reduced to an algebraic

equation:

 T � V � VGT: (29)
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In this equation V is the potential, a matrix constructed

with the tree level transition amplitudes for each one of the

possible channels, projected over s-wave. The matrix G is

diagonal with each one of its nonzero elements given by

the loop function for the two particles in each channel:

 Gii � i
Z dq4

�2��4
1

q2 �m2
1 � i

1

�P� q�2 �m2
2 � i

�

(30)

 

1

16�2

�

�i � log
m2

1

�2
�m2

2 �m2
1 � s

2s
log
m2

2

m2
1

� p
���
s

p

�
�

log
s�m2

2 �m2
1 � 2p

���
s

p

�s�m2
2 �m2

1 � 2p
���
s

p

� log
s�m2

2 �m2
1 � 2p

���
s

p

�s�m2
2 �m2

1 � 2p
���
s

p
��

: (31)

P in Eq. (30) is the total four-momentum of the two mesons

in channel i and m1 and m2 are the masses of the two

mesons in this channel. The expression in Eq. (31) is

calculated using dimensional regularization. Over the real

axis p is the three-momentum of the mesons in the center

of mass frame:

 p �
������������������������������������������������������������������������
�s� �m1 �m2�2��s� �m1 �m2�2�

p

2
���
s

p : (32)

In the complex plane the momentum p is calculated

using the same expression. Equation (29) with Eqs. (30)

and (31) makes implicit use of dispersion relations in

which only the right-hand (physical) cut is considered. It

was proved in [40] that the left-hand cut provides a mod-

erate contribution, and more important, very weakly en-

ergy dependent, such that its contribution can be easily

accommodated in terms of the subtraction constant that we

use, in the range of energies of interest to us.

In this work we will set the loop parameter in Eq. (31) to

� � 1500 MeV and fit the subtraction constant, �, as a

free parameter.

This loop function has the right imaginary part to ensure

the unitarity of the T-matrix [23]:

 Im �Gii� � � p

8�
���
s

p : (33)

Equation (29) can be easily inverted:

 T � �1̂� VG��1V: (34)

When looking for poles in the complex plane one should

be careful because of the cuts of the loop function beyond

each threshold. Bound states appear as poles over the real

axis and below threshold in the first Riemann sheet.

Resonances show themselves as poles above threshold

and in the second Riemann sheet of the channels which

are open.

Over the real axis the discontinuity of the loop function

is known to be 2 times its imaginary part [41] so, knowing

the value of the imaginary part of the loop function over the

axis, Eq. (33), one can do a proper analytic continuation of

it for the whole complex plane:

 GII
ii � GI

ii � i
p

4�
���
s

p ; Im�p�> 0: (35)

GII and GI refer to the loop function in the second and first

Riemanian sheets, respectively.
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FIG. 2 (color online). Upper left: Imaginary part of the loop on the first and second Riemann sheets superposed. Upper right: Real

part of the loop in the first Riemann sheet. Bottom left, right are the imaginary part of the loop in the first and second Riemann sheets,

respectively.
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Figure 2 shows some plots of the loop function in the

complex plane.

V. RESULTS

The amplitudes listed in Appendix A are in a charge

basis. First, they are transformed to an isospin basis and

then to a SU�3� basis by means of the isospin and SU�3�
states given in Appendix B. The SU�3� symmetry breaking

is then studied. The amplitudes in a SU�3� basis show in

which sectors the interaction is attractive (where it may

generate resonances). The most important term in each

amplitude is the s term, so when an amplitude has a

negative factor multiplying s it is considered to be attrac-

tive. The results of the diagonalization of the interaction in

SU�3� basis are as follows:

8 � 8 ! 1 � 8s � 8a � 10 � 10 � 27: The interaction

here is repulsive in the 27; there is no interaction in the

10 nor in the 10; in one of the octets, because of its

symmetry properties [here we should consider scattering

of identical particles if SU�3� symmetry is restored] there

is no interaction in even l partial waves; in the other octet

and in the singlet there is attraction, which will lead to the

formation of 4 states, to be identified as the light scalar

resonances, �, f0, a0, and �.
�3 � �3 ! 3 � �6: Here there is no interaction in the 3 when

the correction parameters are set to 1, otherwise the inter-

action has a p-wave structure �t� u�. In the sextet the

interaction is repulsive, therefore, no double charmed sca-

lar resonances are expected from our model.
�3 � 3 ! 8 � 1: The interaction is attractive in both the

octet and the singlet if the correction parameters ( 3,  5)

are set to 1. In this case, where the large mass of the J= is

disregarded, one can see resonances generated. However,

since the terms with the heavy vector meson have the

largest weight in the amplitude, when the correction pa-

rameters are considered to take into account the different

masses of the exchanged vector mesons, the resonances

disappear for the octet. The singlet is always attractive

irrespective to the correction parameters.
�3 � 8 ! �3 � 6 � 15: In the antitriplet and sextet there is

attraction while in the 15-plet there is repulsion. We gen-

erate in our model five resonances with charmed quantum

number, two from the antitriplet and three from the sextet.

We discuss below the free parameters of the theoretical

framework and how we fit them. The parameters fitted are

�H and �L. The �’s are the subtraction constants for the

loop functions. The parameter �H was chosen for channels

involving at least one heavy pseudoscalar meson and a

different one for channels where there are just light ones,

�L.

One of the novel aspects of the present work is that we

allow the mixing of the light mesons with the heavy ones in

the search of zero charm or hidden charm scalar mesons.

The first interesting result is that the influence of the heavy

meson sector in the generation of the light scalar reso-

nances (�, f0, a0, �) is negligible. For instance it was

checked that different values �H have very small effect

over the pole position for the light resonances. Varying �H
between �0:3 and �2:3 has less than 10% effect over the

pole position of the f0 resonance, for example. So the

heavy sector can be worked independently from the light

one. Although the main aspect of this work is the study of

the heavy resonances, we also present results for the light

sector for completeness, since in the C � 0, S � 0, I � 0
sector light channels are indeed included in the coupled

channel space in the generation of a hidden charm

resonance.

With this in mind the open charm (C � 1) sector was

used to fit �H so that the position of the pole in the S � 1,

I � 0 sector matches the D�
s0�2317�, which has already

been suggested as being dynamically generated in [15–

17]. After fixing the heavy parameter, the �L was fitted by

locating the pole position in the sector C � 0, S � 0, I �
1, which correspond to the a0 resonance. We also made the

fit of �H for the model involving the chiral Lagrangian.

The results are as follows:

Phenomenological model: �H � �1:3 and �L � �1:3.

Chiral model: �H � �1:15 (we only applied this model

for the open charm sector).

This value of �H for the phenomenological model is

indicative and, in Sec. V B, we will study the effects in the

heavy resonances of its variation.

A. SU�3� symmetry breaking

In our phenomenological model it is assumed that the

SU�3� flavor symmetry breaking arises from the different

masses of the interacting mesons. The mass used for

each member of the 15-plet is m� � 138:0 MeV, mK �
495:0 MeV, m� � 548:0 MeV, mD � 1865:0 MeV,

mDs
� 1968:0 MeV, and m�c

� 2979:0 MeV.

Note that there is no isospin breaking in the model, all

particles in a same isospin multiplet are considered to have

the same mass. So, in this work, the Bethe-Salpeter equa-

tion, Eq. (29), was solved with V in isospin basis.

SU�3� symmetry can then be gradually broken by means

of a symmetry breaking parameter x which takes values

between 1 and 0, 1 meaning symmetry broken as we see it

in the real world, and 0 symmetry restored. The masses of

the mesons as a function of the parameter x are given by

 m�x� � �m� x�mphys: � �m�; (36)

where �m is the meson mass in the symmetry limit.

Two different values of �m were used: for the light

mesons (the ones belonging to the octet) it was set to

430 MeV and for the heavy ones, 1900 MeV.

Also the correction parameters were changed along with

x, although they just violate SU�4� symmetry:

 	�x� � 1� x�	phys � 1�: (37)
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Similar functions are constructed for  3 and  5.

All scalar resonances in the same multiplet have the

same mass once SU�3� is restored while its breaking splits

the masses of the different isospin multiplets. So, when

written in the SU�3� basis, the nondiagonal elements of the

matrix V [the ones which represent mixing between differ-

ent SU�3� multiplets] are always proportional tom2
� �m2

K.

Figures 3 and 4 show the pole positions in the C � 0 and

C � 1 sectors, varying x from 0 to 1 in steps of 0.2. We

should note that some resonances, for example, the � and

the D�
0�2400� appear as cusps for small values of x. This

happens because thresholds appear during the symmetry

breaking procedure.

Table II displays the experimental situation of the scalar

resonances, Table III shows the results in the open charm

sector for the problem solved with the chiral Lagrangian

and Table IV shows the pole positions found within the

phenomenological model developed in this work.

These results were obtained using for the parameters of

the theory the ones presented until now along the paper. In

the next subsection we will study, for our phenomenologi-

cal model, the theoretical uncertainties produced in the

heavy sector by changing these parameters.

B. Theoretical uncertainties

The true free parameters in our model are the � sub-

traction constants in the loop functions, all other parame-

ters are meson masses or meson decay constants which are,

in principle, fixed by experiment. In chiral models, chiral

symmetry is tied to the use of the function U � ei
��
2

p
�=f,

which requires the use of just one f, usually f�, in the

different amplitudes. Of course this symmetry is partially

broken and in practice one has different values of f for

different mesons. For instance fK and f� are about 20%–

30% bigger than f�. On the other hand, fD � 1:7f� and
FIG. 4. Heavy scalars. The antitriplet starts from 2327.96 MeV

and the sextet from �2394:87� i219:33� MeV.

TABLE II. Data from [35].

Resonance ID C S I Mass (MeV) � (MeV)

f0 0 0 0 980 10 40–100

� 0 0 0 400–1200 250–500

a0 0 0 1 984:7 1:2 50–100

� 0 1 1
2

841 30�81
�73 618 90�96

�144

D�
s0�2317� 1 1 0 2317:3 0:4 0:8 <4:6

D�
0�2400� 1 0 1

2
2403 14 35 283 24 34

2352 50 261 50

TABLE III. Pole positions for the chiral Lagrangian.

Resonance ID C S I RE(
���
s

p
) (MeV) IM(

���
s

p
) (MeV)

D�
s0�2317� 1 1 0 2315.41 0

D�
0�2400� 1 0 1

2
2147.65 �107:29

(?) 1 0 1
2

Cusp Broad

(?) 1 1 1 2427.70 �248:40
(?) 1 �1 0 2410.26 �193:80

FIG. 3. Light scalars. The octet starts from 851.76 MeV and

the singlet from 663.13 MeV.

TABLE IV. Pole positions for the phenomenological model.

Resonance ID C S I RE(
���
s

p
) (MeV) IM(

���
s

p
) (MeV)

f0 0 0 0 918.45 �18:76
� 0 0 0 616.19 �143:77

(?) 0 0 0 3718.93 �0:06
a0 0 0 1 987.68 �38:29
� 0 1 1

2
831.58 �147:24

D�
s0�2317� 1 1 0 2317.25 0

D�
0�2400� 1 0 1

2
2129.26 �157:00

(?) 1 0 1
2

2694.69 �441:89
(?) 1 1 1 2704.31 �459:50
(?) 1 �1 0 2709.39 �445:73
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fDs
� 2:24f�. So far we have taken f� for the light

mesons and one value for fD � 1:77f�.

In view of this we shall vary these parameters in the

calculation in order to estimate the uncertainties of the

results

Other parameters used in the model are mL and mH

which appear in the correction factors 	,  3, and  5.

These parameters should be fixed by the masses of the

vector mesons, the lowest possible value for the light

vectors being the � mass (770 MeV) and the highest one

the K� mass (892 MeV), while for the heavy ones we have

mD� � 2008 MeV and mD�
s
� 2112 MeV. The J= mass

is fixed to 3097 MeV.

To study the theoretical uncertainties in our model and

the stability of our results we will create random sets of

values for the parameters mL, mH, fD, f�, and �H in the

proper physical allowed range. For each set i of parameters

we look for the poles generated and calculate their residues

in the different channels. Some sets, in determinate sectors,

may not generate poles, producing instead cusps close to

some threshold, which will give us information about the

stability of the results.

We take a range formL,mH, and fD given by the average

value between the magnitude of these quantities for

the different mesons, plus minus the dispersion from

the average, hence mL 2 	745; 885
 MeV, mH 2
	1983; 2103
 MeV, and fD 2 	146; 218
 MeV. For the

subtraction constant �H we randomly choose values be-

tween �0:9 and �1:7 and for f� values between 85 MeV

and 115 MeV.

With an ensemble of 500 sets of randomly generated

parameters we calculated the average pole position and the

average residues in each channel in the sets where a pole

was generated, and we also calculated the standard devia-

tion from the average with:

 �2 �
P
N
i�1� �X� Xi�2
N � 1

: (38)

In Eq. (38), �X is the mean value of the resonance

magnitude we are calculating (pole position or residue),

Xi is the value of this magnitude for parameter set i and N

is the number of sets used for the average. This statistical

study was done for the five C � 1 resonances and for the

hidden charm one, since the study of these resonances is

one of the main points of interest in this work.

The pole positions with uncertainties are given in

Table V. In the next sections we will briefly discuss the

results for each sector separately, presenting also the re-

sults for the residues of the resonances of interest.

The resonances belonging to the heavy sextet (3rd, 4th,

5th of Table V) are all stable, and a pole could be identified

in all random sets. Also the D��2400� pole is stable. The

D�
s�2317� pole appeared for �83% of the sets; it becomes a

cusp in the DK threshold for the remaining sets. The

hidden charm resonance could be seen as a pole in

�61% of the sets, appearing as a cusp over the D �D
threshold for the remaining ones. In Fig. 5 we show, as

an example, the pole positions for each set of parameters

for the C � 1, S � 0, I � 1
2

sector corresponding to the

D��2400� resonance.

The next step was to study the effects of each one of the

parameters separately over the pole positions of the reso-

nances. In Fig. 6 one can see the effect of varying sepa-

rately fD, f�, �H, and 	 over the pole position of the

D�
s�2317� resonance. Except for the 	 parameter all others

have a sensible effect over the pole position. Similar results

are observed for its antitriplet companion, the D��2400�,
and for the resonances belonging to the sextet. This result

shows that the differences between the results of our model

and previous ones ([15,17]) in the widths of the heavy

sextet resonances are not due to the exchanges of heavy

vector mesons considered in this work, but rather due to the

choice of a different meson decay constant for the heavy

mesons and the inclusion of a term in the Lagrangian

proportional to the masses, which are the other two main

differences in the construction of the models.

In Figs. 7 and 8 we show similar plots for the hidden

charm resonance. Here also the parameters �H and fD
have important effects on the mass of the resonance, but

now while the parameters f� and 	 have a negligible effect

TABLE V. Pole positions with uncertainties.

Resonance ID C S I RE(
���
s

p
) (MeV) IM(

���
s

p
) (MeV)

D�
s0�2317� 1 1 0 2316 39 0

D�
0�2400� 1 0 1

2
2168 48 �206 74

(?) 1 0 1
2

2727 39 �509 71

(?) 1 1 1 2737 40 �529 70

(?) 1 �1 0 2721 38 �500 74

(?) 0 0 0 3698 35 �0:10 0:06
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-50

 0
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FIG. 5 (color online). Pole positions of the D��2400� reso-

nance for the different parameter sets.
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over the mass of the resonance, the parameter 	 is deter-

minant in the width of this resonance, which in any case is

very small. One can see from the formalism that the

processes contributing to the width are driven by the heavy

vector-meson exchanges (	 factor), hence the sensitivity of

the width to 	.

C. C � 0, S � 0, I � 0

Our model successfully generates poles which can be

associated with the known light scalar resonances. In this

sector, in the low energy region, two poles can be found in

the T-matrix, one corresponding to the f0, but with a lower

mass than one expects and another one for the �. It is

actually possible to adjust the mass of the f0 pole in our

model by increasing the �L parameter, but two prices are

paid: first the a0 pole in the S � 0, I � 1 sector disappears

for much bigger �L and also the width of a more massive

f0 decreases.

Two more poles can be expected in this sector, one from

the octet and the other one from the singlet, coming from
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FIG. 6 (color online). Results of varying each parameter over the D�
s �2317� pole position.
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FIG. 7 (color online). Results of varying each parameter over the hidden charm resonance mass.
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the scattering of the heavy mesons. For x � 0 both poles

appear, the singlet always very narrow, because its cou-

pling to the light channels is very suppressed, and the octet

with a much bigger width. The octet state disappears

before x � 1:0. One should notice that the width found

for this new heavy resonance is very small. This happens

because, as mentioned (see Table VI), the couplings to the

light channels are very suppressed and the other possible

decay channel is an octet formed by �c with a light meson

which violates SU�3�. Table VI shows the absolute value of

the residues for the resonances in this sector.

Figure 9 shows the absolute value of the square of the

transition matrix for this sector, as an illustration.

D. C � 0, S � 0, I � 1

In this sector the model successfully generates the a0
resonance. Both the mass and the width found for it in the

model agree very well with experimental values. Note,

however, that this sector was actually used to fit �L, but

fitting just this one parameter, both the width and the mass

for the a0 are in good agreement with experiment. As

mentioned if we used the pole position of the f0 resonance

to adjust the parameter �L, we would lose the a0 pole. This

relative instability of the a0 resonance with respect to the

parameters of the theory is not new, it also occurs when

using the inverse amplitude method for unitarization and

the potential of the lowest order chiral Lagrangian where

the a0 appears as a cusp and not a pole. The pole is,

however, regained when the information of the second

order Lagrangian is used as input in the potential [23].

Table VII shows its couplings2 to the different channels.

In the heavy sector again the pole for the octet just

appears for small values of x.
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FIG. 8 (color online). Results of varying each parameter over the hidden charm resonance width.

TABLE VI. Residues for the poles in the C � 0, S � 0, I � 0
sector.

Channel f0 (GeV) � (GeV) Heavy singlet (GeV)

�� 1.37 3.00 0:16 0:05
K �K 3.80 1.25 0:05 0:03
�� 3.14 0.36 0:01 0:01
D �D 0.73 4.14 11:44 4:42
Ds

�Ds 3.73 0.49 7:55 2:97

��c 1.97 0.98 0:12 0:09

FIG. 9. TTy for ��-channel in C � 0, S � 0, I � 0 sector.

2Because of the identical particles, the �� channel in I � 1
just contributes to odd parity partial waves (indeed, the ampli-
tude has a p-wave structure t� u).
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E. C � 0, S � 1, I � 1

2

The pole generated here should be identified with the �
resonance. This resonance, however, is a very broad one

and although there is debate on the existence of this

resonance, recent experiments have come to support it

[42– 47].

Again there are no heavy resonances for x � 1.

Table VIII shows the couplings of this resonance to the

various channels.

F. C � 1, S � 1, I � 0

The D�
s0�2317� is reproduced in this work as a mixed

bound state of jDK> and jDs�> . Experimentally the

observed decay channel for this resonance is Ds� which

is not allowed in the model because it is an isospin violat-

ing process. However if one considers isospin violation by

solving the Bethe-Salpeter equation for charge eigenstates

instead of isospin ones and considering the real masses of

the mesons, including the differences between different I3
components, one gets a very narrow width of less then a

keV for this resonance. Another possible source of contri-

bution is to consider �� �0 mixing by means of which in

[17] one gets a width of the order of a few keV. The width

of this resonance is given as an upper bound of about

4 MeV in [35].

The couplings of this pole to the channels is shown in

Table IX for both models considered in this work.

G. C � 1, S � 0, I � 1

2

Two poles are found here, one is the antitriplet compan-

ion of the D�
s0�2317�, also experimentally known and to be

identified as D�
0�2400�. Although the antitriplet pole gen-

erated by the model in this sector has a width in agreement

with the experimental value, the model fails in predicting

its mass by around 150 MeV, which might not be too

serious considering that the experimental width is around

300 MeV.

Additionally another state is generated, belonging to the

sextet. Here the two models differ from each other. In the

chiral model this resonance has a smaller mass and width,

but disappears as x reaches 1 because of thresholds effects,

while the pole is predicted by our model around 2700 MeV

but with a huge width that makes it irrelevant from the

experimental point of view.

Residues for the D�
0�2400� pole are in Table X for both

models.

H. C � 1, S � 1, I � 1 and C � 1, S � �1, I � 0

The other two states belonging to the sextet are to be

found in these sectors. However, they differ in mass and

width from one model to the other. While with the chiral

Lagrangian these poles have mass around 2400 MeV and

width about 0.5 GeV, within our model their mass is

300 MeV larger and the huge width of the order of

1 GeV would make these poles irrelevant from the experi-

mental point of view.

I. Comparison with other works

The light scalar resonances reproduced in this work have

been thoroughly investigated in more sophisticated ap-

proaches and with higher orders of the chiral Lagrangian

[22–24,28,29]. In our study of the hidden charm states we

have now used coupled channels involving light and heavy

pseudoscalar mesons and we find actually a negligible

mixing of the two sectors.

The open charm sector has been studied by Kolomeitsev

[15] and Guo [17] in a very similar framework but with

different Lagrangians from ours; both have used the same

Lagrangian, and very similar parameters. The Lagrangian

in these works neglects exchange of heavy vector mesons

while the present work includes it although suppressed in a

proper way. In [16] higher order chiral Lagrangians are

used in this sector. The second term of the Lagrangian in

TABLE X. Residues for the D�
0�2400� pole.

Channel Chiral model (GeV) Phenom. model (GeV)

D� 8.91 11:31 0:78
D� 1.36 3:46 0:27
Ds

�K 5.71 8:58 0:32
D�c 3.20 2:20 0:18

TABLE IX. Residues for the D�
s0�2317� pole.

Channel Chiral model (GeV) Phenom. model (GeV)

DK 10.21 9:08 2:53
Ds� 6.40 5:25 1:43
Ds�c 0.48 1:45 0:47

TABLE VII. Residues for the a0 pole.

Channel a0 (GeV)

�� 0

K �K 3.84

�� 2.65

D �D 3.64

��c 1.60

TABLE VIII. Residues for the � pole.

Channel � (GeV)

K� 4.00

K� 2.17

Ds
�D 4.12

K�c 1.88
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Eq. (21) can be identified with the lowest order chiral

Lagrangian used in [15,17] except that in the present

work this term of the Lagrangian is a factor 3
2

smaller.

Another difference between this present work and previous

ones is the meson decay constant, f. In previous works it

was always set to the pion decay constant, while in the

present one, inspired by experimental measurements and

lattice calculations we use a different value for the decay

constant of the charmed mesons.

In the S � 1, I � 0 sector the results of all works

coincide and the D�
s0�2317� is well reproduced. Its anti-

triplet companion, theD�
0�2400�, is also well reproduced in

the S � 0, I � 1
2

sector. However, in this sector the present

work differs from previous ones: while within our model,

the sextet state is extremely broad, in the works of

Kolomeitsev and Guo a narrow state is predicted in this

sector. The chiral Lagrangian we used seams to give an

intermediate situation between our work and these pre-

vious ones; it generates for the sextet states a broad reso-

nance although not as broad as in our model. The huge

width of these resonances within our model is also a

consequence of its much bigger mass which causes a

much bigger phase-space for decay into the open

channels.

Another novelty in the present work is the study of the

hidden charm sector. Here we mixed light with heavy

pseudoscalar pairs and concluded that there was barely

any mixing of the heavy and light sectors. This result

supports the findings for the light scalars, using only light

pseudoscalar mesons as building blocks. On the other hand

we find a heavy scalar with mass around 3.7 GeV corre-

sponding mostly to aD �D state, very narrow (see Table IV),

which is surprising in view of the large phase-space avail-

able for decay into pairs of pseudoscalars. The dynamics

which prevents the mixing of the heavy and light sectors is

responsible for this very small width.

We should also note that with a different formalism

using the Schrödinger equation with one vector-meson

exchange potential, D �D states also appear for some

choices of a cutoff parameter in [48].

VI. SUMMARY

We studied the dynamical generation of resonances in a

unitarized coupled channel framework. We constructed a

Lagrangian based on SU�4� flavor symmetry and after

decomposing the field of pseudoscalar mesons in this

Lagrangian into its SU�3� components, we were able to

identify terms mediated by exchange of heavy vector

mesons and thus suppress these, hence breaking the

SU�4� structure of the Lagrangian. The results were also

compared with previous works based on chiral theory and

heavy quark symmetry and with results obtained from a

chiral Lagrangian considering flavor symmetry breaking

effects.

The amplitudes calculated from this Lagrangian, written

in a SU�3� basis, show in which sectors the interaction is

attractive so that it might generate resonances. Within the

framework developed in the present work a SU�3� octet

and a singlet of scalar mesons appear in the light sector.

These resonances can be identified with the light scalar

mesons, �, f0, a0, and �, which have been thoroughly

investigated before, but which also show up, practically

undisturbed, in the enlarged basis of coupled channels used

in the present work.

In the heavy sector, an antitriplet is generated leading to

two states which can be identified with the controversial

D�
s0�2317� and D�

0�2400� states, though the mass generated

for this second one is somewhat lower than the experimen-

tal one. Thus, in the framework developed here, these

scalar states should be interpreted as bound and quasi-

bound states in coupled channels: The D�
s0�2317� being

mainly a DK bound state with no decay, except for a tiny

one when allowing isospin violation and the D�
0�2400� a

D� resonance.

Also a very broad sextet is generated in the heavy sector,

but these states are extremely broad, making them irrele-

vant from the experimental point of view. One should note,

however, that these broad states contrast with states gen-

erated in previous works [15,17] where narrow structures

are found with the same quantum numbers. The

Lagrangian in these previous works neglects the exchange

of heavy vector mesons and uses a much stronger coupling,

since they use the f� parameter in all sectors, and we found

that using different f� and fD was the main source for the

large widths.

Also a heavy singlet appears as a pole in the T-matrix.

This singlet comes from the attraction generated in the �3 �
3 sector and its structure is mainly a D �D quasibound state.

We also made an error analysis of the results, from

where uncertainties in the results were estimated. It also

served to test the stability of the results, observing if the

poles disappear for some values of the parameters within

the allowed range. We concluded that the uncertainties

were moderate and all states were basically stable, with

the exception of the hidden charm state which appeared in

two thirds of the cases as a pole in theD �D bound region. In

one third of the cases this pole disappeared and was

replaced by a cusp. Since both poles and pronounced cusps

are a consequence of a strong attraction, the observation of

a bound state or a strong cusp inD �Dwould be an important

finding.
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APPENDIX A: AMPLITUDES

This appendix shows the amplitudes obtained from the

Lagrangian in Eq. (28). In the column of the states, the

following momenta assignments should be taken into ac-

count: where it reads M1M2 ! M3M4 it means

M1�p�M2�k� ! M3�p0�M4�k0� and the Mandelstam varia-

bles are defined as follows:

 s � �p� k�2 � �p0 � k0�2; (A1)

 t � �p� p0�2 � �k� k0�2; (A2)

 u � �p� k0�2 � �k� p0�2: (A3)

When inserting these amplitudes [or transformed to

isospin or SU�3� basis] in the Bethe-Salpeter equation,

one should be careful to divide the amplitude by 1��
2

p each

time the initial or the final state contains a pair of identical

particles (unitary normalization) in order to ensure closure

of the intermediate states. The extra normalization for the

external lines must be kept in mind but does not matter for

the pole search. The factors 	,  3, and  5 are defined in

Eqs. (25)–(27).

1. C � 2, S � 2

States Amplitude

D�
s D

�
s ! D�

s D
�
s � 1

3f2
�� 3�2s� t� u� � 2m2

D � 2m2
K � 2m2

��

2. C � 2, S � 1

States Amplitude

D�
s D

0 ! D�
s D

0 � 1
6f2

�� 5�s� u� � �s� t� � 2m2
D � 2m2

K � 2m2
��

3. C � 2, S � 0

States Amplitude

D�D0 ! D�D0 � 1
6f2

�� 5�s� u� � �s� t� � 2m2
D�

4. C � 1, S � 2

States Amplitude

K0D�
s ! K0D�

s � 1
6f2

���s� u� � 	�s� t� �m2
D � 2m2

K �m2
��

5. C � 1, S � 1

States Amplitude

K�D0 ! K�D0 � 1
6f2

�	�t� u� � �s� u� �m2
D �m2

K�
! K0D� � 1

6f2
�	�t� u� � �s� u� �m2

D �m2
K�

! �0D�
s � 1

6
��
2

p
f2
���s� u� � 	�s� t� �m2

D �m2
K�

! �D�
s � 1

6
��
6

p
f2
�	�u� t� � �3� 	��s� u� �m2

D

� 3m2
K � 2m2

��
K0D� ! K0D� � 1

6f2
�	�t� u� � �s� u� �m2

D �m2
K�

! �0D�
s � 1

6
��
2

p
f2
��s� u� � 	�s� t� �m2

D �m2
K�

! �D�
s � 1

6
��
6

p
f2
�	�u� t� � �3� 	��s� u�

�m2
D � 3m2

K � 2m2
��

�0D�
s ! �0D�

s -

! �D�
s -

�D�
s ! �D�

s � 1
9f2

�	��s� 2t� u� � 2m2
D � 6m2

K � 4m2
��

�cD
�
s ! �cD

�
s � 1

18f2
�4	��s� 2t� u� � 11m2

D

� 3m2
K � 7m2

��
! K�D0 � 1

6
��
3

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

! K0D� � 1

6
��
3

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

! �0D�
s -

! �D�
s � 1

9
��
2

p
f2
��2	��s� 2t� u� � 2m2

D �m2
��

6. C � 1, S � 0

States Amplitude

�0D0 ! �0D0 � 1
12f2

�	��s� 2t� u� � 2m2
D � 2m2

��
! ��D� � 1

6
��
2

p
f2
��2� 	��s� u��

! �D0 � 1

12
��
3

p
f2
�	��s� 2t� u� � 2m2

D � 2m2
��

! K�D�
s � 1

6
��
2

p
f2
�	�t� u� � s� u�m2

D �m2
K�

��D� ! ��D� � 1
6f2

�	�t� u� � s� u�m2
D �m2

��
! �D0 � 1

6
��
6

p
f2
�	��s� 2t� u� � 2m2

D � 2m2
��

! K�D�
s � 1

6f2
�	�t� u� � s� u�m2

D �m2
K�

�D0 ! �D0 � 1
36f2

�	��s� 2t� u� � 2m2
D � 2m2

��
! K�D�

s � 1

6
��
6

p
f2
�	�s� t� � �3� 	��s� u� �m2

D

� 3m2
K � 2m2

��
K�D�

s ! K�D�
s � 1

6f2
�	�t� u� � s� u�m2

D � 2m2
K �m2

��
�cD

0 ! �cD
0 � 1

18f2
�4	��s� 2t� u� � 11m2

D � 4m2
��

! �0D0 � 1

6
��
6

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

! ��D� � 1

6
��
3

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

! �D0 � 1

18
��
2

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

! K�D�
s � 1

6
��
3

p
f2
�2	��s� 2t� u� � 2m2

D �m2
��

7. C � 1, S � �1

States Amplitude

K�D� ! K�D� -

! �K0D0 � 1
6f2

���s� u� � 	�s� t� �m2
D �m2

K�
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States Amplitude

�K0D0 ! �K0D0 -

8. C � 0, S � 1

States Amplitude

D�
s D

� ! D�
s D

� � 1
6f2

�t� u�  5�s� u� � 2m2
D �m2

K �m2
��

�0K0 ! �0K0 � 1
12f2

��s� 2t� u� 2m2
K � 2m2

��
! ��K� � 1

2
��
2

p
f2
��s� u�

! �K0 � 1

12
��
3

p
f2
�3�s� 2t� u� � 2m2

K � 2m2
��

��K� ! ��K� � 1
6f2

�s� t� 2u�m2
K �m2

��
! �K0 � 1

6
��
6

p
f2
��3�s� 2t� u� � 6m2

K � 2m2
��

�K0 ! �K0 � 1
12f2

��3�s� 2t� u� � 6m2
K � 2m2

��
�cK

0 ! �cK
0 � 1

6f2
m2
K

D�
s D

� ! �0K0 � 1

6
��
2

p
f2
�t� u� 	�s� t� �m2

D �m2
K�

! ��K� � 1
6f2

���t� u� � 	�s� t� �m2
D �m2

K�
! �K0 � 1

6
��
6

p
f2
��3� 	��u� t� � 	�s� u� �m2

D

� 3m2
K � 2m2

��
D�
s D

� ! �cK
0 � 1

6
��
3

p
f2
�2	�2s� t� u� � 2m2

D �m2
��

�cK
0 ! �0K0 � 1

6
��
6

p
f2
��2m2

K �m2
��

! ��K� � 1
6
��
3

p
f2
�2m2

K �m2
��

! �K0 � 1

6
��
2

p
f2
��2m2

K �m2
��

9. C � 0, S � 0

States Amplitude

D�
s D

�
s ! D�

s D
�
s � 1

3f2
� 3�s� t� 2u� � 2m2

D � 2m2
K � 2m2

��
! D�D� � 1

6f2
� 5�t� u� � s� u� 2m2

D �m2
K �m2

��
! D0 �D0 � 1

6f2
� 5�t� u� � s� u� 2m2

D �m2
K �m2

��
D�D� ! D�D� � 1

3f2
� 3�s� t� 2u� � 2m2

D�
! D0 �D0 � 1

6f2
� 5�t� u� � s� u� 2m2

D�
D0D0 ! D0D0 � 1

3f2
� 3�s� t� 2u� � 2m2

D�
K�K� ! K�K� � 1

3f2
�s� t� 2u� 2m2

K�
! K0K� � 1

6f2
�s� t� 2u� 2m2

K�
! ���� � 1

6f2
�s� t� 2u�m2

K �m2
��

! �0�0 � 1
12f2

�2s� t� u� 2m2
K � 2m2

��
! �0� � 1

12
��
3

p
f2
�3�2s� t� u� � 2m2

K � 2m2
��

! �� � 1
12f2

�3�2s� t� u� � 6m2
K � 2m2

��
K0 �K0 ! K0 �K0 � 1

3f2
�s� t� 2u� 2m2

K�
! ���� � 1

6f2
�s� 2t� u�m2

K �m2
��

! �0�0 � 1
12f2

�2s� t� u� 2m2
K � 2m2

��
! �0� � 1

12
��
3

p
f2
��3�2s� t� u� � 2m2

K � 2m2
��

! �� � 1
12f2

�3�2s� t� u� � 6m2
K � 2m2

��
���� ! ���� � 1

3f2
�s� t� 2u� 2m2

��
! �0�0 � 1

3f2
�2s� t� u�m2

��

States Amplitude

! �0� -

! �� � 1
3f2
m2
�

�0�0 ! �0�0 � 1
f2
m2
�

! �0� -

! �� � 1
3f2
m2
�

�0�! �0� � 1
3f2
m2
�

! �� -

��! �� � 1
9f2

�16m2
k � 7m2

��
�c�

0 ! �c�
0 � 1

6f2
m2
�

! �c� -

�c�! �c� � 1
18f2

�4m2
k �m2

��
D�
s D

�
s ! K�K� � 1

6f2
�t� u� 	�s� u� �m2

D � 2m2
K �m2

��
! K0 �K0 � 1

6f2
�t� u� 	�s� u� �m2

D � 2m2
K �m2

��
! ���� -

! �0�0 -

! �0� -

! �� � 1
9f2

�	�2s� t� u� � 2m2
D � 6m2

K � 4m2
��

States Amplitude

D�D� ! K�K� -

! K0 �K0 � 1
6f2

���t� u� � 	�s� t� �m2
D �m2

K�
! ���� � 1

6f2
�t� u� 	�s� u� �m2

D �m2
��

! �0�0 � 1
12f2

�	�2s� t� u� � 2m2
D � 2m2

��
! �0� � 1

12
��
3

p
f2
��	�2s� t� u� � 2m2

D � 2m2
��

! �� � 1
36f2

�	�2s� t� u� � 2m2
D � 2m2

��
D0D0 ! K�K� � 1

6f2
���t� u� � 	�s� t� �m2

D �m2
K�

! K0 �K0 -

! ���� � 1
6f2

���t� u� � 	�s� t� �m2
D �m2

��
! �0�0 � 1

12f2
�	�2s� t� u� � 2m2

D � 2m2
��

! �0� � 1

12
��
3

p
f2
�	�2s� t� u� � 2m2

D � 2m2
��

! �� � 1
36f2

�	�2s� t� u� � 2m2
D � 2m2

��
D�
s D

�
s ! �c�

0 -

! �c� � 1

9
��
2

p
f2
��2	�2s� t� u� � 2m2

D �m2
��

D�D� ! �c�
0 � 1

6
��
6

p
f2
��2	�2s� t� u� � 2m2

D �m2
��

! �c� � 1

18
��
2

p
f2
�2	�2s� t� u� � 2m2

D �m2
��

D0 �D0 ! �c�
0 � 1

6
��
6

p
f2
�2	�2s� t� u� � 2m2

D �m2
��

! �c� � 1

18
��
2

p
f2
�2	�2s� t� u� � 2m2

D �m2
��

�c�
0 ! K�K� � 1

6
��
6

p
f2
�2m2

K �m2
��

! K0 �K0 � 1

6
��
6

p
f2
��2m2

K �m2
��

! ���� -

! �0�0 -

! �0� � 1

3
��
2

p
f2
m2
�

! �� -

�c�! K�K� � 1

6
��
2

p
f2
��2m2

K �m2
��
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States Amplitude

! K0 �K0 � 1

6
��
2

p
f2
��2m2

K �m2
��

! ���� � 1

3
��
2

p
f2
m2
�

! �0�0 � 1

3
��
2

p
f2
m2
�

! �0� -

! �� � 1

9
��
2

p
f2
��8m2

K � 5m2
��

APPENDIX B: ISOSPIN AND SU�3� BASIS

The following phases are taken for the meson assign-

ments of the 15-plet:

 jDsi0 � jD�
s i; jDi1=2 �

jD�i
�jD0i

� �

;

jKi1=2 �
jK�i
jK0i

� �

; j�i1 �
�j��i
j�0i
j��i

0

@

1

A;

j�i0 � j�i; j�ci0 � j�ci; j �Ki1=2 � j �K0i
�jK�i

� �

;

j �Di1=2 � j �D0i
jD�i

� �

and j �Dsi0 � jD�
s i:

In the following we will list for the sectors where a

SU�3� decomposition is not trivial, the isospin and SU�3�
states used to transform the amplitudes from a charge basis

to isospin and then from isospin into a SU�3� basis. For

reviews on phase conventions and isoscalar factors of the

SU�3� Clebsch-Gordan coefficients one can refer to

[49,50].

Figures 10–13 show a pictorial representation of the

multiplet multiplications.

1. �3 � �3 (C � 2)

jDsDsi0 � jD�
s D

�
s i

jDDsi1=2 � �jD0D�
s i

jDDi0
jDDi1

� �

� 1��
2

p �1 1

�1 �1

� � jD�D0i
jD0D�i

� �

j�6; 2; 0i � jDsDsi [SU�3� states are represented as

jIrrep; S; Ii.]
j�6; 1; 1

2
i � 1��

2
p �jDDsi � jDsDi� [From now on the label

for the isospin of the states will be omitted for the SU�3�
states.]

j�6; 0; 1i � jDDi
j3; 1; 1

2
i � 1��

2
p �jDDsi � jDsDi�

j3; 0; 0i � jDDi

2. �3 � 8 C � 1

jKDsi1=2 � jK0D�
s i

jKDi0
jKDi1

� �

� 1��
2

p �1 �1

�1 1

� � jK�D0i
jK0D�i

� �

j�Dsi0 � j�D�
s i

j�Dsi1 � j��D�
s i

j�Di1=2
j�Di3=2

� �

�
�1��
3

p �
��
2
3

q

�
��
2
3

q
1��
3

p

0

B
@

1

C
A

j�0D0i
j��D�i

� �

j�Di1=2 � �j�D0i
j �KDsi1=2 � �jK�D�

s i
j �KDi0
j �KDi1

� �

� 1��
2

p 1 �1

�1 �1

� � jK�D�i
j �K0D0i

� �

j15; 2; 1
2
i � jKDsi

j15; 1; 1i � 1��
2

p �jKDi � j�Dsi�
j15; 1; 0i � �

��
3

p
2
j�Dsi � 1

2
jKDi

j15; 0; 3
2
i � j�Di

j15; 0; 1
2
i � 1

4
j�Di � 3

4
j�Di �

��
3
8

q

j �KDsi
j15;�1; 1i � j �KDi
j6; 1; 1i � 1��

2
p �jKDi � j�Dsi�

j6; 0; 1
2
i �

��
3
8

q

j�Di �
��
3
8

q

j�Di � 1
2
j �KDsi

j6;�1; 0i � j �KDi

FIG. 10. �3 � �3 � 3 � �6.

FIG. 11. 8 � �3 � 6 � �15 � �3.

FIG. 12. �3 � 3 � 8 � 1.

FIG. 13. 8 � 8 � 1 � 8 � 8 � 10 � �10 � 27.
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j�3; 1; 0i � 1
2
j�Dsi �

��
3

p
2
jKDi

j�3; 0; 1
2
i � � 3

4
j�Di � 1

4
j�Di �

��
3
8

q

j �KDsi

3. �3 � 3 C � 0

jDs
�Di1=2 � jD�

s D
�i

jDs
�Dsi0 � jD�

s D
�
s i

jD �Di0
jD �Di1

� �

� 1��
2

p 1 1

1 �1

� � jD�D�i
jD0 �D0i

� �

j8; 1; 1
2
i � jDs

�Di
j8; 0; 1i � jD �Di
j8; 0; 0i �

��
2
3

q

jDs
�Dsi � 1��

3
p jD �Di

j8;�1; 1
2
i � j �DsDi

j1; 0; 0i � 1��
3

p jDs
�Dsi �

��
2
3

q

jD �Di

4. 8 � 8 C � 0

j�Ki1=2
j�Ki3=2

� �

�
1��
3

p �
��
2
3

q

��
2
3

q
1��
3

p

0

B
@

1

C
A

j�0K0i
j��K�i

� �

j�Ki1=2 � j�K0i
jK �Ki0
jK �Ki1

� �

� 1��
2

p �1 �1

�1 1

� � jK�K�i
jK0 �K0i

� �

j��i0
j��i1
j��i2

0

@

1

A �
� 1��

3
p � 1��

3
p � 1��

3
p

� 1��
2

p 1��
2

p 0

� 1��
6

p � 1��
6

p
��
2
3

q

0

B
B
B
@

1

C
C
C
A

j����i
j����i
j�0�0i

0

@

1

A

j��i1 � j�0�i
j27; 2; 1i � jKKi
j27; 1; 3

2
i � 1��

2
p �jK�i � j�Ki�

j27; 1; 1
2
i � 1

2
��
5

p �jK�i � j�Ki � 3jK�i � 3j�Ki�
j27; 0; 2i � j��i
j27; 0; 1i � 1��

5
p �jK �Ki � j �KKi� � 3����

30
p �j��i � j��i�

j27; 0; 0i � 3

2
����
15

p ��jK �Ki � j �KKi� � 1
2
����
10

p j��i �
9

2
����
30

p j��i
j10; 1; 1

2
i � 1

2
�jK�i � j�Ki � jK�i � j�Ki�

j10; 0; 1i � 1��
6

p �jK �Ki � j �KKi � j��i� � 1
2
�

�j��i � j��i�
j10; 1; 3

2
i � 1��

2
p ��jK�i � j�Ki�

j10; 0; 1i � 1��
6

p ��jK �Ki � j �KKi � j��i� � 1
2
�

�j��i � j��i�
j8S; 1; 12i � 1

2
��
5

p ��3jK�i � 3j�Ki � jK�i � j�Ki�
j8S; 0; 1i � 3����

30
p ��jK �Ki � j �KKi� � 1��

5
p �j��i � j��i�

j8S; 0; 0i � 1����
10

p ��jK �Ki � j �KKi� � 3����
15

p j��i � 1��
5

p j��i
j8A; 1; 12i � 1

2
��jK�i � j�Ki � jK�i � j�Ki�

j8A; 0; 1i � 1��
6

p �jK �Ki � j �KKi � 2j��i�
j8A; 0; 0i � 1��

2
p ��jK �Ki � j �KKi�

j1; 0; 0i � 1
2
��jK �Ki � j �KKi� � 3

2
��
6

p j��i � 1

2
��
2

p j��i

APPENDIX C: ISOLATING THE J= 
CONTRIBUTION FROM L3

The L3 Lagrangian in Eq. (19) has two terms. The first

one contains just hadronic currents where the initial and

final state have the same electric charge and, therefore,

exchange neutral vector mesons only. The other term has

contributions from both charged and neutral vector me-

sons; from this second term first one should isolate the

contribution from neutral vector mesons. Let us add and

subtract the appropriate term,

 

Tr�J3�3�J�3�3� ! Tr�J3�3�J�3�3�� �JDs
�Ds�
J
�

Ds
�Ds
� JD�D��J

�

D�D�

� JD0 �D0�J
�

D0 �D0�� �JDs
�Ds�
J
�

Ds
�Ds

� JD�D��J
�

D�D� � JD0 �D0�J
�

D0 �D0�; (C1)

such that now the sum of the first two terms in Eq. (C1) has

no contribution from heavy vector meson which is now in

the third term alone.

The second term of Lagrangian L3 in Eq. (19) will then

be expanded in order to identify terms where equal had-

ronic currents are connected and terms where different

ones are connected:

 J�33�J
�
�33
� 2�JDs

�Ds�
�J�
D�D� � J

�

D0 �D0� � JD�D��J
�

D0 �D0�
� JDs

�Ds�
J
�

Ds
�Ds
� JD�D��J

�

D�D�

� JD0 �D0�J
�

D0 �D0 :

Now terms with the product of equal neutral hadronic

currents are to be multiplied by the correction  3 and terms

connecting different ones by  5, given in Eqs. (26) and

(27). As a result,

 

L3 � Tr�J3�3�J�3�3� � �JDs
�Ds�
J
�

Ds
�Ds
� JD�D��J

�

D�D�

� JD0 �D0�J
�

D0 �D0� � 2 5�JDs
�Ds�

�J�
D�D� � J

�

D0 �D0�
� JD�D��J

�

D0 �D0� � 2 3�JDs
�Ds�
J
�

Ds
�Ds

� JD�D��J
�

D�D� � JD0 �D0�J
�

D0 �D0�: (C2)

One can work it out:

 

L3 � Tr�J3�3�J�3�3� � 2 5�JDs
�Ds�

�J�
D�D� � J

�

D0 �D0�
� JD�D��J

�

D0 �D0� � �2 3 � 1�
|�����{z�����}

 5

�JDs
�Ds�
J
�

Ds
�Ds

� JD�D��J
�

D�D� � JD0 �D0�J
�

D0 �D0�
� Tr�J3�3�J�3�3� �  5�JDs

�Ds�
J
�

Ds
�Ds
� JD�D��J

�

D�D�

� JD0 �D0�J
�

D0 �D0 � 2JDs
�Ds�

�J�
D�D� � J

�

D0 �D0�
� 2JD�D��J

�

D0 �D0� � Tr�J3�3�J�3�3� �  5J�33�J
�
�33
:

And this is the simple form we write down in Eq. (28).

Yet, in the amplitudes we use the  3 and  5 factors.
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