
UC Irvine
UC Irvine Previously Published Works

Title
Dynamically Increasing the Scope of Code Motions during the High-Level Synthesis of Digital
Circuits

Permalink
https://escholarship.org/uc/item/1jd0860k

Journal
IEE Proceedings: Computers and Digital Technique, 150(5)

Authors
Gupta, Sumit
Gupta, Rajesh
Dutt, Nikil
et al.

Publication Date
2003-09-01

DOI
10.1049/ip-cdt:20030839

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jd0860k
https://escholarship.org/uc/item/1jd0860k#author
https://escholarship.org
http://www.cdlib.org/

Dynamically increasing the scope of code motions
during the high-level synthesis of digital circuits

S. Gupta, N. Dutt, R. Gupta and A. Nicolau

Abstract: The quality of high-level synthesis results for designs with complex and nested
conditionals and loops can be improved significantly by employing speculative code motions. Two
techniques are presented that add scheduling steps to the branch of a conditional construct with
fewer scheduling steps. This ‘balances’ or equalises the number of scheduling steps in the
conditional branches and increases the scope for application of speculative code motions. These
branch balancing techniques have been applied ‘dynamically’ during scheduling. The authors have
implemented algorithms for dynamic branch balancing techniques in a C-to-VHDL high-level
synthesis framework called Spark. The utility of these techniques is demonstrated by experimental
results on four designs derived from two moderately complex applications, namely, MPEG-1 and
the GIMP image processing tool. These results show that the two branch balancing techniques can
reduce the cycles on the longest path through the design by up to 38% and the number of states in
the controller by up to 37%.

1 Introduction

The ordering and placement of operations in high-level
behavioural descriptions is usually governed by program-
ming ease and varies from designer to designer. Very
often this ordering is not conducive to, or optimal for,
downstream high-level synthesis and optimisation tasks
[1]. This is particularly true for control-intensive designs
due to the presence of nested conditionals and loops. An
important aspect of our approach to high-level synthesis
is the application of parallelising transformations that
move operations across conditionals and loops based on
the time criticality of an operation and in the process
expose the parallelism available in the algorithm.

To this end, we have developed a set of speculative code
motions to alleviate the effects of programming styles and
constructs on the quality of synthesis results. These code
motions enable the movement of operations through, across
and into conditionals with the objective of maximising
performance [2, 3]. However, this means that the heuristics
that guide these code motions have to manage the resource
utilisation across several basic blocks. This is especially true
for hardware-expensive code motions, such as conditional
speculation. Conditional speculation duplicates operations
into the branches of a conditional block (see Section 4) [3].
Conditional speculation should only be employed when the
resource utilisation techniques are able to find idle or unused

resources in multiple basic blocks in the conditional
branches.

In this paper, we present algorithms for two techniques
that insert new scheduling steps dynamically during
scheduling in the shorter of the two branches of a
conditional block without increasing the longest path
through the conditional [4]. The new scheduling steps,
together with idle resources in the basic block of the other
conditional branch, can be used to schedule operations by
conditional speculation. The first technique inserts sche-
duling steps while traversing the design during scheduling,
and the second technique inserts step to enable code
motions (specifically conditional speculation). We call
these techniques branch balancing during design traversal
(BBDDT) and branch balancing during the code motions
(BBDCM), respectively. We explain these techniques in
detail with example in Sections 7 and 8.

We have implemented these branch balancing algorithms,
together with the speculative code motions and scheduling
heuristics that employ them, in a high-level synthesis
framework called Spark. This paper demonstrates the utility
of these techniques by presenting results for experiments
performed on four large industrial strength designs derived
from multimedia and image processing domains.

The paper builds on our earlier presentations [2, 3] in
which we introduced the individual speculative code
motions that can be applied for improving resource
utilisation and hence synthesis results. It introduces the
notion of dynamic branch balancing and the heuristics to
guide the speculative code motions for improving the
quality of synthesis results.

2 Related work

High-level synthesis has been a subject of research for over
two decades [5]. Recent work has presented speculative
code motions for mixed control data flow type of designs.
CVLS [6] uses condition vectors to improve resource

q IEE, 2003

IEE Proceedings online no. 20030839

doi: 10.1049/ip-cdt:20030839

S. Gupta, N. Dutt and A. Nicolau are with the School of Information and
Computer Science, University of California at Irvine

R. Gupta is with the Department of Computer Science and Engineering,
University of California at San Diego

Paper received 27th May 2003

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003330

sharing among mutually exclusive operations. Radivojevic
and Brewer [7] presented an exact symbolic formulation,
which generates an ensemble schedule of valid, scheduled
traces. The ‘Waveschedule’ approach [8] incorporates
speculative execution into high-level synthesis to achieve
its objective of minimising the expected number of cycles.
Recent work by Rim et al. [9] and dos Santos and Jess [10]
supports generalised speculative code motions for schedul-
ing in high-level synthesis. Kolling et al. [11] present a
scheduling heuristic based on distribution graphs (similar to
force-directed scheduling) that is capable of scheduling
designs with conditional branches.
A range of similar parallelising code transformation

techniques has been previously developed for software
compilers (especially parallelising compilers) [12, 13].
Although the basic transformations (e.g. dead code
elimination, copy propagation) can be used in synthesis as
well, other transformations need to be re-instrumented for
synthesis by taking into account hardware cost models and
mutual exclusivity of operations.
Compilers traditionally focus on minimising the com-

pensation code overheads while applying code motion
techniques that lead to operation duplication [13, 14]. On
the other hand, in high-level synthesis operation duplication
can be tolerated as long as it does not increase the cycles on
the longest path through the design.

3 Model and terminology

Weuse the following terminology in this paper:A scheduling
step is an aggregation of operations that execute concur-
rently. A sequence of scheduling steps with no control flow
between them is encapsulated in a basic block. We capture
the control flow between basic blocks using a hierarchical
intermediate representation called hierarchical task graphs
(HTGs) [15, 16]. HTGs model the design with three type of
nodes: (a) single nodes that encapsulate basic blocks,
(b) compound nodes that are hierarchical in nature and
encapsulate conditional constructs such as if-then-else
blocks and switch-case blocks, and (c) loop nodes that
encapsulate for-loops, while-loops etc.
An example of hierarchical task graph representation of

an if-then-else conditional construct is shown in Fig. 1a.
As shown in this figure, an if-then-else or If-HTG consists of
a condition basic block, compound HTG nodes for the true
and false branches and an empty basic block for the merge
or join of the conditional branches. Similarly, the HTG
representation of a For-loop is shown in Fig. 1b. A For-HTG
consists of an optional initialisation basic block ði ¼ 0Þ,

a condition check basic block ði < NÞ, a compound HTG
node for the loop body, an optional increment basic block
ði ¼ iþ 1Þ, and an empty basic block for the loop exit. In this
Figure, basic block BB1 is the conditional basic block of the
if-then-else (or If-HTG), BB2 and BB3 are the true and false
branches respectively and BB4 is the join basic block of the
If-HTG (i.e. where the control flow in the If-HTG merges).
This Figure also shows the operations and the data flow
between them.

Also note that we say a resource is idle in a scheduling
step when there is no operation scheduled on the resource in
that scheduling step.

4 Speculative code motions

We have previously developed a set of code motion
transformations that reorder operations to improve the
synthesis results in designs with complex control flow.
These beyond-basic-block code motion transformations are
usually speculative in nature and attempt to extract the
inherent parallelism in designs and increase resource
utilisation.

Generally, speculation refers to the unconditional
execution of operations that were originally supposed to
have executed conditionally. However, frequently there
are situations in which there is a need to move operations
into conditionals [2, 3]. This may be done by reverse
speculation, where operations before conditionals are
moved into subsequent conditional blocks and executed
conditionally, or it may be done by conditional specu-
lation, in which an operation from after the conditional
block is duplicated up into preceding conditional branches
and executed conditionally. Reverse speculation can be
coupled with early condition execution in which con-
ditional checks are evaluated as soon as possible, so that
the operations in their branches do not have to be
speculated for scheduling.

The various speculative code motions are shown in Fig. 2.
Also shown is the movement of operations across entire
hierarchical blocks, such as if-then-else blocks or loops.

5 Enabling new code motions by branch
balancing

Often design descriptions are structured so that one
conditional branch in an if-then-else HTG node has fewer
scheduling steps than the other. We call this an If-HTG with
unbalanced conditional branches. Consider the input
description shown in Fig. 3a. One possible scheduled
design (with a resource allocation of an adder and a
subtracter) is as shown in Fig. 3b: operations a and c execute
concurrently in state S0 in basic block BB2: The state
assignments (S0, S1, and so on) are demarcated by broken
lines in these Figures. We can see from Fig. 3b that,
after scheduling this example, the false branch ðBB3Þ

Condition
i = 0

i < N

i = i + 1

Empty BB

a b

Empty BB

Compound

HTG node

Compound

HTG node

If HTG node
For Loop HTG node

True

True

False False

Loop Exit

Compound

HTG node

(Loop Body)

Fig. 1 Example HTG representation

a If-then-else conditional block and
b a For loop

Conditional

Speculation

Reverse

If Node

Blocks

Across

Hierarchical

FT
Speculation

Speculation

Fig. 2 Various speculative code motions

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 331

of the If-HTG node has fewer scheduling steps than the true
branch ðBB2Þ: Thus, If Node is an If-HTG in Fig. 3b with
unbalanced conditional branches.

In such unbalanced If-HTGs, it is possible to insert a new
scheduling step in the branch with fewer scheduling steps,
without increasing the length of the longest path through the
If-HTG. Hence, in the scheduled design in Fig. 3b, we can
insert a new scheduling step in basic block BB3 since BB2

has more scheduling steps than BB3: This new step and the
presence of a scheduling step in BB2 with an idle subtracter
enables the conditional speculation of operation e, as
operations e1 and e2 in basic blocks BB2 and BB3;
respectively. The resulting design is shown in Fig. 3c.

The design in Fig. 3c requires one state less to execute
than the scheduled design in Fig. 3b. Thus, branch balancing
can introduce new opportunities for applying conditional
speculation and thus, further compact the design schedule.
Also, since the longest path through the If-HTG is unaltered,
this technique does not lead to an increase in longest path
length through the design. Note that, if profiling information
is available, we can instead insert scheduling steps to basic
blocks in branches that are less likely to be taken.

6 Incorporating conditional branch balancing
into a high-level synthesis scheduler

To enable code motions, branch balancing has to be
employed dynamically during scheduling. If branch balan-
cing is applied after scheduling, it is too late to affect
scheduling decisions. Conversely, branch balancing cannot
be applied before scheduling since the number of scheduling
steps in the branches of the conditional block is known only
after scheduling them.

Figure 4 shows the overall architecture of the scheduler in
our synthesis framework. The components of this scheduler
framework are:

(a) An IR (intermediate representation) Walker that
traverses the design and returns the next step and basic
block to schedule.
(b) A Candidate Fetcher that itself consists of two
components:

(i) A Candidate Walker that traverses the design and
finds the unscheduled operations that are candidates for
scheduling on the current step being scheduled. These
candidate operations are called Available Operations.
(ii) A Candidate Validater that removes those unsched-
uled available operations whose data dependencies are
not satisfied or that cannot be moved to the current step
being scheduled.

(c) A Cost Function that calculates the cost of each
candidate in the available operations list. The scheduler
then picks the operation with the lowest cost.
(d) A Candidate Mover that moves the chosen operation
from its current basic block to the current step being
scheduled.
(e) A Dynamic Transformations pass that applies low level
compiler optimizations such as common subexpression
elimination (CSE) and copy propagation dynamically
during scheduling, based on the new position and possible
duplication of the scheduled operation [17].

We perform dynamic branch balancing during two tasks of
the scheduler:

1 Branch Balancing during Design Traversal (BBDDT):
The IR walker traverses the design in a top-down manner
starting from the first basic block in the design. It traverses
the control-flow graph of the design in a topologically
manner until all the basic blocks have been visited
(i.e. scheduled). During this design traversal, we balance
the branches of unbalanced conditional blocks as they are
encountered.
2 Branch Balancing during Code Motions (BBDCM): The
candidate mover can call the branch balancing algorithm to
insert new scheduling steps in unbalanced conditional
blocks if this enables a code motion required to move the
candidate operation. This means that during the candidate
validater task, we validate operations that can be moved if
branch balancing is employed.

7 Branch balancing during design traversal

Our high-level synthesis scheduler calls the function
GetNextSchedulingStep to get the steps to schedule in the
design. The algorithm for this function is outlined in Fig. 5.
This algorithm takes as input the current scheduling

a

b

c d

T F

e

a

b

c

e1
e2

d

T F

da

b

c

S0

S1

S2

S3

S0

S1

S2

S0

S1

S2

BB2 BB2 BB3

BB4

BB1

BB3

BB1

BB2 BB3

If Node If Node If Node

...BB5
BB5 BB5

FT

a b c

BB1

e

BB4

BB4

Fig. 3

a HTG representation of an example
b After scheduling basic block BB2

c Insertion of a new scheduling step in basic block BB3 enables conditional speculation of operation e

Candidate Walker

Dynamic Transforms

IR Walker

Candidate Fetcher

Candidate Mover

Candidate Chooser

Scheduler

Available Ops

Candidate Validator

Fig. 4 Architecture of the scheduling heuristics in the Spark
framework

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003332

step currStep and returns the next step (nextStep) in the
design to schedule. On the first call to the algorithm (i.e.
currStep is f), the algorithm calls the GetNextBasicBlock
function to get a basic block to schedule. Since it is also the
first call to theGetNextBasicBlock function (not given here),
it returns the first basic block in the design graph GHTG: The
GetNextSchedulingStep algorithm then returns the
first step in the basic block (lines 1 to 3 in the algorithm
in Fig. 5).
For subsequent calls, the GetNextSchedulingStep func-

tion first determines the current basic block currentBB that
currStep is in. This is obtained by function ParentBB.
nextStep is then the scheduling step after currStep in
currentBB (line 5 in the algorithm). The algorithm then
checks if nextStep is null; this happens when currStep is the
last scheduling step in currentBB. In this case, the algorithm
should traverse the design graph and get the next basic block
in the design to schedule. However, it is at this point that we
employ the branch balancing algorithm by making a call to
the function BalanceBranchesDuringTrav (lines 7 and 8).
This function is discussed in the next Section.
The BalanceBranchesDuringTrav function returns the

newly created scheduling step if branch balancing is
successful. This new step is then returned by the
GetNextSchedulingStep algorithm to the scheduler. How-
ever, if the BalanceBranchesDuringTrav function returns a
null step, nextStep is still null (line 10). The GetNextSche-
dulingStep algorithm proceeds to get the next basic block,
nextBB, in the design by calling the GetNextBasicBlock
function. The first scheduling step in the basic block
returned by this function is then the nextStep (lines 11 to 13
in Fig. 5). The GetNextSchedulingStep algorithm returns
this nextStep. If GetNextBasicBlock returns an empty basic
block (or if nextStep in nextBB is null), this indicates to the
scheduler that all the basic blocks in the design (and the
scheduling steps in them) have been scheduled.
The scheduler then terminates.

7.1 Algorithm for the
BalanceBranchesDuringTrav function

The algorithm for the BalanceBranchesDuringTrav func-
tion is outlined in Fig. 6. This algorithm takes the HTG of

the design, GHTG and the current basic block currentBB as
input. The algorithm starts by determining the complemen-
tary basic block complementBB of currentBB.

The complementary basic block of currentBB exists if
currentBB is in an If-HTG node and is the basic block in the
mutually exclusive conditional branch of currentBB. Hence,
if the currentBB is in the true branch, then its comple-
mentBB is the false branch of vice versa.

If a complementBB exists and if it has already been
scheduled, then we check if complementBB has more
scheduling steps than currentBB (lines 3 and 4). If so, then
the If-HTG has unbalanced conditional branches and the
BalanceBranchesDuringTrav algorithm calls the function
CreateNewStepInBB to create a new scheduling step in
currentBB (lines 4 and 5). This new scheduling step is
returned by the BalanceBranchesDuringTrav algorithm.

To understand why we insert scheduling steps in
complementBB only if it is scheduled (line 3 in the
algorithm in Fig. 6), consider the example in Fig. 7a.
Suppose that we schedule the true branch of the If-HTG
first. Hence, while scheduling BB2 the algorithm detects
that its complementary basic block BB3 has more schedul-
ing steps. However, it would be erroneous to insert a new
scheduling step in BB2 without scheduling BB3: This is
because after scheduling, BB3 has the same number of
scheduling steps as BB2; as shown by the scheduled design
in Fig. 7b.

The BalanceBranchesDuringTrav algorithm thus inserts
new scheduling steps only after scheduling both the
branches of a conditional. However, we can miss some
scheduling opportunities due to this restriction. To over-
come this limitation, we have developed a technique that
inserts scheduling steps if they enable a code motion. This
technique is presented in the next Section.

8 Branch balancing during code motions

Branch balancing can also be performed when moving an
operation in the design. This is demonstrated by the example
in Fig. 8a. In this example, consider that basic block BB5 is
the last conditional branch to be scheduled among the
branches BB2; BB4 and BB5: While scheduling BB5; the
scheduler finds that it is possible to schedule operation f into
the second scheduling step of BB5 by conditional specu-
lation. However, this requires f to be duplicated into basic
blocks BB2 and BB4: Although BB2 has a resource that is
unused in its second scheduling step, BB4 does not have an
idle resource.

It is at this point that we can take advantage of the fact
that BB4 is part of an unbalanced conditional branch. We
can insert a new scheduling step in BB4 since BB4 has fewer
scheduling steps than BB2 and BB5; as shown in Fig. 8b.

Fig. 5 Algorithm to get the next step to schedule. When all the
scheduling steps in the current basic block have been scheduled,
the algorithm calls the branch balancing algorithm (lines 8 and 9)

Fig. 6 Branch balancing during design traversal algorithm. This
algorithm adds new scheduling steps in the shorter branch of a
conditional block

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 333

This enables us to speculate operation f conditionally as the
operations f1; f2 and f3 in basic blocks BB2; BB4 and BB5:
This resultant design is shown in Fig. 8c.

Thus it is possible to employ branch balancing to enable
code motions. We integrate this BBDCM technique into our
scheduler at two places:

(a) Candidate validater: We validate operations that can be
conditionally speculated if branch balancing is employed on
the conditional branches that the operation will be
duplicated into.

(b) Candidate mover: This is where we perform the branch
balancing if the scheduler decides to schedule an operation
validated earlier on the premise of branch balancing.

The algorithm that the candidate validater calls to validate
operations that require duplication for scheduling is listed in
Fig. 9. This algorithm, called CanOperationBeMoved, takes
as input the list of basic blocks (BBList) into which an
operation op will have to be duplicated if it were to be
scheduled on the scheduling step CurrStep in basic block
currentBB. The algorithm returns a true result if it is

F

a

b

c

d

e

If Node BB1

BB2 BB3

BB4

S0

S1

S2

T

a

b d

c e

If Node

S1

S0

BB1

BB2 BB3

BB4

T F T F

a

b d

c e

f1 f2

If Node

S1

S0

BB1

BB2 BB3

BB4

f

a

BB5

S3 f

b

S2BB5
S2BB5

c

Fig. 7

a Unscheduled example; HTG representation with data flow dependencies between operations also shown
b After scheduling basic blocks BB2 and BB3

c It is now possible to conditionally speculate operation f into basic blocks BB2 and BB3

S1

S0

S2

a

b

a

b f1 f2 f3

d

FT

c

f

e

d

FT

c

f

e

d

FT

ca

b e

BB1

BB4
BB5

If HTG 1

BB3

BB2

BB6

BB7

BB8

BB1

BB2 BB4 BB4BB5 BB5

BB3

BB2

If HTG2 If HTG2If HTG2

BB6

BB7

BB8

If HTG 1 If HTG 1BB1

BB3

BB6

BB7

BB8

a b c

Fig. 8

a Unscheduled example
b New scheduling step is inserted in basic block BB4

c This enables us to conditionally speculate operation f as operations f1; f2 and f3 in basic blocks BB2; BB4 and BB5

Fig. 9 Algorithm called by candidate validater to determine if it is possible to speculate operation op conditionally into scheduling
step currStep in basic block currStep by duplicating into the basic blocks in BBList. The BBDCM technique is employed to insert new
scheduling steps in basic blocks in BBList as and when required

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003334

possible to duplicate op into the basic blocks in BBList and
false otherwise.
If any basic block bb in the BBList is unscheduled, then

this algorithm returns a false result (line 3 in Fig. 9). This is
because we do not know the resource utilisation in an
unscheduled basic block. Only after scheduling do we know
the number of scheduling steps in a basic block and which
resources are idle in each scheduling step.
For each scheduled basic block bb in the BBList, the

algorithm calls the function FindIdleResInBB to find an idle
resource on which operation op can be scheduled. This
function is presented in the next section. If the FindIdleRe-
sInBB does not find an idle resource in bb to schedule op, then
the CanOperationBeMoved algorithm checks if it is possible
to schedule op in bb by performing branch balancing first. It
thus checks if bb has more scheduling steps than currentBB
(line 5 in the algorithm in Fig. 9). If this is true, then it is not
possible to insert a new scheduling step into bb and hence we
cannot schedule op in bb. The CanOperationBeMoved
function thus returns a false result (line 6).
If the basic block bb either has an idle resource for op for

bb has fewer scheduling steps than currentBB, it is possible
to insert to schedule op in bb. The CanOperationBeMoved
algorithm checks all the basic blocks in BBList in the same
manner and returns a true result if it is possible to schedule a
copy op in each bb in BBList either on an idle resource or by
inserting a scheduling step (by branch balancing).
This algorithm is used by the scheduler during candidate

validation. If the scheduler decides to schedule an operation
that requires conditional speculation, a similar algorithm is
used by the candidate mover to schedule op in each basic
block bb in BBList by inserting scheduling steps if required.

8.1 Algorithm for finding an idle resource in a
basic block

The algorithm to find an idle resource for an operation op in
a basic block bb is outlined in Fig. 10. This algorithm starts
by calling the function FindMatchingResForOp (not given
here) to determine the list of resources, matchingResList,
on which the operation op can be executed. There may be
multiple resources in matchingResList as there may be
several instances of the resource type on which op may
execute.
The FindIdleResInBB function then calls the function

GetStepInBBAfterDataDeps to find the first scheduling step

in bb that does not have an operation with a data dependency
with op. This function (not given here) looks for operations
whose result op reads and that are in basic block bb. It then
finds the last scheduling step in bb with any of these
operations that op depends on and returns the next
scheduling step. This returned step, currStep, signifies the
first scheduling step in bb that op can be potentially
scheduled on. Note that the ordering of scheduling steps in a
basic block denotes their execution sequence.

Using this scheduling step (currStep) as a starting point,
the FindIdleResInBB algorithm determines if there is an idle
resource for op in currStep or any of its successor steps in
basic block bb (shown by the while loop Fig. 10). Each
resource res in matchingResList in currStep is checked to
see if it is idle, i.e. there is no operation scheduled on it
and hence it is potentially available for scheduling the
operation op (lines 4 and 5 in the algorithm).

If res is idle in currStep, and if res is a multi-cycle
resource, we must make sure that res is idle in scheduling
steps before and after currStep for the duration of its
execution. We first determine the number of steps numSteps
that need to be checked. numSteps is one less than the
execution cycles of the resource (line 6 in the algorithm in
Fig. 10). The algorithm then calls the GetPrevSteps and
GetSuccSteps functions to get numSteps predecessor steps
and numSteps successor steps (lines 7 and 8 in Fig. 10).
Since the predecessor and successor steps can, and
frequently are, in the predecessor and successor basic
blocks of bb, these two functions (not described here) look
for steps not only in the current basic block bb but also may
traverse to the predecessor and successor basic blocks of bb.
Hence the resource utilisation of the resource res has to be
checked beyond the current basic block.

If the resource res is not used in any of these predecessor
and successor steps, an idle resource has been found in the
current step currStep and the algorithm terminates by
returning currStep (lines 9 and 10 in the algorithm).
However, if res is used in any of these steps, the procedure
is repeated for the next resource in the matchingResList and
so on. This is done for all the steps following currStep in the
given basic block bb, until either a step with an idle resource
is found or all the steps in bb have been visited.

The FindIdleResInBB function is called by the candidate
validater and by the candidate mover. Whereas the validater
only checks for idle resources in basic blocks, the candidate

Fig. 10 Determining if there is an idle resource in basic block bb for scheduling operation op

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 335

mover schedules the operation op on the scheduling step
currStep returned by the FindIdleResInBB function.

9 Experimental setup and results

The dynamic conditional branch balancing algorithms
presented in this paper have been implemented in a high-
level synthesis research framework called Spark [16]. This
synthesis framework takes a behavioural description in
ANSI-C as input and generates synthesisable register-
transfer level VHDL. In addition to the speculative code
motions, several standard compiler transformations such as
CSE, copy and constant propagation and dead code
elimination are also implemented in the Spark framework.

For our experiments, we have chosen the pred1 and pred2
functions from the prediction block of the MPEG-1
application [18] and the nlfilt and tile functions (with the
scale function inlined) [Note 1] from the GIMP image
processing tool [19]. The run time of our system for these
designs is less than 5 user seconds on a 1.6GHz PC running
Linux.

Table 1 lists the characteristics of the various designs
used in terms of the number of if-then-else conditional

blocks (If-HTGs), loops (Loop-HTGs), basic blocks and the
total number of operations in the input description. The
number of If-HTGs, Loop-HTGs and basic blocks is
indicative of the control complexity of the design. The
Table also gives the resource allocation used for scheduling
the designs in the experiments presented below: þ� does
add and subtract, ¼¼ is a comparator, p a multiplier, = a
divider, [16] an array address decoder and� is a shifter. All
resources are single cycle except the multiplier (two cycles)
and the divider (five cycles).

For all the experiments presented below, we used a
priority-based list scheduler that employs speculative code
motions [16]. The scheduling results for these four functions
are presented in Tables 2 and 3 in terms of the number of
states in the finite-state machine controller and the cycles on
the longest path through the design. The longest path
through a conditional is the longer of the two branches and,
for loops, the longest path is the length of the loop body
multiplied by loop iterations.

The first rows in Tables 2 and 3 list the results for when
all the code motions from Fig. 2 are enabled; except
conditional speculation. We call this the baseline case.
The second row has conditional speculation (CS) enabled
along with the rest of the code motions. In the third row, all
the code motions including CS are enabled along with the
BBDDT. The fourth row lists the results for when all the
code motions are enabled along with the BBDCM. The fifth
row has both the branch balancing algorithms enabled along

Table 1: Characteristics of the four designs used in our experiments along with the resources allocated for scheduling
them

Benchmark Number of ifs Number of loops Number of basic blocks Number of operations Resources

MPEG-1 pred1 4 2 17 123 2þ �; 2 �;2 ¼¼;2½ �

MPEG-1 pred2 11 6 45 287 2þ �; 2 �;2 ¼¼;2½ �

GIMP tiler 11 2 35 150 3þ �; 1=; 1	; 2 �; 2 ¼¼; 2½ �

GIMP nlfilt 16 0 37 127 3þ �; 1=; 1	; 1 �; 1 ¼¼; 1½ �

Table 2: Scheduling results after applying conditional speculation (CS), branch balancing during design traversal
(BBDDT) and during code motions (BBDCM) for MPEG-1 pred1 and pred 2

MPEG-1 pred1 MPEG-1 pred2

Strategy applied number of states long path number of states long path

Baseline (all CMs) 55 2595 112 5790

þCond Spec (CS) 52(25.5%) 2466(25.0%) 106(25.4%) 5469(25.5%)

þCSþ BBDDT 41(225.5%) 1825(229.7%) 85(224.1%) 4188(227.7%)

þCSþ BBDCM 45(218.2%) 2081(219.8%) 92(217.9%) 4636(219.9%)

þCSþ BBDDTþ BBDCM 41(225.5%) 1825(229.7%) 85(224.1%) 4188(227.7%)

Table 3: Scheduling results after applying conditional speculations (CS), branch balancing during design traversal
(BBDDT) and during code motions (BBDCM) for GIMP tiler and nlfilt designs

GIMP tiler GIMP nlfilt

Strategy applied Number of states long path Number of states long path

All CMs-CS 67 6431 37 37

þAllow CS 65(23%) 6231(23.1%) 37(0%) 37(0%)

þCSþ BBDDT 52(222.4%) 4931(223.3%) 33(210.8%) 33(210.8%)

þCSþ BBDCM 47(229.9%) 4431(231.1%) 34(28.1%) 34(28.1%)

þCSþ BBDDTþ BBDCM 42(237.3%) 3931(238.9%) 33(210.8%) 33(210.8%)

Note 1: These floating point functions have been arbitrarily converted to
integer functions here. This does not affect the nature of the data and control
flow, but only the data values that are processed.

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003336

with all the code motions. The percentage reductions of
each row over the baseline case are given in parentheses.
The results in Tables 2 and 3 demonstrate that the branch

balancing algorithms presented in this paper have to be
employed to make conditional speculation truly effective.
When conditional speculation is enabled alone there are
modest (0–5%) improvements in number of states and
cycles on the longest path (second row in both Tables).
However, when both the BBDDT and BBDCM algorithms
are employed to increase the opportunities for conditional
speculation, the improvements range from 10 to 37% in the
number of states and 10 to 38% in the cycles on the longest
path (last row in both Tables).
The results in the two Tables also demonstrate that the two

branch balancing algorithms are complementary to some
extent. Whereas the BBDDT technique is more effective for
the MPEG-1 pred2 design, the BBDCM technique is more
effective for the GIMP tiler design. Also, we can see from
the results in the two Tables that the best result for the GIMP
nlfilt design is obtained when both the BBDDT and BBDCM
algorithms are employed. These results demonstrate that
each of the branch algorithms create different and unique
opportunities for employing conditional speculation.

10 Conclusions

This paper presented two branch balancing techniques that
dynamically insert scheduling steps in the shorter branch of
a conditional block. This creates new opportunities for
speculative code motions without increasing cycles on the
longest path through the design. The branch balancing
techniques are critical to code motions such as conditional
speculation that duplicate operations into multiple basic
blocks. Also, if profiling information is available, these
techniques can be easily modified to add scheduling steps
only in the conditional branches that are less likely to be
taken. Results for four real-life multimedia and image-
processing designs show improvements of up to 38% in
cycles on the longest path and 37% in controller size when
the dynamic conditional branch balancing techniques are
enabled.

11 Acknowledgment

This work was supported by the Semiconductor Research
Corporation: Task ID 781.001.

12 References

1 Chaiyakul, V., Gajski, D.D., and Ramachandran, L.: ‘High-level
transformations for minimizing syntactic variances’. Presented at
Design Automation Conf., Dallas, TX, 14–18 June 1993

2 Gupta, S., Savoiu, N., Kim, S., Dutt, N.D., Gupta, R.K., and Nicolau,
A.: ‘Speculation techniques for high level synthesis of control intensive
designs’. Presented at Design Automation Conf., Las Vegas, NV, 18–22
June 2001

3 Gupta, S., Savoiu, N., Dutt, N.D., Gupta, R.K., and Nicolau, A.:
‘Conditional speculation and its effects on performance and area for
high-level synthesis’. Presented at Int. Symp. on System Synthesis,
Montreal, Canada, 30 September–3 October 2001

4 Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A.: ‘Dynamic
Conditional branch balancing during the high-level synthesis of
control-intensive designs’. Presented at Design, Automation and Test
Conference, Munich, Germany, 3–7 March 2003

5 Gajski, D.D., Dutt, N.D., Wu, A.C.-H., and Lin, S.Y.-L.: ‘High level
synthesis: introduction to chip and system design’ (Kluwer Academic,
Boston, MA, 1992)

6 Wakabayashi, K., and Tanaka, H.: ‘Global scheduling independent of
control dependencies based on condition vectors’. Presented at Design
Automation Conf., Anaheim, CA, 8–12 June 1992

7 Radivojevic, I., and Brewer, F.: ‘A new symbolic technique for control-
dependent scheduling’, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 1996, 15, (1), pp. 45–57.

8 Lakshminarayana, G., Raghunathan, A., and Jha, N.K.: ‘Incorporat-
ing speculative execution into scheduling of control-flow intensive
behavioral descriptions’. Presented at Design Automation Conf.,
San Francisco, CA, 15–19 June 1998

9 Rim, M., Fann, Y., and Jain, R.: ‘Global scheduling with code-motions
for high-level synthesis applications’, IEEE Trans. Very Large Scale
Integr. (VLSI) Systems, 1995, 3 (3), pp. 379–392

10 dos Santos, L.C.V., and Jess, J.A.G.: ‘A reordering technique
for efficient code motion’. Presented at Design Automation Conf.,
New Orleans, LA, 21–25 June 1999

11 Kolling, P., Al-Hashimi, B., and Abott, K.M.: ‘Efficient scheduling of
behavioural descriptions in high-level synthesis’. IEEE Proceedings-
Computers and Digital Techniques, 1995, 144, (2), pp. 75–82

12 Fisher, J.: ‘Trace scheduling: a technique for global microcode
compaction’, IEEE Trans. on Comput., 1981, 30, pp. 478–490

13 Muchnick, S.S.: ‘Advanced compiler design and implementation’
(Morgan Kaufmann, San Francisco, CA, 1997)

14 dos Santos, L.C.V.: ‘A method to control compensation code during
global scheduling’. Presented at Workshop on Circuits, Systems and
Signal Processing, Mierlo, The Netherlands, 27–28 November 1997

15 Girkar, M., and Polychronopoulos, C.D.: ‘Automatic extraction of
functional parallelism from ordinary programs’, IEEE Trans. Parallel
Distrib. Syst., 1992, 3, (2), pp. 166–178

16 Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A.: ‘SPARK: a high-
level synthesis framework for applying parallelizing compiler trans-
formations’. Presented at Int. Conf. on VLSI Design, New Delhi, India,
4–8 January 2003

17 Gupta, S., Reshadi, M., Savoiu, N., Dutt, N.D., Gupta, R.K., and
Nicolau, A.: ‘Dynamic common sub-expression elimination during
scheduling in high-level synthesis’. Presented at Int. Symp. on System
Synthesis, Kyoto, Japan, 2–4 October 2002

18 Spark Synthesis Benchmarks FTP site. ftp://ftp.ics.uci.edu/pub/spark/
benchmarks, accessed 10 January 2002

19 GNU Image Manipulation Program. http://www.gimp.org, accessed
10 January 2002

20 Gupta, S.: ‘Coordinated Coarse-Grain and Fine-Grain Optimizations
for High-level Synthesis’. PhD thesis, University of California,
Irvine, 2003

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 337

