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Abstract. The increasing software complexity and proliferation of distributed 
applications for cell phones demand the introduction of middleware services to 
assist in the development of advanced applications. However, from the user 
perspective, it is essential that these new phones provide a smooth error-free 
experience. Despite of the complexity underlying a cell phone, placing a phone 
call remains a simple task that can be performed by most users regardless of 
their technical background. Furthermore, cell phones rarely crash (especially 
compared to PCs) and carriers are able to correct certain problems remotely 
without user intervention.  
We advocate for a middleware infrastructure that allows carriers and developers 
to correct middleware behavior, configure it, and upgrade it, without requiring 
user intervention and without stopping the execution of applications. We intro-
duce a new technique we refer to as externalization. This technique explicitly 
externalizes the state, the logic, and the internal component structure of mid-
dleware services. As a result, carriers and developers have full control over 
these middleware services. They can access, inspect, and modify the state, 
logic, and structure of middleware services at runtime while preserving the exe-
cution of existing applications and providing an error-free experience to users. 
We claim that externalization is the key for the future evolution of cell phones’ 
middleware infrastructure. 

1   Introduction 

Cell phone functionality has evolved tremendously over the last 10 years. First, there 
was just voice transmission. Then, short messages (SMS) and web browsing (WAP 
and iMode) were added. Later, interactions with vending machines (cMode [1]) and 
multimedia messaging (MMS) became available. Most recently, video conferencing, 
Internet access, and interaction with the surrounding physical environment (iArea [2]) 
became possible. The evolution of cell phones and wireless-enabled handheld devices 
as well as the increasing proliferation of wireless networks are changing our tradi-
tional understanding of computers. The notion of desktop computing is slowly evolv-
ing into a more dynamic model. Cell phones do not sit on a desktop, are not discon-
nected from the surrounding environment, and are not immobile anymore. These 
devices are capable of connecting to wireless networks, they have enough processing 
power to perform tasks previously reserved for servers and workstations, and they are 
carried by users on a regular basis. Phones are poised to replace our keys [3], identifi-
cation cards, and money with digital counterparts. Furthermore, increasing data 
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transmission rates (2Mbps with UMTS or 14.4Mbps with Japan’s FOMA net-
works[4]) enable the development of applications that allow cell phones to interact 
with distributed services (e.g., Web Services) and access and share rich multimedia 
contents.  

The increasing number and sophistication of cell phone applications demands a 
cell phone middleware infrastructure to assist in the development and execution of 
applications. Examples of middleware are: RPC, discovery, security, QoS, group 
management, event distribution, and publish subscriber.  

Due to the cell phone constraints (for example, limited resources and reliability) 
these services must meet the following requirements: 

1. They must be configurable, both statically and dynamically, to accommodate the 
requirements of applications (e.g., transactions, QoS, and security) and to meet 
the requirements of heterogeneous devices and execution environments[5].  

2. They must be dynamically updateable to correct errors and therefore provide 
users with an error-free and zero maintenance execution model [6]. According to 
existing studies [7], 10% cell phones are returned due to software problems. 
With over 1200 million subscribers worldwide, it means that over 120 million 
phones are returned every year. Requesting cell phone users to take their device 
to a customer support center to correct the software errors is too costly for carri-
ers and frustrating for cell phone users.  

3. They must provide support for run-time upgrades to incorporate new functional-
ity (for example, new interfaces, new protocols, and new policies)[8].  

We refer to the previous issues as configurability (1), updateability (2), and up-
gradeability (3). Reflective middleware services[9, 10] provide functionality for con-
figurability. They support replacement and assembly of certain components to adapt 
to changes and create certain device dependent configurations. However, most reflec-
tive systems assume a basic skeleton where only certain pre-defined changes and 
configurations are allowed. We seek a mechanism that allows modifying every aspect 
of the system (including the static skeleton), and enables fine-grained customizations. 

Bitfone[7], Redbend [11], and DoOnGo[12] support updateability and upgradeabil-
ity. They provide functionality to update the cell phone’s firmware at runtime. They 
calculate the binary differences between the new and old images and update the dif-
ferences. However, none of these products allows updating the software without stop-
ping the system. They require restarting the devices, require user intervention, and do 
not provide fine-grained updating capabilities, that is, it is not possible to change 
certain logic or structural properties. The whole software image has to be replaced. 
Our goal is to avoid or minimize user intervention and preserve the normal execution 
of the system. 

In this paper, we present a new middleware construction approach that assists in 
the development of configurable, updateable, and upgradeable middleware services. 
These services are assembled dynamically from small execution units (micro building 
blocks) and can be reconfigured at runtime. Our approach externalizes three key mid-
dleware execution elements: state, structure, and logic. As a result, we have fine-
grained control over running middleware services in terms of configurability, update-
ability, and upgradeability. We have used the construction technique to build an effi-
cient communication middleware service that we can configure, update, and upgrade 
at runtime. Despite of this flexibility, the service provides performance equivalent to 
non-reconfigurable services.  
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The paper is structured as follows: Section 2 motivates middleware externalization 
as a key technique for middleware configuration, updating, and upgrading. Section 3 
describes Dynamically Programmable and Reconfigurable Software (DPRS), our 
approach to construct flexible middleware services. Section 4 describes in detail a 
communication middleware service (ExORB) that we have built using a Java proto-
type of DPRS. Section 5 provides a performance evaluation of ExORB. We present 
related work in Section 6 and conclude in Section 7. 

2   Motivation for Middleware Architecture Externalization 

Middleware architecture externalization relies on three key aspects: state externaliza-
tion, structure externalization, and logic externalization. State externalization exports 
the internal middleware state attributes so they can be inspected and modified. Struc-
ture externalization exports the list of components that compose the middleware ser-
vice and supports inspection and modification. Finally, logic externalization exports 
the interaction rules among the structural components (logic of the middleware ser-
vice), thus providing support to inspect and modify the logic. 

The main benefit of architecture externalization is the ability to learn, reason, and 
modify every aspect of a middleware service. The notion of architecture externaliza-
tion is similar to computational reflection[13], which is a technique that allows a 
system to maintain information about itself (meta-information) and use this informa-
tion to change its behavior (adapt). However, the key difference between computa-
tional reflection and architecture externalization is the scope of information main-
tained by the software, and the scope of the changes allowed. Existing computational 
reflection middleware services [14, 15], explicitly define the internal aspects they 
export, and the changes they accept. However, middleware services based on archi-
tecture externalization export every detail in terms of structure, logic, and state, and 
accept arbitrary changes in any of the three categories. Building an externalized mid-
dleware service requires identifying the functional units of the service (we call them 
micro building blocks) and using the techniques described in Section 3 to define their 
composition and interaction rules. The resulting middleware service can be inspected 
and modified. Figure 1 depicts an architecture browser tool we have built that con-
nects to a device and extracts the structure, logic, and state of the software it hosts. 
The figure illustrates the structure and part of the logic of the externalized communi-
cation middleware service running in the device (RemoteInvocationSupport). 

Externalized middleware services are assembled at runtime using an architecture 
descriptor that contains information about the components that compose the system 
(structure), the interaction rules for these components (logic), and a descriptor with 
detailed information about each structural component (input parameters, output pa-
rameters, and state attributes). The collection of all state attributes corresponds to the 
global middleware service state. These descriptors are the service blueprints and pro-
vide the information required to assemble the service at runtime. We use the descrip-
tors to configure middleware services to different devices. Furthermore, these blue-
prints constitute a valuable formalism to understand the composition and behavior of 
existing middleware services. Developers can access these descriptors (or extract 
them directly from a running system), understand the internal details of the system, 
and introduce changes to customize the service without reading a single line of source 
code. 
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Another benefit of architecture externalization is that it exports the execution state 
of the system, which includes information about the currently executed internal com-
ponent. This information becomes essential in determining safe reconfiguration 
points, which correspond to execution states where it is safe to replace components, 
modify the logic, and modify state attributes. The system can determine these safe 
points without requiring any support from the software developers. 

Finally, a benefit of architecture externalization is the ability to virtualize the soft-
ware infrastructure and create snapshots of the running system. This functionality is 
particularly useful to suspend, resume, and migrate software automatically. Further-
more, heterogeneous systems can exchange architecture definitions and reconfigure 
themselves to enable interoperability. 

We have built a software construction mechanism that relies on architecture exter-
nalization. We refer to this type of software as Dynamically Programmable and Re-
configurable Software (DPRS). Programmable because similarly to hardware FPGAs 
(Field Programmable Gate-Arrays) that allow programming the behavior of the hard-
ware, our technique allows programming the behavior of the software by defining the 
structure and logic of the software. Reconfigurable, because it is possible to access 
and alter the structure, logic, and state of the middleware. Finally, the adverb dynami-
cally specifies that changes to the middleware architecture can be performed at run-
time. In this paper we describe our experience using DPRS to build middleware ser-
vices.  

 

Fig. 1. Middleware architecture browser. 
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2.1   Configurability, Updateability, and Upgradeability:  
Requirements and Examples 

In this subsection we concentrate on configurability, updateability, and upgradeabil-
ity. We define each term, describe the requirements to obtain such functionality, and 
finally present some examples. 

 We refer to configurability as the ability to select the functional components that 
compose a middleware service to accommodate changes in the execution conditions 
and to accommodate heterogeneous devices. With updateability we denote the func-
tionality to replace software components at runtime, as well as the functionality to 
modify the behavior of the middleware (that is, the execution logic), also at runtime. 
Finally, we use the term upgradeability to refer to the ability to add new functionality 
to existing middleware services at runtime.  

Configurability, updateability and upgradeability require functionality to modify 
the structure and the logic of the middleware. To modify the structure, the middleware 
must export its internal component composition, thus allowing external entities to 
inspect it and modify it. Furthermore, in order to modify the logic, middleware must 
export information about its internal component interaction rules, and must provide 
functionality to modify them. Finally, updateability requires also access to the state of 
the components, so it can automate component replacement (no need to transfer the 
state from old to new components). 

To motivate the relevance of configurable, updateable, and upgradeable middle-
ware services we use a middleware service we have built (ExORB), and explain how 
we leverage the architecture externalization technique. ExORB is an object request 
broker communication middleware service that provides functionality to invoke and 
receive RPC requests using different protocols such as IIOP and XMLRPC. As a 
DPRS-enabled service, ExORB can be configured, updated, and upgraded. We pre-
sent an example for each feature next and leave the detailed description of the design 
of ExORB for Section 4. 

As an example of configurability assume the following two cases: 

• Customizing ExORB for client-side only functionality (sending requests only) or 
client and server side functionality (sending and receiving requests) depending on 
the role of the devices and available resources 

• Replacing an existing protocol encoding component with a new one that imple-
ments an algorithm optimized to the new execution conditions (for example, re-
duced bandwidth). 

Regarding updateability, consider the two following examples: 

• Assume that the component that encodes IIOP requests has an error and adds wrong 
information to the request header. Developers can correct the component code and 
replace the existing component with the new one without stopping the system and 
without requiring user intervention.  

• Consider the case where developers find a more efficient way to send requests. The 
new approach invokes ExORB’s internal components in a different order (connects 
first to the remote object and generates the IIOP messages only upon successfully 
connecting) and reduces the time required to send remote invocations. Due to the 
logic externalization property, we can dynamically modify the component invoca-
tion order.  
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Finally, regarding upgradeability, we describe four examples next: 

• The first example is about interceptors, which allow adding functionality to object 
request brokers. An interceptor is an object that is invoked before and after sending 
a request to customize the behavior of the request broker. Interceptors are used, for 
example, to encrypt and decrypt the buffer before it is sent. Building interceptors in 
ExORB is simple. We create a new component, register it with ExORB’s external-
ized structure, and modify the logic of ExORB so it invokes the new component be-
fore sending the request data over the network. The key difference with traditional 
interceptors is that with ExORB we can leverage the structure and logic externaliza-
tion to insert interceptors in arbitrary positions. With existing ORBs, interceptors 
are installed at predefined points. Furthermore, most existing ORBs do not accept 
installing or modifying interceptors at runtime.  

• The second example extends ExORB with functionality to broadcast information 
about its registered objects, which is functionality commonly implemented by dis-
covery services. In order to provide the functionality, we create and register a new 
component that accesses the state attribute that stores the list of registered objects 
and broadcasts their references. Then, we modify the logic of ExORB so we invoke 
this new component periodically.  

• The third example adds a new protocol to ExORB at runtime (for example, SOAP). 
We develop components to marshal and demarshal SOAP parameters, encode and 
decode SOAP messages, and leverage the rest of ExORB’s infrastructure. To add 
the new functionality, we leverage structure externalization to register the new 
components, and the logic externalization to modify the logic of the system. Once 
the functionality is installed, existing applications can receive and send requests 
over SOAP without any change in their code. 

• Finally, the last example adds new functionality to ExORB to support object migra-
tion. The new migration functionality removes the target object from the source 
ExORB, instantiates a copy of the object in the remote location, transfers the state, 
and registers the object with the target ExORB. Furthermore, we insert a component 
that maintains a list of migrated objects so it can redirect incoming requests. We can 
install the new functionality at runtime without affecting the execution of the exist-
ing ExORB. Adding the migration functionality leverages the logic externalization 
to add new logic to ExORB, structure externalization to add new components that 
implement the migration functionality, and state externalization to access and mod-
ify the list of registered objects both at the source and target ExORBs. 

Based on our experience building ExORB and an event distribution middleware 
service, architecture externalization is a key mechanism to achieve configurability, 
updateability, and upgradeability. Externalization gives full control over running 
middleware services and allows tuning and correcting their behavior without requir-
ing user intervention. Furthermore, with architecture externalization, the scope of 
reconfiguration of middleware services is open ended. The ability to manipulate the 
structure, logic, and state, allows programming the behavior of the middleware ser-
vices at runtime. 
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3   Dynamically Programmable  
and Reconfigurable Software (DPRS) 

This section provides a detailed description of DPRS. The description includes infor-
mation about the abstractions and the execution model. Furthermore, in this section 
we explain how the different components of DPRS contribute to the middleware con-
figurability, updateability, and upgradeability. 

3.1   DPRS Abstractions 

DPRS relies on three abstractions to build dynamically reconfigurable software: Mi-
cro Building Block (MBB), Action, and Domain. An MBB is the smallest functional 
unit in the system, an action defines the logic of the system, and a domain represents a 
collection of related MBBs. DPRS relies on name and value tuples as an indirection 
mechanism to address system entities. This indirection simplifies the introduction of 
changes in the system at runtime and has proved effective to build decoupled and 
manageable systems. 

3.1.1   Micro-building Block 
An MBB is the smallest addressable functional unit in the system. An MBB receives a 
collection of input parameters, executes an action that might affect its state, and gen-
erates a collection of output parameters. An example of an MBB is “registerObject”, 
which receives two input parameters, a name and an object reference, updates a list 
(its state) with the new entry, and returns the number of registered objects.  

MBBs store their state attributes as name and value tuples in a system provided 
storage area. This mechanism avoids implementing state transfer protocols to replace 
MBBs. Replacing an MBB requires registering the new MBB instance and providing 
it with a pointer to the existing state storage area. Accessing the attributes by name 
enables also external attribute manipulation. External services operate on the existing 
state and the MBBs obtain the new values when they resolve them by name during the 
execution of their algorithm. Furthermore, storing the state as a collection of name 
and value tuples simplifies state suspension, resumption, and migration. We provide 
services that implement this functionality transparent to MBBs. Figure 2 illustrates 
the structure of an MBB.  

Micro
Building
Block

State Storage Area

<name1, value1>
...

<namen, valuen>

Input Parameters

<name1, value1>
...

<namen, valuen>

<name1, value1>
...

<namen, valuen>

Output Parameters

 

Fig. 2. Micro Building Block structure. 
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The execution model of DPRS invokes a collection of MBBs in a specific order 
(the exact mechanism is described in section 3.2). However, MBBs do not store refer-
ences to the next MBB in the chain. This mechanism implies that no MBB in the 
system stores references to any other MBB. This approach allows replacing MBBs 
easily. There is no need to notify any MBB about the replacement because no MBB 
knows about any other MBB.  

3.1.2   Action 
Actions specify the MBB execution order and therefore define the logic of the system. 
DPRS defines two types of actions: interpreted actions, and compiled actions.  

An interpreted action is a deterministic directed graph where nodes are MBBs 
that denote execution states, and edges define the transition order. Every edge has an 
associated conditional statement that is evaluated at runtime to determine the next 
transition. Conditional statements can refer to parameters generated by MBBs (output 
parameters). Finally, for nodes with multiple out edges, only one of edge can evaluate 
true at runtime (deterministic graph). By default, the value of this conditional state-
ment is true. Action graphs have one start node, intermediate nodes, and one end 
node. The start and end nodes (the end node denotes the action graph terminates) are 
part of every graph traversal. The intermediate nodes depend on the traversal of the 
graph according to the conditional statements assigned to the edges and their runtime 
evaluation. Action graphs include additional nodes and edges that specify the transi-
tions in case of errors. That is, if no errors are detected, the system uses the default 
action graph (for example, the one depicted in Figure 3). However, if execution errors 
are detected, then the system uses the error nodes and edges. For example, Figure 3 
has an additional edge that goes from each node to the end state (not included in the 
figure). That is, if an error is detected, the action simply terminates. Note, however, 
that it is possible to define more sophisticated behaviors. Action graphs allow cycles 
to support loop statements, such as “while”, “for”, and “repeat”. 

 

Fig. 3. Interpreted Action example. 

Executing an interpreted action corresponds to traversing the graph. Figure 3 de-
picts an action example where MBB1 is the start node. The action starts with the 
invocation of MBB1, continues with the invocation of MBB2, then, depending on the 
value of ‘X’ it invokes MBB3 or MBB4, and finally, it invokes MBB5. The value of 
the variable ‘X’ is either provided by the client invoking the action or it is an output 
parameter generated by MBB1 or MBB2. This value is stored as part of the action 
execution state, which is described in detail in the execution model (Section 3.2). 
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Interpreted actions provide reflection at the execution level by exporting informa-
tion about the current execution state, and by providing support to modify the action 
graph at runtime. Furthermore, the explicit representation simplifies reasoning about 
the logic of the system, supports static analysis, and allows third parties to modify the 
behavior of the system by adding or removing states and configuring the graph. 

A compiled action is a code fragment that specifies the MBB invocation order. 
Compiled actions invoke MBBs using a DPRS library. This library receives an MBB 
name and a collection of input tuples, and invokes the specified MBB with the pro-
vided input parameters. This mechanism allows DPRS to take control over MBB 
invocation, which allows DPRS to replace MBBs safely. Figure 4 illustrates an exam-
ple of a compiled action, which corresponds to the interpreted action depicted in Fig-
ure 3.  

 

Fig. 4. Compiled action example. 

The compiled actions’ code is provided as an MBB that is registered with the 
system. Therefore, invoking the action corresponds to invoking the MBB. This 
approach allows us to replace action definitions at runtime.  

The key difference between interpreted and compiled actions is the runtime 
manipulation granularity. Compiled actions cannot be modified at runtime, that is, it 
is not possible to add, remove, or modify transition states. Changing their behavior 
requires replacing their associated MBB, that is, replacing the action code. 
Furthermore, it is not possible to inspect compiled actions at runtime, and therefore it 
is not possible to learn about the current execution state, or learn about the action 
behavior. With interpreted actions, the graph provides enough information to learn 
about the behavior of the action. The benefit of compiled actions is that they execute 
faster than interpreted actions because they do not require an interpreter to drive their 
execution. Furthermore, a compiled action gives more control to the programmer over 
the programming of the software behavior.  

Both interpreted and compiled actions contribute to MBB replacement. One of the 
key requirements to automate runtime MBB replacement is detecting the system has 
reached a safe execution state. With DPRS actions, these safe states can be deter-
mined automatically. The safe reconfiguration states correspond to MBB invocations. 
With interpreted actions, the interpreter explicitly invokes the MBBs. Compiled ac-
tions use a DPRS library to invoke MBBs. In both cases, the supporting system con-
trols MBB invocation and therefore can safely replace MBBs. 

Finally, both interpreted and compiled actions contribute to updateability and up-
gradeability of the systems. Updating an action corresponds to replacing an existing 
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action, or in the case of interpreted actions, modifying the execution graph. Upgrading 
the system implies adding new actions, or in the case of interpreted actions, modify-
ing the action graph to incorporate or modify states.  

3.1.3   Domain 
A domain is an abstraction that aggregates collections of related MBBs. It provides a 
storage area to store the structure of the domain (list of MBBs), the logic of the do-
main (list of actions), and the state of the domain (MBBs state attributes and execu-
tion state values). Domains can be composed hierarchically, and they provide a useful 
mechanism to manipulate collections of MBBs as a single unit (for example, move, 
suspend, and resume).  

Figure 5 illustrates the components and structure of a domain. All three memories 
(structure, logic, and state) store name and value tuples. The structure memory 
maintains a collection of tuples that correspond to MBBs registered in the domain. 
The tuple name refers to the name of the MBB (every MBB is assigned a name at 
registration time), and the value stores the reference to the MBB. Note that the refer-
ence can be a local pointer or a pointer to a remote MBB. The DPRS execution model 
makes local or remote invocation transparent to developers. The logic memory stores 
a list of actions exported by the domain. Similarly to the structure memory, the logic 
memory refers to actions by name. Finally, the state memory stores the state attrib-
utes for the MBBs registered in the domain. During the MBB registration, the system 
assigns a pointer to the state memory to the MBB. MBBs belonging to the same do-
main share the same state memory. We refer to the three memories as the domain 
memory.  

 

Fig. 5. Domain components. 

Domains can be composed hierarchically, which provides a useful mechanism to 
organize large collections of MBBs. Domain memories store a reference (name and 
value tuple) to the domain memories of the registered sub-domains, and they also 
store a reference to the root domain memory. Figure 6 illustrates an example of a 
hierarchical composition of domains. Root domain has two sub-domains (domain 1 
and domain 2) and domain 1 has three sub-domains (domain 3, domain 4, and do-
main 5).  
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The default visibility policies dictate that a domain has access to the sub-domain 
memories. For example, the root domain has access to all the domain memories of the 
system (that is, domains 1, 2, 3, 4, and 5), while domain 5 has access to its own do-
main memory only. However, it is possible to modify the visibility policies and allow 
sub-domains to access their parents or siblings’ domain memories.  

 

 

Fig. 6. Hierarchical composition of domains. 

Domains provide a useful mechanism to organize complex systems consisting of a 
large number of MBBs. The recursive composition of domains contributes to the 
static configuration of middleware services. Developers can provide different domain 
compositions for different devices or execution requirements. 

3.2   Instantiation Model 

DPRS-based systems are assembled at runtime using a “blueprint” we refer to as 
architecture descriptor. This descriptor contains information about the domain hierar-
chy. Each domain entry in the architecture descriptor points to two additional descrip-
tors, structure and logic descriptors, which specify the MBBs and actions registered in 
the domain. Finally, the structure descriptor points to the MBB descriptors that corre-
spond to the MBBs that compose the structure. Figure 7 illustrates a descriptor dia-
gram for the example depicted in Figure 6 (we only include the root domain descrip-
tors’ hierarchy for clarity). 

DPRS relies on a runtime infrastructure that provides functionality to parse the ar-
chitecture descriptor, instantiate the required MBBs, introduce changes at runtime, 
and parse interpreted actions. Figure 8 illustrates the runtime infrastructure. It consists 
of two key components: Static Kernel and Dynamic Kernel. The static kernel provides 
functionality to parse the architecture descriptor, functionality to generate an architec-
ture descriptor for the running system, and functionality to instantiate micro building 
blocks (for example, Java objects, .NET object, or DLLs). The static kernel is the 
minimum functionality required to assemble a system based on micro building blocks 
and it is the only non-reconfigurable non-MBB based component in the system. The 
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layers on top of the static kernel are recursively built using micro building blocks. The 
dynamic kernel consists of a domain called Domain Manager, which provides micro 
building blocks to manage the domain. The dynamic kernel provides also the Micro 
Building Block Scheduler, which provides functionality to execute interpreted ac-
tions. Finally, on top of the dynamic kernel are the dynamically programmable and 
reconfigurable middleware services. 

 

Fig. 7. DPRS architecture description. 

 

Fig. 8. DPRS Runtime Infrastructure. 

3.3   DPRS Execution Model 

DPRS interpreted actions externalize the logic of the system. They provide informa-
tion about the MBB invocation sequence required to execute a functional aspect of the 
system. The DPRS execution model relies on a component called MBB scheduler, 
which drives the execution of the system using the action’s graph as an MBB invoca-
tion schedule. The MBB scheduler maintains and exports information about the exe-
cution state of the system. This information consists of: 

1. Currently executed action 
2. Currently executed MBB 
3. Action associated parameters, that is, parameters provided by the action invoker, 

plus parameters generated by the action’s MBBs. 
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The MBB scheduler is implemented as an MBB. Therefore, its state is accessible, 
and it can be modified at runtime as any other MBB. The ability to replace the MBB 
scheduler allows developers to provide different execution semantics. For example, 
they can choose an MBB scheduler that supports transparent local or remote MBB 
invocation, therefore simplifying runtime software partitioning. Furthermore, they can 
choose an MBB scheduler that checkpoints the parameters and state after every MBB 
invocation therefore providing fault tolerant semantics. Also, they can select a real 
time MBB scheduler that defines action execution time boundaries therefore provid-
ing guarantees on the action execution times. The ability to select a specific MBB 
scheduler combined with dynamic software replacement capabilities simplifies the 
construction of adaptive systems. That is, systems that can modify their execution 
model according to the execution conditions and external requirements. 

 

Fig. 9. Action execution example. 

The DPRS execution model associates an object called action state object to each 
action execution. Actions use this object to store the input and output parameters 
associated to the action execution. Parameters are provided by the clients invoking the 
action and are also generated by MBBs as the result of their invocation. MBBs con-
sume parameters stored in the action state object to implement their algorithm. Saving 
the parameters generated during the action invocation and synchronizing the MBB 
access to their state attributes allows clients to invoke actions concurrently. Figure 9 
illustrates an interpreted action execution example. The name of the action is “exam-
pleAction” and it consists of two MBBs. To simplify the explanation we assume an 
action with no conditional transitions or loops. The execution model remains the 
same. The difference is that the MBB scheduler evaluates an expression to obtain the 
name of the next state. We describe the execution model algorithm next: 
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1. The MBB scheduler receives a request to execute an action called “exampleAc-
tion”. The request includes an action state object that contains two parameters, a, 
and c (Step 1 in Figure 9). 

2. The MBB scheduler uses the action name to access the logic memory and obtains 
a pointer to the action graph’s first node. 

3. The MBB scheduler obtains the name of the MBB from the action graph’s node, 
and uses the name (MBB1) to resolve the MBB from the structure memory. 

4. After resolving MBB1, the MBB scheduler invokes the MBB passing the action 
state object. MBB1 requires an input parameter named a, which it obtains from 
the action state object. MBB1 executes its algorithm and generates an output pa-
rameter called b, which it stores in the action state object (Step 2 in Figure 9). 

5. Next, the MBB scheduler obtains the name of the next state from the current ac-
tions graph’s node, obtains the name of the MBB (MBB2), and resolves MBB2 
from the structure memory. 

6. The MBB scheduler invokes MBB2 with the action state object as a parameter. 
MBB2 requires two parameters, b and c, which it obtains from the action state ob-
ject. MBB2 executes its algorithm, generates an output parameter called d, and 
stores the parameter in the action state object (Step 3 in Figure 9). 

7. Finally, the MBB scheduler returns the action state object to the caller. 

The main contribution of the DPRS’ execution model is the ability to detect safe 
software reconfiguration points automatically. The basic rule is that the system allows 
reconfiguring the system between MBB invocations only. MBBs are allowed to ac-
cess and modify the externalized structure, logic, and state. Therefore, modifying 
these parameters might affect the execution of the MBBs and could lead to an incon-
sistent software state. The system waits until the MBB completes its execution to 
avoid undesirable results. Note that this behavior applies to both interpreted and com-
piled actions. Compiled actions use a DPRS library to invoke MBBs and therefore 
give control to the system to implement reconfiguration. 

The main concern about the interpreted execution model is performance. Invoking 
an action requires accessing the domain memory to resolve the nodes of the action 
graph, the MBBs, and accessing the parameters stored in the action state object. In 
Section 5, we present experimental results that illustrate the performance penalty 
incurred by DPRS. The results indicate that the penalty can be considered negligible 
in most cases. 

4   ExORB: A Dynamically Reconfigurable   
Communication Middleware Service 

In this section we present a multi-protocol Object Request Broker (ORB) communica-
tion middleware service that we have built using DPRS. The service provides client 
and server functionality independently of wire protocols. That is, the server object’s 
methods can be invoked over different protocols, such as IIOP or XML-RPC. Simi-
larly, client requests use the same interface and semantics regardless the underlying 
protocol. Although our implementation supports IIOP and XML-RPC, it is possible to 
add additional protocols by developing and deploying additional micro building 
blocks at runtime. As a DPRS system, ExORB’s architecture (state, structure, and 
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logic) is externalized, and therefore, it is possible to inspect it and manipulate it at 
runtime. ExORB has been built using a Java implementation of the DPRS supporting 
infrastructure, and we use it extensively as a basic component of our infrastructure to 
enable transparent remote MBB invocation. In the following section, we present the 
architecture of ExORB including a list of micro building blocks, domains, and ac-
tions.  

4.1   Structure of ExORB 

ExORB is composed of 28 micro building blocks grouped into 11 domains. Figure 10 
depicts the structure of ExORB. Next we explain the functional goal of each domain 
and the MBBs that compose each of the domains. 

The CDR Parameter Management domain provides functionality to marshal and 
demarshal parameters according to the Common Data Representation (CDR) format 
(CORBA default representation). It contains two MBBs: CDR Marshal Parameters 
and CDR Demarshal Parameters. 

The XMLRPC Parameter Management domain is similar to the CDR Parameter 
Management Domain but provides functionality to marshal and demarshal parameters 
encoded according to the XMLRPC protocol.  

The IIOP Protocol Processing domain aggregates micro building blocks that export 
functionality to encode and decode messages that conform to the IIOP protocol. It 
contains five MBBs: IIOP Encode Request, IIOP Decode Request, IIOP Encode Re-
ply, IIOP Decode Reply, and IIOP Decode Header. 

 
Fig. 10. ExORB structure. 
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The XMLRPC Protocol Processing domain is equivalent to the IIOP Protocol 
Processing Domain and provides functionality to handle XMLRPC requests and re-
plies.  

The Network Data Management domain is responsible for handling incoming and 
outgoing network traffic. It is composed of three micro building blocks: Send Data, 
Receive Data, and Peek Data.  

The Object Invocation domain contains two micro building blocks: Prepare 
Method Invocation and Invoke Method. These MBBs automate server method invoca-
tion using the Java language reflection capabilities. Developers do not need to build 
skeletons for their server objects; they simply register them and the system automati-
cally obtains all the information it requires.  

The TCP Incoming Connection Management domain provides functionality to 
handle incoming TCP network connections. It exports two MBBs: Init and Accept.  

The TCP Outgoing Connection Management domain handles TCP connection es-
tablishment with remote peers. The domain includes two micro building blocks: Con-
nect and Return Communication Point.  

The Object Registration domain is responsible for the management of server ob-
jects. It contains three MBBs: Register Object, Remove Object, and Get Object. 

Table 1. ExORB size. 

Domain Size 
CDR Parameter Management 16KB 
XMLRPC Parameter Management 20KB 
IIOP Protocol Processing 7KB 
XMLRPC Protocol Processing 8KB 
Network Data Management 3KB 
Object Invocation  2KB 
TCP Incoming Connection Management 5KB 
TCP Outgoing Connection Management 4KB 
Object Registration 2KB 
Protocol Detection 1KB 
URI Object Reference Management 2KB 

The Protocol Detection domain exports functionality to identify the communica-
tion middleware protocol of incoming requests. This functionality is required to sup-
port the multi-protocol behavior of ExORB. It exports one MBB only: Detect Proto-
col. Current implementation of the MBB detects two types of protocols: XMLPRC 
and IIOP.  

Finally, the URI Object Reference Management domain provides functionality to 
parse a remote object URI reference and extract all required information to send re-
quests to the remote object. This domain contains a single micro building block called 
Reference to Object, which receives a URI and a protocol type, and returns a host 
name, a port number, and the object id. 

Table 1 lists the size of each ExORB domain (Java version). The total size, without 
debugging information is 70KB. For the current implementation, each domain stati-
cally aggregates the micro building blocks. That is, micro building blocks are not 
installed individually but as a group. The numbers in Table 1 correspond to the size of 
the code of the domain. 
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4.2   Logic of ExORB 

ExORB exports four actions: send request, receive request, init, and register object. 
The first one is intended for client-side functionality, while the remaining three (re-
ceive request, init, and register object) are intended for server-side functionality. Init 
and register object are single node interpreted actions, which simply invoke the init 
MBB and register object MBB described in section 4.1. In this section we provide a 
detailed description of send request. 

Figure 11 illustrates the action graph for the send request action. To simplify the 
figure, we have removed the error states. When the client object invokes the action, it 
provides an action state object (the one storing the parameters generated during the 
execution of the action) containing the name of the action, the remote object’s refer-
ence, the method to invoke, the required parameters, and the protocol to use (that is, 
XMLRPC or IIOP). The action starts invoking the reference to object micro building 
block, which parses the remote object’s reference and extracts the hostname, object 
id, and port. These parameters are stored in the action state object.  

Next, the action invokes connect, which obtains the hostname and port from the ac-
tion state object, establishes a connection with the remote host (or reuses an existing 
connection), and stores an object that encapsulates the TCP socket (TCP Communica-
tion Point) in the action state object. The transition to the next state is conditional. It 
depends on the value of the “protocol” variable stored in the action state object. If the 
value of the variable is “iiop”, the action invokes CDR Marshal Parameters to mar-
shal the parameters, and then it invokes IIOP Encode Request micro building block to 
create the request message. If the value of the variable is “xmlrpc”, the action invokes 
XMLRPC Marshal Parameters and then XMLRPC Encode Request. Both IIOP En-
code Request and XMLRPC Encode Request micro building blocks generate a byte 
buffer with the request formatted according to the appropriate protocol. The next state 
in the action graph is Send Data, which retrieves the buffer from the action state ob-
ject and sends it to the remote object using the TCP Communication Point object 
stored in the action state object. After invoking Send Data, the action retrieves a tuple 
named “oneway” from the action state object. If the value is “true”, the action invokes 
Return Communication Point, which disposes the TCP communication point object 
from the action state object, and finishes, returning the action state object to the action 
invoker. 

 

Fig. 11. Send Request action graph. 

If the value of “oneway” is “false”, the action continues with the decoding of the 
reply. First, depending on the value of the “protocol” tuple, the action decodes an 
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IIOP header, or an XMLRPC header. Both micro building blocks parse the message 
header and store information about the request in the action state object. One compul-
sory field for both micro building blocks is the length of the remaining of the reply. 
The action invokes Receive Data, which requires the length tuple to determine the 
amount of data that it has to read from the network. Next, the action proceeds with the 
decoding of the reply and the demarshaling of the parameters. Again, the action inter-
preter uses the value of “protocol” to decide what path to follow in the graph. Finally, 
the action invokes the Return Communication Point micro building block (disposes 
the TCP communication point) and terminates, returning the actions state object to the 
action invoker. The action state object contains the result parameters.  

4.3   State of ExORB 

A key feature of DPRS is the ability to manipulate the software state as a first class 
object. Every micro building block explicitly specifies its state dependencies, which 
are defined in terms of name and value pairs. These tuples are stored in a storage area 
provided by the micro building block domain. The state of the software is the union of 
all the micro building blocks’ state attributes. The state of ExORB consists of all the 
state attributes defined by the 28 micro building blocks. Table 2 lists the state attrib-
utes associated to ExORB. The table includes the name of the attribute, its purpose, 
and the name of the domain that stores it.  

Table 2. ExORB state attributes. 

 Domain Purpose 
Sent Data (long) Network Data  

Management  
Stores the total amount of bytes  
sent by ExORB. 

Received Data (long) Network Data  
Management  

Stores the total amount of  
bytes received by ExORB. 

Send Timeout (long) Network Data  
Management  

Value in milliseconds the send  
MBB waits before timing out. 

Receive Timeout (long) Network Data  
Management  

Value in milliseconds the receive  
MBB waits before timing out. 

Server Object Registry  
(hash table) 

Object Registration  Stores the list of registered server  
objects. 

Server Communication  
Point Cache (list) 

TCP Incoming  
Connection Management  

Stores a list of connected  
communication points. 

Client Communication  
Point Cache (list) 

TCP Outgoing  
Connection Management  

Stores a list of connected  
communication points. 

5   DPRS Evaluation 

In this section, we use ExORB to provide a quantitative and a qualitative evaluation 
of DPRS. For the quantitative evaluation, we present performance numbers and com-
pare ExORB with a non-reconfigurable communication middleware. For the qualita-
tive evaluation, we explain how we have successfully configured, updated, and up-
graded ExORB using the functionality provided by DPRMS. 
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5.1   Quantitative Evaluation 

The goal of this section is to examine the overhead incurred by DPRS. According to 
our experiments, this overhead is mostly due to domain memory accesses (currently 
implemented as a hash table). When an action is invoked, the MBB Scheduler parses 
the graph and accesses the logic memory to resolve each of the nodes of the graph. 
For each graph node, the scheduler obtains the MBB from the structure memory, and 
finally, during the MBB execution, the MBB might access the state memory and ac-
tion state object to obtain and store state variables and input and output parameters. 
Note that the MBB execution is atomic and the MBB resolves any required state vari-
able and input and output parameters at the beginning of its execution, and stores the 
values before completing its execution. That is, the MBB does not resolve the state 
variables and input and output parameters each time it needs to use them during an 
invocation; it caches their references until the end of its execution. For every action 
state, there is one access to the logic memory to obtain the action graph node, and 
another access to the structure memory to resolve the MBB. Then, each MBB ac-
cesses input (input) and output (output) parameters from the action state object, and 
state (state) variables from the state memory. Equation 1 illustrates the total number 
of memory accesses for an action with “n” states.  
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To measure the performance overhead of the Java implementation of DPRS (Java 
1.4), we built a static version of the IIOP configuration of ExORB. We took the IIOP 
related MBBs’ code, modified it, and created a collection of non-MBB Java objects. 
These objects have internal state (they do not access a hash table), use standard inter-
faces (instead of a generic “process” method), keep references to other objects, and 
are assembled statically. As a result, the new IIOP-based ORB does not incur any of 
the DPRS overhead but it cannot be reconfigured). We used this ORB as the perform-
ance baseline for our experiments. For the experiments, we created two objects that 
communicate using IIOP, a server that receives an integer, calculates its cube, and 
returns the result, and a client that invokes the remote method 10000 times and out-
puts the average requests per second value. We repeated the test 10 times and gener-
ated an average value, as well as the standard deviation. For the experiment, we used 
two machines connected to a 100Mbps Ethernet LAN. The server was a Pentium IV 
at 2.2GHz, with 512MB of RAM. The client was a Pentium M at 1.7GHz with 1GB 
of RAM. We run the experiment using the static ExORB implementation first, and 
then we repeated the experiment using the DPRS version of ExORB, followed by 
three optimized DPRS versions (we explain these optimizations next). Figure 12 illus-
trates the results of the experiments. 

The left-most bar corresponds to the static version of ExORB with 4260 requests 
per second. The next bar to the right illustrates the performance of the unoptimized 
version of DPRS ExORB, which handles 1937 requests per second (45% of the static 
version’s performance). The unoptimized version uses interpreted actions, and a hash 
table to implement the state memory and the action state object. The next bars on 
Figure 12 correspond to the performance of DPRS ExORB with a number of optimi-
zations. The third bar from the left shows a version of DPRS ExORB that uses com-
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piled actions. With compiled actions, we do not need to obtain each action graph node 
from the logic memory and therefore, for an action of “n” states we eliminate “n” 
logic memory accesses. As illustrated in figure 12, the improvement is not too signifi-
cant (around 300 requests per second more, or 52.4% of the static ExORB perform-
ance). For the next optimization, we replace the state memory and the action state 
object hash table with an array of references, and use an index to access each variable. 
For this optimization, we need to process the logic and MBB descriptors to assign an 
index to each variable. We are currently creating a tool that parses the descriptors and 
generates the additional information automatically. This approach maintains the full 
flexibility of DPRS ExORB (we can reconfigure every aspect of the system at run-
time) but requires additional steps when installing, removing, and reconfiguring the 
system (which can be automated). With this optimization we obtain 3126 requests per 
second, which corresponds to 73.3% of the performance of the static ExORB imple-
mentation. When using indices, we do not reduce the number of accesses to the do-
main memory; instead, we reduce the lookup time by avoiding the hash table. The last 
optimization uses indices and replaces the interpreted actions with compiled actions. 
As before, the improvement is not significant, we get an additional 112 requests per 
second. 

Although the optimizations presented in this section are still work in progress ini-
tial results are promising. The architecture externalizing technique provides detailed 
information about the system that we leverage to build optimization tools that reduce 
the overhead of the system. 

 

Fig. 12. DPRS Performance Evaluation. 

5.2   Qualitative Evaluation 

In this section, we show examples of ExORB configurability, updateability, and up-
gradeability. These examples leverage the basic functionality provided by DPRS and 
sustain the claims made in Section 2.1. 
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Fig. 13. ExORB configuration for client-side and XMLRPC only functionality. 

For the configurability evaluation, we modify ExORB to provide client-side func-
tionality and support for the XMLRPC protocol only. This configuration is particu-
larly useful for resource constrained devices (for example, a sensor) that connect to a 
server periodically and send certain information (for example, temperature or pressure 
readings). Figure 13 illustrates the new configuration of ExORB, which removes the 
domains for CDR Parameter Marshaling, IIOP Protocol Processing, Object Invoca-
tion, TCP Incoming Connection, Object Registration, and Protocol Detection. Fur-
thermore, we remove the Peek Data MBB from the Network Data Management Do-
main, and the Decode Request and Encode Reply MBBs from the XMLRPC Protocol 
Processing Domain. We edit the architecture descriptor to reflect these changes: mod-
ify the structure descriptor to remove the non-required MBBs, and modify the logic 
descriptor to remove the receive request and init actions. This configurability flexibil-
ity is the result of the micro building block construction model. The size of this con-
figuration is around 43KB. 

DPRS provides default support for updateability. We can replace any ExORB’s 
MBB simply by interacting with the Domain Management domain, which provides 
functionality that guarantees the safe replacement of MBBs at runtime. Furthermore, 
the Domain Manager provides functionality also to modify existing actions. Figure 14 
illustrates a modified version of the send request action (Figure 11), where we mar-
shal the parameters first and connect to the remote object later. 

Finally, upgradeability is also an integral part of DPRS. We have upgraded Ex-
ORB with functionality to encrypt and decrypt the data buffer before sending and 
receiving it. The upgrade requires adding an encrypting MBB, a decrypting MBB, and 
modifying the send request and receive request actions. The new actions invoke the 
encrypting/decrypting MBBs before and after sending data over the network. Figure 
15 illustrates the changes to the send request action. The dashed circle corresponds to 
the encryption MBB, which is invoked after coding the request and before sending it 
over the network. Another example of upgradeability corresponds to the evolution of 
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ExORB. Our initial implementation provided IIOP functionality only. Later, we 
added XMLRPC capabilities by introducing new MBBs and modifying the existing 
actions. 

 

Fig. 14. Updating an interpreted action. 

6   Related Work 

For the related work, we compare DPRS with reflective middleware systems and 
dynamic software updating systems. 

Reflective middleware [14, 15] refers to the capability of a service to reason about 
and act upon itself. Reflective middleware services provide a representation of their 
own behavior that can be inspected and modified at runtime. This representation is 
known as causally connected self representation (CCSR). Causally-connected implies 
that changes in the representation affect the underlying system and vice-versa. DPRS 
is a fully reflective (structural and behavioral) system. It provides a methodology to 
construct fully reflective middleware services. This approach contrasts with existing 
reflective middleware services that have to be designed having reflection in mind. 
That is, developers must decide beforehand those aspects of their services they plan to 
make reflective. DPRS supports structural reflection (supported interfaces) by means 
of action listing (actions correspond to interfaces). DPRS also provides architectural 
behavior by exporting the list of components and their interactions rules. Finally, 
DPRS provides behavioral reflection; it provides information about invocations’ arri-
vals, and provides functionality to modify the behavior. 

There is abundant work in the area of dynamic software updating systems [16]. 
These projects support executable code replacement at runtime. For example Hicks et 
al [6] describe a mechanism that relies on the OS linker to introduce code changes at 
runtime. Their work does not require a special software construction mechanism but 
they require developers to specify when it is safe to replace code. DPRS does not 
require developers to specify when it is safe to replace code. Its execution model can 
detect safe reconfiguration states automatically. Furthermore, DPRS provides infor-
mation about the composition and execution state of the system. None of the tradi-
tional updating systems provides such functionality. Bitfone[7], Redbend [11], and 
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DoOnGo [12] are commercial products that support over-the-air cell phone firmware 
updates. Their approach is different from previous work on dynamic updates because 
they do not support partial image updates. They replace the whole cell phone firm-
ware. Their algorithms calculate the differences between new and old images and 
transmit the differences to the phone update agent. 

Finally, systems such as Ensemble[17] , Cactus[18], and the Dynamically Load-
able Protocol Stacks[19] provide functionality to create updateable network protocols 
using state machines. The latter generates the protocol stack on the fly from a formal 
definition. The other systems assemble the stack from existing components but allow 
for changes in the stack (updates and upgrades). DPRS is similar to these systems in 
terms of dynamic composition and the use of state machines. However, DPRS allows 
inspecting the internal architecture and supports the construction of arbitrary software. 

 

Fig. 15. Upgraded send request action that uses encryption and decryption. 

Petri Nets [20] are a formalism to model concurrent asynchronous processes. Petri 
Nets consist of places (conditions), transitions (events or processes), arcs connecting 
places and transitions, and markings consisting of a number of tokens associated to 
each place. Unlike our system, Petri Nets do not directly address state, and structure 
externalization. Furthermore, Petri Nets do not define mechanisms for safe replace-
ment of components. Finally, our system uses a scheduler that drives the execution of 
the system. With Petri Nets, state transitions are modeled asynchronously based on 
the firing of conditions. Note however, that we can leverage Petri Nets theory to 
model our systems. 

7   Conclusions 

In this paper, we present a technique to build dynamically programmable and recon-
figurable middleware services. This technique relies on three abstractions: micro 
building blocks, actions, and domains. A micro building block (MBB) is the smallest 
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functional unit in the system that can be composed with additional MBBs to imple-
ment software functionality. An MBB receives input parameters, implements an algo-
rithm that affects state attributes, and generates output parameters. An action is re-
sponsible for the coordination of MBBs and defines the logic of the system. Finally, a 
domain aggregates related MBBs and provides a storage area to save the state, the 
structure, and the logic of the system. DPRS supports the construction of configur-
able, updateable, and upgradeable middleware services that suit the requirements of 
next generation mobile handsets. 

The architecture externalization technique gives software administrators and de-
velopers full control over middleware services. This supports phone evolution by 
allowing different software configurations, runtime updates, and runtime upgrades. 
The result is remotely managed cell phones that minimize or eliminate crashes and 
maximize user satisfaction by avoiding users from participating in maintenance tasks.  

Our key assumption is that the individuals that benefit from architecture externali-
zation are experts that know well their domain. For example, we assume that someone 
modifying ExORB will not insert an MP3 decoder micro building block between the 
parameter marshaler and the connector micro building blocks. Using the different 
system descriptors (logic, structure, and state) we implement static analysis to detect 
syntactic errors, such as mismatching number or type of input and output parameters. 
However, we do not provide any functionality to check for structural and logic se-
mantic errors. Parlavantzas et al. [5] use component frameworks to address this issue. 
We leave the topic as future research work. 

 The architecture externalization technique has proven useful not only for configur-
ing, updating, and upgrading software, but also for simplifying the suspension, re-
sumption, migration, and partitioning of software. Accessing the externalized archi-
tecture allows services to automate these tasks without requiring any code from the 
original software developer. 

One of the main concerns about DPRMS is the programming model. MBBs can be 
built using existing languages such as C, C++, Java, or C#. However, software devel-
opment requires developers to think in terms of MBBs and actions. A solution to this 
problem is to provide tools that hide these extra steps. For example, it is possible to 
provide an IDE environment where users can define the actions visually and the sys-
tem generates their XML representation (or even compiled code) automatically.  

Finally, DPRS introduces a performance overhead, which we have been able to re-
duce to 25% with initial optimizations. We are currently working on additional op-
timizations and expect to reduce the current overhead even further. 
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