
H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 372–396, 2004.
© IFIP International Federation for Information Processing 2004

Dynamically Programmable
and Reconfigurable Middleware Services

Manuel Roman and Nayeem Islam

DoCoMo Communications Labs
181 Metro Drive

San Jose, CA 95110
{roman,islam}@docomolabs-usa.com

Abstract. The increasing software complexity and proliferation of distributed
applications for cell phones demand the introduction of middleware services to
assist in the development of advanced applications. However, from the user
perspective, it is essential that these new phones provide a smooth error-free
experience. Despite of the complexity underlying a cell phone, placing a phone
call remains a simple task that can be performed by most users regardless of
their technical background. Furthermore, cell phones rarely crash (especially
compared to PCs) and carriers are able to correct certain problems remotely
without user intervention.
We advocate for a middleware infrastructure that allows carriers and developers
to correct middleware behavior, configure it, and upgrade it, without requiring
user intervention and without stopping the execution of applications. We intro-
duce a new technique we refer to as externalization. This technique explicitly
externalizes the state, the logic, and the internal component structure of mid-
dleware services. As a result, carriers and developers have full control over
these middleware services. They can access, inspect, and modify the state,
logic, and structure of middleware services at runtime while preserving the exe-
cution of existing applications and providing an error-free experience to users.
We claim that externalization is the key for the future evolution of cell phones’
middleware infrastructure.

1 Introduction

Cell phone functionality has evolved tremendously over the last 10 years. First, there
was just voice transmission. Then, short messages (SMS) and web browsing (WAP
and iMode) were added. Later, interactions with vending machines (cMode [1]) and
multimedia messaging (MMS) became available. Most recently, video conferencing,
Internet access, and interaction with the surrounding physical environment (iArea [2])
became possible. The evolution of cell phones and wireless-enabled handheld devices
as well as the increasing proliferation of wireless networks are changing our tradi-
tional understanding of computers. The notion of desktop computing is slowly evolv-
ing into a more dynamic model. Cell phones do not sit on a desktop, are not discon-
nected from the surrounding environment, and are not immobile anymore. These
devices are capable of connecting to wireless networks, they have enough processing
power to perform tasks previously reserved for servers and workstations, and they are
carried by users on a regular basis. Phones are poised to replace our keys [3], identifi-
cation cards, and money with digital counterparts. Furthermore, increasing data

Dynamically Programmable and Reconfigurable Middleware Services 373

transmission rates (2Mbps with UMTS or 14.4Mbps with Japan’s FOMA net-
works[4]) enable the development of applications that allow cell phones to interact
with distributed services (e.g., Web Services) and access and share rich multimedia
contents.

The increasing number and sophistication of cell phone applications demands a
cell phone middleware infrastructure to assist in the development and execution of
applications. Examples of middleware are: RPC, discovery, security, QoS, group
management, event distribution, and publish subscriber.

Due to the cell phone constraints (for example, limited resources and reliability)
these services must meet the following requirements:

1. They must be configurable, both statically and dynamically, to accommodate the
requirements of applications (e.g., transactions, QoS, and security) and to meet
the requirements of heterogeneous devices and execution environments[5].

2. They must be dynamically updateable to correct errors and therefore provide
users with an error-free and zero maintenance execution model [6]. According to
existing studies [7], 10% cell phones are returned due to software problems.
With over 1200 million subscribers worldwide, it means that over 120 million
phones are returned every year. Requesting cell phone users to take their device
to a customer support center to correct the software errors is too costly for carri-
ers and frustrating for cell phone users.

3. They must provide support for run-time upgrades to incorporate new functional-
ity (for example, new interfaces, new protocols, and new policies)[8].

We refer to the previous issues as configurability (1), updateability (2), and up-
gradeability (3). Reflective middleware services[9, 10] provide functionality for con-
figurability. They support replacement and assembly of certain components to adapt
to changes and create certain device dependent configurations. However, most reflec-
tive systems assume a basic skeleton where only certain pre-defined changes and
configurations are allowed. We seek a mechanism that allows modifying every aspect
of the system (including the static skeleton), and enables fine-grained customizations.

Bitfone[7], Redbend [11], and DoOnGo[12] support updateability and upgradeabil-
ity. They provide functionality to update the cell phone’s firmware at runtime. They
calculate the binary differences between the new and old images and update the dif-
ferences. However, none of these products allows updating the software without stop-
ping the system. They require restarting the devices, require user intervention, and do
not provide fine-grained updating capabilities, that is, it is not possible to change
certain logic or structural properties. The whole software image has to be replaced.
Our goal is to avoid or minimize user intervention and preserve the normal execution
of the system.

In this paper, we present a new middleware construction approach that assists in
the development of configurable, updateable, and upgradeable middleware services.
These services are assembled dynamically from small execution units (micro building
blocks) and can be reconfigured at runtime. Our approach externalizes three key mid-
dleware execution elements: state, structure, and logic. As a result, we have fine-
grained control over running middleware services in terms of configurability, update-
ability, and upgradeability. We have used the construction technique to build an effi-
cient communication middleware service that we can configure, update, and upgrade
at runtime. Despite of this flexibility, the service provides performance equivalent to
non-reconfigurable services.

374 Manuel Roman and Nayeem Islam

The paper is structured as follows: Section 2 motivates middleware externalization
as a key technique for middleware configuration, updating, and upgrading. Section 3
describes Dynamically Programmable and Reconfigurable Software (DPRS), our
approach to construct flexible middleware services. Section 4 describes in detail a
communication middleware service (ExORB) that we have built using a Java proto-
type of DPRS. Section 5 provides a performance evaluation of ExORB. We present
related work in Section 6 and conclude in Section 7.

2 Motivation for Middleware Architecture Externalization

Middleware architecture externalization relies on three key aspects: state externaliza-
tion, structure externalization, and logic externalization. State externalization exports
the internal middleware state attributes so they can be inspected and modified. Struc-
ture externalization exports the list of components that compose the middleware ser-
vice and supports inspection and modification. Finally, logic externalization exports
the interaction rules among the structural components (logic of the middleware ser-
vice), thus providing support to inspect and modify the logic.

The main benefit of architecture externalization is the ability to learn, reason, and
modify every aspect of a middleware service. The notion of architecture externaliza-
tion is similar to computational reflection[13], which is a technique that allows a
system to maintain information about itself (meta-information) and use this informa-
tion to change its behavior (adapt). However, the key difference between computa-
tional reflection and architecture externalization is the scope of information main-
tained by the software, and the scope of the changes allowed. Existing computational
reflection middleware services [14, 15], explicitly define the internal aspects they
export, and the changes they accept. However, middleware services based on archi-
tecture externalization export every detail in terms of structure, logic, and state, and
accept arbitrary changes in any of the three categories. Building an externalized mid-
dleware service requires identifying the functional units of the service (we call them
micro building blocks) and using the techniques described in Section 3 to define their
composition and interaction rules. The resulting middleware service can be inspected
and modified. Figure 1 depicts an architecture browser tool we have built that con-
nects to a device and extracts the structure, logic, and state of the software it hosts.
The figure illustrates the structure and part of the logic of the externalized communi-
cation middleware service running in the device (RemoteInvocationSupport).

Externalized middleware services are assembled at runtime using an architecture
descriptor that contains information about the components that compose the system
(structure), the interaction rules for these components (logic), and a descriptor with
detailed information about each structural component (input parameters, output pa-
rameters, and state attributes). The collection of all state attributes corresponds to the
global middleware service state. These descriptors are the service blueprints and pro-
vide the information required to assemble the service at runtime. We use the descrip-
tors to configure middleware services to different devices. Furthermore, these blue-
prints constitute a valuable formalism to understand the composition and behavior of
existing middleware services. Developers can access these descriptors (or extract
them directly from a running system), understand the internal details of the system,
and introduce changes to customize the service without reading a single line of source
code.

Dynamically Programmable and Reconfigurable Middleware Services 375

Another benefit of architecture externalization is that it exports the execution state
of the system, which includes information about the currently executed internal com-
ponent. This information becomes essential in determining safe reconfiguration
points, which correspond to execution states where it is safe to replace components,
modify the logic, and modify state attributes. The system can determine these safe
points without requiring any support from the software developers.

Finally, a benefit of architecture externalization is the ability to virtualize the soft-
ware infrastructure and create snapshots of the running system. This functionality is
particularly useful to suspend, resume, and migrate software automatically. Further-
more, heterogeneous systems can exchange architecture definitions and reconfigure
themselves to enable interoperability.

We have built a software construction mechanism that relies on architecture exter-
nalization. We refer to this type of software as Dynamically Programmable and Re-
configurable Software (DPRS). Programmable because similarly to hardware FPGAs
(Field Programmable Gate-Arrays) that allow programming the behavior of the hard-
ware, our technique allows programming the behavior of the software by defining the
structure and logic of the software. Reconfigurable, because it is possible to access
and alter the structure, logic, and state of the middleware. Finally, the adverb dynami-
cally specifies that changes to the middleware architecture can be performed at run-
time. In this paper we describe our experience using DPRS to build middleware ser-
vices.

Fig. 1. Middleware architecture browser.

376 Manuel Roman and Nayeem Islam

2.1 Configurability, Updateability, and Upgradeability:
Requirements and Examples

In this subsection we concentrate on configurability, updateability, and upgradeabil-
ity. We define each term, describe the requirements to obtain such functionality, and
finally present some examples.

 We refer to configurability as the ability to select the functional components that
compose a middleware service to accommodate changes in the execution conditions
and to accommodate heterogeneous devices. With updateability we denote the func-
tionality to replace software components at runtime, as well as the functionality to
modify the behavior of the middleware (that is, the execution logic), also at runtime.
Finally, we use the term upgradeability to refer to the ability to add new functionality
to existing middleware services at runtime.

Configurability, updateability and upgradeability require functionality to modify
the structure and the logic of the middleware. To modify the structure, the middleware
must export its internal component composition, thus allowing external entities to
inspect it and modify it. Furthermore, in order to modify the logic, middleware must
export information about its internal component interaction rules, and must provide
functionality to modify them. Finally, updateability requires also access to the state of
the components, so it can automate component replacement (no need to transfer the
state from old to new components).

To motivate the relevance of configurable, updateable, and upgradeable middle-
ware services we use a middleware service we have built (ExORB), and explain how
we leverage the architecture externalization technique. ExORB is an object request
broker communication middleware service that provides functionality to invoke and
receive RPC requests using different protocols such as IIOP and XMLRPC. As a
DPRS-enabled service, ExORB can be configured, updated, and upgraded. We pre-
sent an example for each feature next and leave the detailed description of the design
of ExORB for Section 4.

As an example of configurability assume the following two cases:

• Customizing ExORB for client-side only functionality (sending requests only) or
client and server side functionality (sending and receiving requests) depending on
the role of the devices and available resources

• Replacing an existing protocol encoding component with a new one that imple-
ments an algorithm optimized to the new execution conditions (for example, re-
duced bandwidth).

Regarding updateability, consider the two following examples:

• Assume that the component that encodes IIOP requests has an error and adds wrong
information to the request header. Developers can correct the component code and
replace the existing component with the new one without stopping the system and
without requiring user intervention.

• Consider the case where developers find a more efficient way to send requests. The
new approach invokes ExORB’s internal components in a different order (connects
first to the remote object and generates the IIOP messages only upon successfully
connecting) and reduces the time required to send remote invocations. Due to the
logic externalization property, we can dynamically modify the component invoca-
tion order.

Dynamically Programmable and Reconfigurable Middleware Services 377

Finally, regarding upgradeability, we describe four examples next:

• The first example is about interceptors, which allow adding functionality to object
request brokers. An interceptor is an object that is invoked before and after sending
a request to customize the behavior of the request broker. Interceptors are used, for
example, to encrypt and decrypt the buffer before it is sent. Building interceptors in
ExORB is simple. We create a new component, register it with ExORB’s external-
ized structure, and modify the logic of ExORB so it invokes the new component be-
fore sending the request data over the network. The key difference with traditional
interceptors is that with ExORB we can leverage the structure and logic externaliza-
tion to insert interceptors in arbitrary positions. With existing ORBs, interceptors
are installed at predefined points. Furthermore, most existing ORBs do not accept
installing or modifying interceptors at runtime.

• The second example extends ExORB with functionality to broadcast information
about its registered objects, which is functionality commonly implemented by dis-
covery services. In order to provide the functionality, we create and register a new
component that accesses the state attribute that stores the list of registered objects
and broadcasts their references. Then, we modify the logic of ExORB so we invoke
this new component periodically.

• The third example adds a new protocol to ExORB at runtime (for example, SOAP).
We develop components to marshal and demarshal SOAP parameters, encode and
decode SOAP messages, and leverage the rest of ExORB’s infrastructure. To add
the new functionality, we leverage structure externalization to register the new
components, and the logic externalization to modify the logic of the system. Once
the functionality is installed, existing applications can receive and send requests
over SOAP without any change in their code.

• Finally, the last example adds new functionality to ExORB to support object migra-
tion. The new migration functionality removes the target object from the source
ExORB, instantiates a copy of the object in the remote location, transfers the state,
and registers the object with the target ExORB. Furthermore, we insert a component
that maintains a list of migrated objects so it can redirect incoming requests. We can
install the new functionality at runtime without affecting the execution of the exist-
ing ExORB. Adding the migration functionality leverages the logic externalization
to add new logic to ExORB, structure externalization to add new components that
implement the migration functionality, and state externalization to access and mod-
ify the list of registered objects both at the source and target ExORBs.

Based on our experience building ExORB and an event distribution middleware
service, architecture externalization is a key mechanism to achieve configurability,
updateability, and upgradeability. Externalization gives full control over running
middleware services and allows tuning and correcting their behavior without requir-
ing user intervention. Furthermore, with architecture externalization, the scope of
reconfiguration of middleware services is open ended. The ability to manipulate the
structure, logic, and state, allows programming the behavior of the middleware ser-
vices at runtime.

378 Manuel Roman and Nayeem Islam

3 Dynamically Programmable
and Reconfigurable Software (DPRS)

This section provides a detailed description of DPRS. The description includes infor-
mation about the abstractions and the execution model. Furthermore, in this section
we explain how the different components of DPRS contribute to the middleware con-
figurability, updateability, and upgradeability.

3.1 DPRS Abstractions

DPRS relies on three abstractions to build dynamically reconfigurable software: Mi-
cro Building Block (MBB), Action, and Domain. An MBB is the smallest functional
unit in the system, an action defines the logic of the system, and a domain represents a
collection of related MBBs. DPRS relies on name and value tuples as an indirection
mechanism to address system entities. This indirection simplifies the introduction of
changes in the system at runtime and has proved effective to build decoupled and
manageable systems.

3.1.1 Micro-building Block
An MBB is the smallest addressable functional unit in the system. An MBB receives a
collection of input parameters, executes an action that might affect its state, and gen-
erates a collection of output parameters. An example of an MBB is “registerObject”,
which receives two input parameters, a name and an object reference, updates a list
(its state) with the new entry, and returns the number of registered objects.

MBBs store their state attributes as name and value tuples in a system provided
storage area. This mechanism avoids implementing state transfer protocols to replace
MBBs. Replacing an MBB requires registering the new MBB instance and providing
it with a pointer to the existing state storage area. Accessing the attributes by name
enables also external attribute manipulation. External services operate on the existing
state and the MBBs obtain the new values when they resolve them by name during the
execution of their algorithm. Furthermore, storing the state as a collection of name
and value tuples simplifies state suspension, resumption, and migration. We provide
services that implement this functionality transparent to MBBs. Figure 2 illustrates
the structure of an MBB.

Micro
Building
Block

State Storage Area

<name1, value1>
...

<namen, valuen>

Input Parameters

<name1, value1>
...

<namen, valuen>

<name1, value1>
...

<namen, valuen>

Output Parameters

Fig. 2. Micro Building Block structure.

Dynamically Programmable and Reconfigurable Middleware Services 379

The execution model of DPRS invokes a collection of MBBs in a specific order
(the exact mechanism is described in section 3.2). However, MBBs do not store refer-
ences to the next MBB in the chain. This mechanism implies that no MBB in the
system stores references to any other MBB. This approach allows replacing MBBs
easily. There is no need to notify any MBB about the replacement because no MBB
knows about any other MBB.

3.1.2 Action
Actions specify the MBB execution order and therefore define the logic of the system.
DPRS defines two types of actions: interpreted actions, and compiled actions.

An interpreted action is a deterministic directed graph where nodes are MBBs
that denote execution states, and edges define the transition order. Every edge has an
associated conditional statement that is evaluated at runtime to determine the next
transition. Conditional statements can refer to parameters generated by MBBs (output
parameters). Finally, for nodes with multiple out edges, only one of edge can evaluate
true at runtime (deterministic graph). By default, the value of this conditional state-
ment is true. Action graphs have one start node, intermediate nodes, and one end
node. The start and end nodes (the end node denotes the action graph terminates) are
part of every graph traversal. The intermediate nodes depend on the traversal of the
graph according to the conditional statements assigned to the edges and their runtime
evaluation. Action graphs include additional nodes and edges that specify the transi-
tions in case of errors. That is, if no errors are detected, the system uses the default
action graph (for example, the one depicted in Figure 3). However, if execution errors
are detected, then the system uses the error nodes and edges. For example, Figure 3
has an additional edge that goes from each node to the end state (not included in the
figure). That is, if an error is detected, the action simply terminates. Note, however,
that it is possible to define more sophisticated behaviors. Action graphs allow cycles
to support loop statements, such as “while”, “for”, and “repeat”.

Fig. 3. Interpreted Action example.

Executing an interpreted action corresponds to traversing the graph. Figure 3 de-
picts an action example where MBB1 is the start node. The action starts with the
invocation of MBB1, continues with the invocation of MBB2, then, depending on the
value of ‘X’ it invokes MBB3 or MBB4, and finally, it invokes MBB5. The value of
the variable ‘X’ is either provided by the client invoking the action or it is an output
parameter generated by MBB1 or MBB2. This value is stored as part of the action
execution state, which is described in detail in the execution model (Section 3.2).

380 Manuel Roman and Nayeem Islam

Interpreted actions provide reflection at the execution level by exporting informa-
tion about the current execution state, and by providing support to modify the action
graph at runtime. Furthermore, the explicit representation simplifies reasoning about
the logic of the system, supports static analysis, and allows third parties to modify the
behavior of the system by adding or removing states and configuring the graph.

A compiled action is a code fragment that specifies the MBB invocation order.
Compiled actions invoke MBBs using a DPRS library. This library receives an MBB
name and a collection of input tuples, and invokes the specified MBB with the pro-
vided input parameters. This mechanism allows DPRS to take control over MBB
invocation, which allows DPRS to replace MBBs safely. Figure 4 illustrates an exam-
ple of a compiled action, which corresponds to the interpreted action depicted in Fig-
ure 3.

Fig. 4. Compiled action example.

The compiled actions’ code is provided as an MBB that is registered with the
system. Therefore, invoking the action corresponds to invoking the MBB. This
approach allows us to replace action definitions at runtime.

The key difference between interpreted and compiled actions is the runtime
manipulation granularity. Compiled actions cannot be modified at runtime, that is, it
is not possible to add, remove, or modify transition states. Changing their behavior
requires replacing their associated MBB, that is, replacing the action code.
Furthermore, it is not possible to inspect compiled actions at runtime, and therefore it
is not possible to learn about the current execution state, or learn about the action
behavior. With interpreted actions, the graph provides enough information to learn
about the behavior of the action. The benefit of compiled actions is that they execute
faster than interpreted actions because they do not require an interpreter to drive their
execution. Furthermore, a compiled action gives more control to the programmer over
the programming of the software behavior.

Both interpreted and compiled actions contribute to MBB replacement. One of the
key requirements to automate runtime MBB replacement is detecting the system has
reached a safe execution state. With DPRS actions, these safe states can be deter-
mined automatically. The safe reconfiguration states correspond to MBB invocations.
With interpreted actions, the interpreter explicitly invokes the MBBs. Compiled ac-
tions use a DPRS library to invoke MBBs. In both cases, the supporting system con-
trols MBB invocation and therefore can safely replace MBBs.

Finally, both interpreted and compiled actions contribute to updateability and up-
gradeability of the systems. Updating an action corresponds to replacing an existing

Dynamically Programmable and Reconfigurable Middleware Services 381

action, or in the case of interpreted actions, modifying the execution graph. Upgrading
the system implies adding new actions, or in the case of interpreted actions, modify-
ing the action graph to incorporate or modify states.

3.1.3 Domain
A domain is an abstraction that aggregates collections of related MBBs. It provides a
storage area to store the structure of the domain (list of MBBs), the logic of the do-
main (list of actions), and the state of the domain (MBBs state attributes and execu-
tion state values). Domains can be composed hierarchically, and they provide a useful
mechanism to manipulate collections of MBBs as a single unit (for example, move,
suspend, and resume).

Figure 5 illustrates the components and structure of a domain. All three memories
(structure, logic, and state) store name and value tuples. The structure memory
maintains a collection of tuples that correspond to MBBs registered in the domain.
The tuple name refers to the name of the MBB (every MBB is assigned a name at
registration time), and the value stores the reference to the MBB. Note that the refer-
ence can be a local pointer or a pointer to a remote MBB. The DPRS execution model
makes local or remote invocation transparent to developers. The logic memory stores
a list of actions exported by the domain. Similarly to the structure memory, the logic
memory refers to actions by name. Finally, the state memory stores the state attrib-
utes for the MBBs registered in the domain. During the MBB registration, the system
assigns a pointer to the state memory to the MBB. MBBs belonging to the same do-
main share the same state memory. We refer to the three memories as the domain
memory.

Fig. 5. Domain components.

Domains can be composed hierarchically, which provides a useful mechanism to
organize large collections of MBBs. Domain memories store a reference (name and
value tuple) to the domain memories of the registered sub-domains, and they also
store a reference to the root domain memory. Figure 6 illustrates an example of a
hierarchical composition of domains. Root domain has two sub-domains (domain 1
and domain 2) and domain 1 has three sub-domains (domain 3, domain 4, and do-
main 5).

382 Manuel Roman and Nayeem Islam

The default visibility policies dictate that a domain has access to the sub-domain
memories. For example, the root domain has access to all the domain memories of the
system (that is, domains 1, 2, 3, 4, and 5), while domain 5 has access to its own do-
main memory only. However, it is possible to modify the visibility policies and allow
sub-domains to access their parents or siblings’ domain memories.

Fig. 6. Hierarchical composition of domains.

Domains provide a useful mechanism to organize complex systems consisting of a
large number of MBBs. The recursive composition of domains contributes to the
static configuration of middleware services. Developers can provide different domain
compositions for different devices or execution requirements.

3.2 Instantiation Model

DPRS-based systems are assembled at runtime using a “blueprint” we refer to as
architecture descriptor. This descriptor contains information about the domain hierar-
chy. Each domain entry in the architecture descriptor points to two additional descrip-
tors, structure and logic descriptors, which specify the MBBs and actions registered in
the domain. Finally, the structure descriptor points to the MBB descriptors that corre-
spond to the MBBs that compose the structure. Figure 7 illustrates a descriptor dia-
gram for the example depicted in Figure 6 (we only include the root domain descrip-
tors’ hierarchy for clarity).

DPRS relies on a runtime infrastructure that provides functionality to parse the ar-
chitecture descriptor, instantiate the required MBBs, introduce changes at runtime,
and parse interpreted actions. Figure 8 illustrates the runtime infrastructure. It consists
of two key components: Static Kernel and Dynamic Kernel. The static kernel provides
functionality to parse the architecture descriptor, functionality to generate an architec-
ture descriptor for the running system, and functionality to instantiate micro building
blocks (for example, Java objects, .NET object, or DLLs). The static kernel is the
minimum functionality required to assemble a system based on micro building blocks
and it is the only non-reconfigurable non-MBB based component in the system. The

Dynamically Programmable and Reconfigurable Middleware Services 383

layers on top of the static kernel are recursively built using micro building blocks. The
dynamic kernel consists of a domain called Domain Manager, which provides micro
building blocks to manage the domain. The dynamic kernel provides also the Micro
Building Block Scheduler, which provides functionality to execute interpreted ac-
tions. Finally, on top of the dynamic kernel are the dynamically programmable and
reconfigurable middleware services.

Fig. 7. DPRS architecture description.

Fig. 8. DPRS Runtime Infrastructure.

3.3 DPRS Execution Model

DPRS interpreted actions externalize the logic of the system. They provide informa-
tion about the MBB invocation sequence required to execute a functional aspect of the
system. The DPRS execution model relies on a component called MBB scheduler,
which drives the execution of the system using the action’s graph as an MBB invoca-
tion schedule. The MBB scheduler maintains and exports information about the exe-
cution state of the system. This information consists of:

1. Currently executed action
2. Currently executed MBB
3. Action associated parameters, that is, parameters provided by the action invoker,

plus parameters generated by the action’s MBBs.

384 Manuel Roman and Nayeem Islam

The MBB scheduler is implemented as an MBB. Therefore, its state is accessible,
and it can be modified at runtime as any other MBB. The ability to replace the MBB
scheduler allows developers to provide different execution semantics. For example,
they can choose an MBB scheduler that supports transparent local or remote MBB
invocation, therefore simplifying runtime software partitioning. Furthermore, they can
choose an MBB scheduler that checkpoints the parameters and state after every MBB
invocation therefore providing fault tolerant semantics. Also, they can select a real
time MBB scheduler that defines action execution time boundaries therefore provid-
ing guarantees on the action execution times. The ability to select a specific MBB
scheduler combined with dynamic software replacement capabilities simplifies the
construction of adaptive systems. That is, systems that can modify their execution
model according to the execution conditions and external requirements.

Fig. 9. Action execution example.

The DPRS execution model associates an object called action state object to each
action execution. Actions use this object to store the input and output parameters
associated to the action execution. Parameters are provided by the clients invoking the
action and are also generated by MBBs as the result of their invocation. MBBs con-
sume parameters stored in the action state object to implement their algorithm. Saving
the parameters generated during the action invocation and synchronizing the MBB
access to their state attributes allows clients to invoke actions concurrently. Figure 9
illustrates an interpreted action execution example. The name of the action is “exam-
pleAction” and it consists of two MBBs. To simplify the explanation we assume an
action with no conditional transitions or loops. The execution model remains the
same. The difference is that the MBB scheduler evaluates an expression to obtain the
name of the next state. We describe the execution model algorithm next:

Dynamically Programmable and Reconfigurable Middleware Services 385

1. The MBB scheduler receives a request to execute an action called “exampleAc-
tion”. The request includes an action state object that contains two parameters, a,
and c (Step 1 in Figure 9).

2. The MBB scheduler uses the action name to access the logic memory and obtains
a pointer to the action graph’s first node.

3. The MBB scheduler obtains the name of the MBB from the action graph’s node,
and uses the name (MBB1) to resolve the MBB from the structure memory.

4. After resolving MBB1, the MBB scheduler invokes the MBB passing the action
state object. MBB1 requires an input parameter named a, which it obtains from
the action state object. MBB1 executes its algorithm and generates an output pa-
rameter called b, which it stores in the action state object (Step 2 in Figure 9).

5. Next, the MBB scheduler obtains the name of the next state from the current ac-
tions graph’s node, obtains the name of the MBB (MBB2), and resolves MBB2
from the structure memory.

6. The MBB scheduler invokes MBB2 with the action state object as a parameter.
MBB2 requires two parameters, b and c, which it obtains from the action state ob-
ject. MBB2 executes its algorithm, generates an output parameter called d, and
stores the parameter in the action state object (Step 3 in Figure 9).

7. Finally, the MBB scheduler returns the action state object to the caller.

The main contribution of the DPRS’ execution model is the ability to detect safe
software reconfiguration points automatically. The basic rule is that the system allows
reconfiguring the system between MBB invocations only. MBBs are allowed to ac-
cess and modify the externalized structure, logic, and state. Therefore, modifying
these parameters might affect the execution of the MBBs and could lead to an incon-
sistent software state. The system waits until the MBB completes its execution to
avoid undesirable results. Note that this behavior applies to both interpreted and com-
piled actions. Compiled actions use a DPRS library to invoke MBBs and therefore
give control to the system to implement reconfiguration.

The main concern about the interpreted execution model is performance. Invoking
an action requires accessing the domain memory to resolve the nodes of the action
graph, the MBBs, and accessing the parameters stored in the action state object. In
Section 5, we present experimental results that illustrate the performance penalty
incurred by DPRS. The results indicate that the penalty can be considered negligible
in most cases.

4 ExORB: A Dynamically Reconfigurable
Communication Middleware Service

In this section we present a multi-protocol Object Request Broker (ORB) communica-
tion middleware service that we have built using DPRS. The service provides client
and server functionality independently of wire protocols. That is, the server object’s
methods can be invoked over different protocols, such as IIOP or XML-RPC. Simi-
larly, client requests use the same interface and semantics regardless the underlying
protocol. Although our implementation supports IIOP and XML-RPC, it is possible to
add additional protocols by developing and deploying additional micro building
blocks at runtime. As a DPRS system, ExORB’s architecture (state, structure, and

386 Manuel Roman and Nayeem Islam

logic) is externalized, and therefore, it is possible to inspect it and manipulate it at
runtime. ExORB has been built using a Java implementation of the DPRS supporting
infrastructure, and we use it extensively as a basic component of our infrastructure to
enable transparent remote MBB invocation. In the following section, we present the
architecture of ExORB including a list of micro building blocks, domains, and ac-
tions.

4.1 Structure of ExORB

ExORB is composed of 28 micro building blocks grouped into 11 domains. Figure 10
depicts the structure of ExORB. Next we explain the functional goal of each domain
and the MBBs that compose each of the domains.

The CDR Parameter Management domain provides functionality to marshal and
demarshal parameters according to the Common Data Representation (CDR) format
(CORBA default representation). It contains two MBBs: CDR Marshal Parameters
and CDR Demarshal Parameters.

The XMLRPC Parameter Management domain is similar to the CDR Parameter
Management Domain but provides functionality to marshal and demarshal parameters
encoded according to the XMLRPC protocol.

The IIOP Protocol Processing domain aggregates micro building blocks that export
functionality to encode and decode messages that conform to the IIOP protocol. It
contains five MBBs: IIOP Encode Request, IIOP Decode Request, IIOP Encode Re-
ply, IIOP Decode Reply, and IIOP Decode Header.

Fig. 10. ExORB structure.

Dynamically Programmable and Reconfigurable Middleware Services 387

The XMLRPC Protocol Processing domain is equivalent to the IIOP Protocol
Processing Domain and provides functionality to handle XMLRPC requests and re-
plies.

The Network Data Management domain is responsible for handling incoming and
outgoing network traffic. It is composed of three micro building blocks: Send Data,
Receive Data, and Peek Data.

The Object Invocation domain contains two micro building blocks: Prepare
Method Invocation and Invoke Method. These MBBs automate server method invoca-
tion using the Java language reflection capabilities. Developers do not need to build
skeletons for their server objects; they simply register them and the system automati-
cally obtains all the information it requires.

The TCP Incoming Connection Management domain provides functionality to
handle incoming TCP network connections. It exports two MBBs: Init and Accept.

The TCP Outgoing Connection Management domain handles TCP connection es-
tablishment with remote peers. The domain includes two micro building blocks: Con-
nect and Return Communication Point.

The Object Registration domain is responsible for the management of server ob-
jects. It contains three MBBs: Register Object, Remove Object, and Get Object.

Table 1. ExORB size.

Domain Size
CDR Parameter Management 16KB
XMLRPC Parameter Management 20KB
IIOP Protocol Processing 7KB
XMLRPC Protocol Processing 8KB
Network Data Management 3KB
Object Invocation 2KB
TCP Incoming Connection Management 5KB
TCP Outgoing Connection Management 4KB
Object Registration 2KB
Protocol Detection 1KB
URI Object Reference Management 2KB

The Protocol Detection domain exports functionality to identify the communica-
tion middleware protocol of incoming requests. This functionality is required to sup-
port the multi-protocol behavior of ExORB. It exports one MBB only: Detect Proto-
col. Current implementation of the MBB detects two types of protocols: XMLPRC
and IIOP.

Finally, the URI Object Reference Management domain provides functionality to
parse a remote object URI reference and extract all required information to send re-
quests to the remote object. This domain contains a single micro building block called
Reference to Object, which receives a URI and a protocol type, and returns a host
name, a port number, and the object id.

Table 1 lists the size of each ExORB domain (Java version). The total size, without
debugging information is 70KB. For the current implementation, each domain stati-
cally aggregates the micro building blocks. That is, micro building blocks are not
installed individually but as a group. The numbers in Table 1 correspond to the size of
the code of the domain.

388 Manuel Roman and Nayeem Islam

4.2 Logic of ExORB

ExORB exports four actions: send request, receive request, init, and register object.
The first one is intended for client-side functionality, while the remaining three (re-
ceive request, init, and register object) are intended for server-side functionality. Init
and register object are single node interpreted actions, which simply invoke the init
MBB and register object MBB described in section 4.1. In this section we provide a
detailed description of send request.

Figure 11 illustrates the action graph for the send request action. To simplify the
figure, we have removed the error states. When the client object invokes the action, it
provides an action state object (the one storing the parameters generated during the
execution of the action) containing the name of the action, the remote object’s refer-
ence, the method to invoke, the required parameters, and the protocol to use (that is,
XMLRPC or IIOP). The action starts invoking the reference to object micro building
block, which parses the remote object’s reference and extracts the hostname, object
id, and port. These parameters are stored in the action state object.

Next, the action invokes connect, which obtains the hostname and port from the ac-
tion state object, establishes a connection with the remote host (or reuses an existing
connection), and stores an object that encapsulates the TCP socket (TCP Communica-
tion Point) in the action state object. The transition to the next state is conditional. It
depends on the value of the “protocol” variable stored in the action state object. If the
value of the variable is “iiop”, the action invokes CDR Marshal Parameters to mar-
shal the parameters, and then it invokes IIOP Encode Request micro building block to
create the request message. If the value of the variable is “xmlrpc”, the action invokes
XMLRPC Marshal Parameters and then XMLRPC Encode Request. Both IIOP En-
code Request and XMLRPC Encode Request micro building blocks generate a byte
buffer with the request formatted according to the appropriate protocol. The next state
in the action graph is Send Data, which retrieves the buffer from the action state ob-
ject and sends it to the remote object using the TCP Communication Point object
stored in the action state object. After invoking Send Data, the action retrieves a tuple
named “oneway” from the action state object. If the value is “true”, the action invokes
Return Communication Point, which disposes the TCP communication point object
from the action state object, and finishes, returning the action state object to the action
invoker.

Fig. 11. Send Request action graph.

If the value of “oneway” is “false”, the action continues with the decoding of the
reply. First, depending on the value of the “protocol” tuple, the action decodes an

Dynamically Programmable and Reconfigurable Middleware Services 389

IIOP header, or an XMLRPC header. Both micro building blocks parse the message
header and store information about the request in the action state object. One compul-
sory field for both micro building blocks is the length of the remaining of the reply.
The action invokes Receive Data, which requires the length tuple to determine the
amount of data that it has to read from the network. Next, the action proceeds with the
decoding of the reply and the demarshaling of the parameters. Again, the action inter-
preter uses the value of “protocol” to decide what path to follow in the graph. Finally,
the action invokes the Return Communication Point micro building block (disposes
the TCP communication point) and terminates, returning the actions state object to the
action invoker. The action state object contains the result parameters.

4.3 State of ExORB

A key feature of DPRS is the ability to manipulate the software state as a first class
object. Every micro building block explicitly specifies its state dependencies, which
are defined in terms of name and value pairs. These tuples are stored in a storage area
provided by the micro building block domain. The state of the software is the union of
all the micro building blocks’ state attributes. The state of ExORB consists of all the
state attributes defined by the 28 micro building blocks. Table 2 lists the state attrib-
utes associated to ExORB. The table includes the name of the attribute, its purpose,
and the name of the domain that stores it.

Table 2. ExORB state attributes.

 Domain Purpose
Sent Data (long) Network Data

Management
Stores the total amount of bytes
sent by ExORB.

Received Data (long) Network Data
Management

Stores the total amount of
bytes received by ExORB.

Send Timeout (long) Network Data
Management

Value in milliseconds the send
MBB waits before timing out.

Receive Timeout (long) Network Data
Management

Value in milliseconds the receive
MBB waits before timing out.

Server Object Registry
(hash table)

Object Registration Stores the list of registered server
objects.

Server Communication
Point Cache (list)

TCP Incoming
Connection Management

Stores a list of connected
communication points.

Client Communication
Point Cache (list)

TCP Outgoing
Connection Management

Stores a list of connected
communication points.

5 DPRS Evaluation

In this section, we use ExORB to provide a quantitative and a qualitative evaluation
of DPRS. For the quantitative evaluation, we present performance numbers and com-
pare ExORB with a non-reconfigurable communication middleware. For the qualita-
tive evaluation, we explain how we have successfully configured, updated, and up-
graded ExORB using the functionality provided by DPRMS.

390 Manuel Roman and Nayeem Islam

5.1 Quantitative Evaluation

The goal of this section is to examine the overhead incurred by DPRS. According to
our experiments, this overhead is mostly due to domain memory accesses (currently
implemented as a hash table). When an action is invoked, the MBB Scheduler parses
the graph and accesses the logic memory to resolve each of the nodes of the graph.
For each graph node, the scheduler obtains the MBB from the structure memory, and
finally, during the MBB execution, the MBB might access the state memory and ac-
tion state object to obtain and store state variables and input and output parameters.
Note that the MBB execution is atomic and the MBB resolves any required state vari-
able and input and output parameters at the beginning of its execution, and stores the
values before completing its execution. That is, the MBB does not resolve the state
variables and input and output parameters each time it needs to use them during an
invocation; it caches their references until the end of its execution. For every action
state, there is one access to the logic memory to obtain the action graph node, and
another access to the structure memory to resolve the MBB. Then, each MBB ac-
cesses input (input) and output (output) parameters from the action state object, and
state (state) variables from the state memory. Equation 1 illustrates the total number
of memory accesses for an action with “n” states.

∑
=

=
+++=

1

)(*2
i

ni
iii stateoutputinputnssesMemoryAcce

(1)

To measure the performance overhead of the Java implementation of DPRS (Java
1.4), we built a static version of the IIOP configuration of ExORB. We took the IIOP
related MBBs’ code, modified it, and created a collection of non-MBB Java objects.
These objects have internal state (they do not access a hash table), use standard inter-
faces (instead of a generic “process” method), keep references to other objects, and
are assembled statically. As a result, the new IIOP-based ORB does not incur any of
the DPRS overhead but it cannot be reconfigured). We used this ORB as the perform-
ance baseline for our experiments. For the experiments, we created two objects that
communicate using IIOP, a server that receives an integer, calculates its cube, and
returns the result, and a client that invokes the remote method 10000 times and out-
puts the average requests per second value. We repeated the test 10 times and gener-
ated an average value, as well as the standard deviation. For the experiment, we used
two machines connected to a 100Mbps Ethernet LAN. The server was a Pentium IV
at 2.2GHz, with 512MB of RAM. The client was a Pentium M at 1.7GHz with 1GB
of RAM. We run the experiment using the static ExORB implementation first, and
then we repeated the experiment using the DPRS version of ExORB, followed by
three optimized DPRS versions (we explain these optimizations next). Figure 12 illus-
trates the results of the experiments.

The left-most bar corresponds to the static version of ExORB with 4260 requests
per second. The next bar to the right illustrates the performance of the unoptimized
version of DPRS ExORB, which handles 1937 requests per second (45% of the static
version’s performance). The unoptimized version uses interpreted actions, and a hash
table to implement the state memory and the action state object. The next bars on
Figure 12 correspond to the performance of DPRS ExORB with a number of optimi-
zations. The third bar from the left shows a version of DPRS ExORB that uses com-

Dynamically Programmable and Reconfigurable Middleware Services 391

piled actions. With compiled actions, we do not need to obtain each action graph node
from the logic memory and therefore, for an action of “n” states we eliminate “n”
logic memory accesses. As illustrated in figure 12, the improvement is not too signifi-
cant (around 300 requests per second more, or 52.4% of the static ExORB perform-
ance). For the next optimization, we replace the state memory and the action state
object hash table with an array of references, and use an index to access each variable.
For this optimization, we need to process the logic and MBB descriptors to assign an
index to each variable. We are currently creating a tool that parses the descriptors and
generates the additional information automatically. This approach maintains the full
flexibility of DPRS ExORB (we can reconfigure every aspect of the system at run-
time) but requires additional steps when installing, removing, and reconfiguring the
system (which can be automated). With this optimization we obtain 3126 requests per
second, which corresponds to 73.3% of the performance of the static ExORB imple-
mentation. When using indices, we do not reduce the number of accesses to the do-
main memory; instead, we reduce the lookup time by avoiding the hash table. The last
optimization uses indices and replaces the interpreted actions with compiled actions.
As before, the improvement is not significant, we get an additional 112 requests per
second.

Although the optimizations presented in this section are still work in progress ini-
tial results are promising. The architecture externalizing technique provides detailed
information about the system that we leverage to build optimization tools that reduce
the overhead of the system.

Fig. 12. DPRS Performance Evaluation.

5.2 Qualitative Evaluation

In this section, we show examples of ExORB configurability, updateability, and up-
gradeability. These examples leverage the basic functionality provided by DPRS and
sustain the claims made in Section 2.1.

392 Manuel Roman and Nayeem Islam

Fig. 13. ExORB configuration for client-side and XMLRPC only functionality.

For the configurability evaluation, we modify ExORB to provide client-side func-
tionality and support for the XMLRPC protocol only. This configuration is particu-
larly useful for resource constrained devices (for example, a sensor) that connect to a
server periodically and send certain information (for example, temperature or pressure
readings). Figure 13 illustrates the new configuration of ExORB, which removes the
domains for CDR Parameter Marshaling, IIOP Protocol Processing, Object Invoca-
tion, TCP Incoming Connection, Object Registration, and Protocol Detection. Fur-
thermore, we remove the Peek Data MBB from the Network Data Management Do-
main, and the Decode Request and Encode Reply MBBs from the XMLRPC Protocol
Processing Domain. We edit the architecture descriptor to reflect these changes: mod-
ify the structure descriptor to remove the non-required MBBs, and modify the logic
descriptor to remove the receive request and init actions. This configurability flexibil-
ity is the result of the micro building block construction model. The size of this con-
figuration is around 43KB.

DPRS provides default support for updateability. We can replace any ExORB’s
MBB simply by interacting with the Domain Management domain, which provides
functionality that guarantees the safe replacement of MBBs at runtime. Furthermore,
the Domain Manager provides functionality also to modify existing actions. Figure 14
illustrates a modified version of the send request action (Figure 11), where we mar-
shal the parameters first and connect to the remote object later.

Finally, upgradeability is also an integral part of DPRS. We have upgraded Ex-
ORB with functionality to encrypt and decrypt the data buffer before sending and
receiving it. The upgrade requires adding an encrypting MBB, a decrypting MBB, and
modifying the send request and receive request actions. The new actions invoke the
encrypting/decrypting MBBs before and after sending data over the network. Figure
15 illustrates the changes to the send request action. The dashed circle corresponds to
the encryption MBB, which is invoked after coding the request and before sending it
over the network. Another example of upgradeability corresponds to the evolution of

Dynamically Programmable and Reconfigurable Middleware Services 393

ExORB. Our initial implementation provided IIOP functionality only. Later, we
added XMLRPC capabilities by introducing new MBBs and modifying the existing
actions.

Fig. 14. Updating an interpreted action.

6 Related Work

For the related work, we compare DPRS with reflective middleware systems and
dynamic software updating systems.

Reflective middleware [14, 15] refers to the capability of a service to reason about
and act upon itself. Reflective middleware services provide a representation of their
own behavior that can be inspected and modified at runtime. This representation is
known as causally connected self representation (CCSR). Causally-connected implies
that changes in the representation affect the underlying system and vice-versa. DPRS
is a fully reflective (structural and behavioral) system. It provides a methodology to
construct fully reflective middleware services. This approach contrasts with existing
reflective middleware services that have to be designed having reflection in mind.
That is, developers must decide beforehand those aspects of their services they plan to
make reflective. DPRS supports structural reflection (supported interfaces) by means
of action listing (actions correspond to interfaces). DPRS also provides architectural
behavior by exporting the list of components and their interactions rules. Finally,
DPRS provides behavioral reflection; it provides information about invocations’ arri-
vals, and provides functionality to modify the behavior.

There is abundant work in the area of dynamic software updating systems [16].
These projects support executable code replacement at runtime. For example Hicks et
al [6] describe a mechanism that relies on the OS linker to introduce code changes at
runtime. Their work does not require a special software construction mechanism but
they require developers to specify when it is safe to replace code. DPRS does not
require developers to specify when it is safe to replace code. Its execution model can
detect safe reconfiguration states automatically. Furthermore, DPRS provides infor-
mation about the composition and execution state of the system. None of the tradi-
tional updating systems provides such functionality. Bitfone[7], Redbend [11], and

394 Manuel Roman and Nayeem Islam

DoOnGo [12] are commercial products that support over-the-air cell phone firmware
updates. Their approach is different from previous work on dynamic updates because
they do not support partial image updates. They replace the whole cell phone firm-
ware. Their algorithms calculate the differences between new and old images and
transmit the differences to the phone update agent.

Finally, systems such as Ensemble[17] , Cactus[18], and the Dynamically Load-
able Protocol Stacks[19] provide functionality to create updateable network protocols
using state machines. The latter generates the protocol stack on the fly from a formal
definition. The other systems assemble the stack from existing components but allow
for changes in the stack (updates and upgrades). DPRS is similar to these systems in
terms of dynamic composition and the use of state machines. However, DPRS allows
inspecting the internal architecture and supports the construction of arbitrary software.

Fig. 15. Upgraded send request action that uses encryption and decryption.

Petri Nets [20] are a formalism to model concurrent asynchronous processes. Petri
Nets consist of places (conditions), transitions (events or processes), arcs connecting
places and transitions, and markings consisting of a number of tokens associated to
each place. Unlike our system, Petri Nets do not directly address state, and structure
externalization. Furthermore, Petri Nets do not define mechanisms for safe replace-
ment of components. Finally, our system uses a scheduler that drives the execution of
the system. With Petri Nets, state transitions are modeled asynchronously based on
the firing of conditions. Note however, that we can leverage Petri Nets theory to
model our systems.

7 Conclusions

In this paper, we present a technique to build dynamically programmable and recon-
figurable middleware services. This technique relies on three abstractions: micro
building blocks, actions, and domains. A micro building block (MBB) is the smallest

Dynamically Programmable and Reconfigurable Middleware Services 395

functional unit in the system that can be composed with additional MBBs to imple-
ment software functionality. An MBB receives input parameters, implements an algo-
rithm that affects state attributes, and generates output parameters. An action is re-
sponsible for the coordination of MBBs and defines the logic of the system. Finally, a
domain aggregates related MBBs and provides a storage area to save the state, the
structure, and the logic of the system. DPRS supports the construction of configur-
able, updateable, and upgradeable middleware services that suit the requirements of
next generation mobile handsets.

The architecture externalization technique gives software administrators and de-
velopers full control over middleware services. This supports phone evolution by
allowing different software configurations, runtime updates, and runtime upgrades.
The result is remotely managed cell phones that minimize or eliminate crashes and
maximize user satisfaction by avoiding users from participating in maintenance tasks.

Our key assumption is that the individuals that benefit from architecture externali-
zation are experts that know well their domain. For example, we assume that someone
modifying ExORB will not insert an MP3 decoder micro building block between the
parameter marshaler and the connector micro building blocks. Using the different
system descriptors (logic, structure, and state) we implement static analysis to detect
syntactic errors, such as mismatching number or type of input and output parameters.
However, we do not provide any functionality to check for structural and logic se-
mantic errors. Parlavantzas et al. [5] use component frameworks to address this issue.
We leave the topic as future research work.

 The architecture externalization technique has proven useful not only for configur-
ing, updating, and upgrading software, but also for simplifying the suspension, re-
sumption, migration, and partitioning of software. Accessing the externalized archi-
tecture allows services to automate these tasks without requiring any code from the
original software developer.

One of the main concerns about DPRMS is the programming model. MBBs can be
built using existing languages such as C, C++, Java, or C#. However, software devel-
opment requires developers to think in terms of MBBs and actions. A solution to this
problem is to provide tools that hide these extra steps. For example, it is possible to
provide an IDE environment where users can define the actions visually and the sys-
tem generates their XML representation (or even compiled code) automatically.

Finally, DPRS introduces a performance overhead, which we have been able to re-
duce to 25% with initial optimizations. We are currently working on additional op-
timizations and expect to reduce the current overhead even further.

References

1. http://www.nttdocomo.com/corebiz/imode/alliances/cmode.html.
2. http://www.nttdocomo.com/corebiz/imode/services/iarea.html.
3. A. Beaufour and P. Bonnet, "Personal Servers as Digital Keys," presented at International

Conference on Pervasive Computing and Communications, Orlando, Florida, 2004.
4. http://www.3gnewsroom.com/3g_news/dec_02/news_2861.shtml.
5. N. Parlavantzas, G. Blair, and G. Coulson, "An Approach to Building Reflective Compo-

nent-Based Middleware Platforms," presented at MSRC Summer Research Workshop,
Cambridge, U.K., 2002.

396 Manuel Roman and Nayeem Islam

6. M. Hicks, J. T. Moore, and S. Nettles, "Dynamic Software Updating," presented at
(SIGPLAN) Conference on Programming Language Design and Implementation, Snow-
bird, Utah, United States, 2001.

7. Biftone, "http://www.bitfone.com/usa/index.html."
8. A. Andersen, G. Blair, V. Goebel, R. Karlsen, T. Stabell-Kulo, and W. Yu, "Artic Beans:

Configurable and Reconfigurable Enterprise Component Architectures," IEEE Distributed
Systems Online, 2001.

9. F. Kon, F. Costa, G. Blair, and R. H. Campbell, "The Case for Reflective Middleware,"
Communications of the ACM, vol. 45, pp. 33-38, 2002.

10. L. Capra, G. Blair, C. Mascolo, and W. Emmerich, "Exploiting Reflection in Mobile Com-
puting Middleware," Mobile Computing and Communications Review, vol. 6, pp. 34-44,
2002.

11. Redbend, "http://www.redbend.com/."
12. DoOnGo, "http://www.doongo.com/us_web/."
13. P. Maes, "Concepts and Experiments in Computational Reflection," presented at Confer-

ence on Object Oriented Programming Systems Languages and Applications, Orlando,
Florida, USA, 1987.

14. M. Roman, F. Kon, and R. H. Campbell, "Design and Implementation of Runtime Reflec-
tion in Communication Middleware: the dynamicTAO case," presented at ICDCS, Austin,
Texas, 1999.

15. G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon, T. Fitz-
patrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski, "The Design and Im-
plementation of Open ORB v2," IEEE Distributed Systems Online. Special Issue on Reflec-
tive Middleware, vol. 2, 2001.

16. M. E. Segal and O. Frieder, "On-the-fly Program Modification: Systems for Dynamic Up-
dating," in IEEE Software, vol. 10: IEEE, 1993, pp. 53-65.

17. R. v. Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr, "Building Adaptive
Systems Using Ensemble," Software - Practice and Experience, vol. 28, pp. 963-979, 1998.

18. M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and G. T. Wong, "Survivability through
Customization and Adaptability: The Cactus Approach," presented at DARPA Information
Survivability Conference and Exposition (DISCEX 2000), 2000.

19. S. K. Tan, Y. Ge, K. S. Tan, C. W. Ang, and N. Ghosh, "Dynamically Loadable Protocol
Stacks. A Message Parser-Generator Implementation," in IEEE Internet Computing, vol. 8,
2004, pp. 19-25.

20. C.A. Petri, "Kommunikation mit Automaten" Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962

	1 Introduction
	2 Motivation for Middleware Architecture Externalization
	2.1 Configurability, Updateability, and Upgradeability: Requirements and Examples

	3 Dynamically Programmable and Reconfigurable Software (DPRS)
	3.1 DPRS Abstractions
	3.1.1 Micro-building Block
	3.1.2 Action
	3.1.3 Domain

	3.2 Instantiation Model
	3.3 DPRS Execution Model

	4 ExORB: A Dynamically Reconfigurable Communication Middleware Service
	4.1 Structure of ExORB
	4.2 Logic of ExORB
	4.3 State of ExORB

	5 DPRS Evaluation
	5.1 Quantitative Evaluation
	5.2 Qualitative Evaluation

	6 Related Work
	7 Conclusions
	References

